Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Вишневский Димитрий Алекрандррви НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Должность: Ректор (МИНОБРНАУКИ РОССИИ)

Дата подписания: 17.10.2025 15:06:46

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

Уникальный программный ключ: 03474917c4d012283e5ad996a4845276B80B05\ТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет

Информационных технологий и автоматизации

производственных процессов

Кафедра

Автоматизированного управления и инновационных технологий

УТВЕРЖДАЮ

И.о. проректора учебной ПО

работе

ДВ. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Интегрированные навигационные системы

(наименование дисциплины)

15.04.04 Автоматизация технологических процессов и производств

(код, наименование направления/специальности)

Автоматизация и управление дорожно-транспортной инфраструктурой (магистерская программа)

Квалификация магистр (бакалавр/специалист/магистр) Форма обучения очная, заочная (очная, очно-заочная, заочная)

1 Цели и задачи изучения дисциплины

Цели дисциплины. Целью изучения дисциплины является формирование у обучающихся системы профессиональных знаний, умений и навыков, необходимых для проведения научных исследований и создания интегрированных систем ориентации и навигации (ИСОН), построенных на основе бескарданных инерциальных измерительных модулей (БИИМ) и приемной аппаратуры GPS/ГЛОНАСС. ИСОН предназначены для систем управления как объектов, движущихся вблизи поверхности Земли, так и для орбитальных космических аппаратов.

Задачи изучения дисциплины: изучение взаимосвязи принципов и особенностей построения современных спутниковых радионавигационных систем; изучение методов обработки радионавигационной информации, изучение методов повышения точности и достоверности информации, получаемой с помощью спутниковых радионавигационных систем и устройств.

Дисциплина направлена на формирование общепрофессиональных компетенций (ПК-5) выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины – курс входит в часть Блока 1, Факультативные дисциплины (модули), подготовки студентов по направлению подготовки 15.04.04 «Автоматизация технологических процессов и производств» (магистерская программа «Автоматизация и управление дорожно-транспортной инфраструктурой»).

Дисциплина реализуется кафедрой автоматизированного управления и инновационных технологий.

Основывается на базе дисциплин: «Аппаратно-программные средства управления транспортными системами», «Автоматизированные системы управления дорожным движением в городах».

Является основой для изучения дисциплин: «Научноисследовательская работа (производственная)», «Магистерская работа».

Навыки, полученные при изучении дисциплины, будут составной частью профессиональных знаний и умений, выдвигаемых к магистру. Приобретенные студентами знания и навыки будут использоваться ими при выполнении выпускной работы и в последующей производственной деятельности.

Дисциплина нацелена на формирование профессиональных компетенций (ПК-5) выпускника.

Общая трудоемкость освоения дисциплины составляет 36 часов.

Программой дисциплины предусмотрены практические (18 ч) занятия и самостоятельная работа студента (18 ч) — для очной формы обучения.

Программой дисциплины предусмотрены практические (2 ч) занятия и самостоятельная работа студента (34 ч) — для заочной формы обучения.

Программой дисциплины курсовая работа не предусмотрена.

Дисциплина изучается на 2 курсе в 4 семестре с формой промежуточной аттестации – зачет для очной и для заочной форм обучения.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Интегрированные информационные системы» направлен на формирование компетенций, представленных в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание	Код	Код и наименование индикатора	
компетенции	компетенции	достижения компетенции	
Способен владеть	ПК-5	ПК-5.1. применяет алгоритмы работы	
теоретическими		механизмов нечетко-логических выводов,	
основами, методами и		анализа и расчета способов построения	
алгоритмами		функций принадлежностей, способов	
интеллектуализации		адаптации и обучения с помощью	
решения прикладных		нейронных сетей механизмов нечетко-	
задач в области		логического вывода.	
автоматизации и		ПК-5.2. применяет модели при исследовании	
управления дорожно-		объектов и управлении транспортными	
транспортной		процессами.	
инфраструктурой		ПК-5.3. разрабатывает на основе механизмов	
		нечетко-логического вывода структурно-	
		функциональных автоматизированных схем	
		управления	
		ПК-5.4 владеет навыками управления	
		результатами научно-исследовательской	
		деятельности и коммерциализацией прав на	
		инновационные объекты автоматизации	

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 36 часов.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим занятиям, текущему контролю, выполнение индивидуального задания, самостоятельное изучение материала и подготовку к зачету.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам	
Аудиторная работа, в том числе:	36	36	
Лекции (Л)	-	-	
Практические занятия (ПЗ)	18	18	
Лабораторные работы (ЛР)	-	-	
Курсовая работа/курсовой проект	-	-	
Самостоятельная работа студентов (СРС), в том числе:	18	18	
Подготовка к лекциям	-	-	
Подготовка к лабораторным работам	-	-	
Подготовка к практическим занятиям / семинарам	2	2	
Выполнение курсовой работы / проекта	-	-	
Расчетно-графическая работа (РГР)	-	-	
Реферат (индивидуальное задание)	-	-	
Домашнее задание	2	2	
Подготовка к контрольной работе	-	-	
Подготовка к коллоквиуму	4	4	
Аналитический информационный поиск	6	6	
Работа в библиотеке	-	-	
Подготовка к зачету	4	4	
Промежуточная аттестация – зачет (3)	3	3	
Общая трудоемкость дисциплины			
ак.ч.	36	36	
3.e.	-	-	

5 Содержание дисциплины

С целью освоения компетенции, приведенной в п.3 дисциплина разбита на 4 темы:

- тема 1 (Основные понятия и определения)
- тема 2 (Платформенные инерциальные навигационные системы);
- тема 3 (Бесплатформенные навигационные системы);
- тема 4 (Комплексные навигационные системы);

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной форм приведены в таблице 3 и 4 соответственно.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1	Основные понятия и определения	-	_	Параметры, измеряемые в системах ориентации и навигации. Опорные системы координат	2	-	_
2	Платформенные инерциальные навигационные системы	_	_	Принцип действия, возможные схемы ИНС. Алгоритмы работы ИНС. Основное уравнение функционирования ИНС в векторной форме для инерциальной системы координат. Анализ работы вертикального канала ИНС.	6	-	_
3	Бесплатформенные навигационные системы	_		Алгоритмы работы бесплатформенных навигационных систем с инерциальными и горизонтальными параметрами. БИИМ и приемная аппаратура GPS/ГЛОНАСС Решение задачи ориентации БИНС.	6	_	_
4	Комплексные навигационные системы	-	_	Принципы комплексирования навигационных систем. Информационная, временная и структурная избыточность. Методы синтеза КНС	4	-	-

Таблица 4 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

№	Наименование темы	Содержание лекционных	Трудоемкость в		Трудоемкость	Тема	Трудоемкость в
Π/Π	(раздела)	занятий	ак.ч.	Темы практических занятий	в ак.ч.	лабораторных	ак.ч.
	дисциплины	Запитии	ar. 1.		Б ак. ч.	занятий	
	Основные понятия и			Параметры, измеряемые в системах ориентации и			
1	определения	_	_	навигации. Опорные	2	_	_
				системы координат			
	Всего аудиторных ч	асов	4	4		4	•

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modu l.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень работ по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень работ по дисциплине и способы оценивания знаний

Вид учебной работы	Способ оценивания	Количество баллов	
Выполнение практических работ	Предоставление отчетов	30 - 40	
Прохождение тестов (контрольная работа или устный опрос на коллоквиумах)	Более 50 % правильных ответов	30 - 50	
Выполнение индивидуального задания	Предоставление материалов индивидуального задания (презентации, рефераты и т.д.)	0 - 5	
Выполнение домашнего задания	Предоставление материалов домашнего задания	0 - 5	
Итого	_	60 - 100	

Зачет проставляется автоматически, если студент набрал в течение семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Зачет по дисциплине «Интегрированные навигационные системы» проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время экзамена студент имеет право повысить итоговую оценку в форме устного экзамена по

приведенным ниже вопросам (п.п. 6.4).

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале	
учебной деятельности	зачёт/экзамен	
0-59	Не зачтено/неудовлетворительно	
60-73	Зачтено/удовлетворительно	
74-89	Зачтено/хорошо	
90-100	Зачтено/отлично	

6.2 Домашнее задание

В качестве домашнего задания студенты выполняют:

- работу над составлением конспекта изученного материала;
- подготовка рефератов, докладов и сообщений для обсуждения на практических занятиях.

Темы для докладов и сообщений:

- 1) Понятие опорной системы координат.
- 2) Принцип силовой стабилизации.
- 3) Принцип косвенной стабилизации.
- 4) Схема и принцип действия 3-х осного силового ГС.
- 5) Схема и принцип действия 3-х осного индикаторного ГС.
- 6) Начальная выставка ИНС.
- 7) Типы платформенных ИНС.
- 8) Алгоритм ИНС с географической ориентацией осей чувствительности акселерометров.
- 9) Алгоритм ИНС с ортодромической ориентацией осей чувствительности акселерометров.
 - 10) Решение задачи ориентации в ИНС.
- 11) Алгоритм ИНС со свободной в азимуте ориентацией осей чувствительности акселерометров.
- 12) Погрешности ИНС с географической ориентацией осей чувствительности акселерометров.
- 13) Погрешности ИНС с ортодромической ориентацией осей чувствительности акселерометров.
- 14) Погрешности ИНС со свободной в азимуте ориентацией осей чувствительности акселерометров.
 - 15) Алгоритмы БИНС.
 - 16) Алгоритмы БИНС на ДУСах.
 - 17) Алгоритмы ошибок БИНС на электростатических гироскопах.
 - 18) Алгоритмы ошибок БИНС на лазерных гироскопах.

- 19) Алгоритмы ошибок БИНС на волоконно-оптических гироскопах.
- 20) Методы начальной выставки БИНС.
- 21) Принципы комплексирования ИНС.
- 22) Алгоритмы навигационных определений в спутниковых навигационных системах.

6.3 Темы для рефератов (презентаций) – индивидуальное задание

- 1) Инерциальные навигационные системы (ИНС)
- 2) Основные понятия и элементы ИНС
- 3) Принципы построения одноканальной ИНС
- 4) Классификация ИНС
- 5) Кинематические соотношения между различными системами координат
 - 6) Полуаналитическая ИНС (ПА ИНС)
 - 7) ИНС геометрического типа (ГТ)
 - 8) ИНС аналитического типа (АТ)
 - 9) Бесплатформенные ИНС (БИНС)
 - 10) Вывод уравнений погрешностей ИНС
 - 11) Анализ и расчет погрешностей ИНС
 - 12) Параметры Родрига-Гамильтона. Алгоритмы навигации.
- 13) Уравнения ошибок автономной БИНС по положению и ориентации
 - 14) Взаимодействие прибора спутниковой навигации с ИИС ЛА
- 15) Комплексные навигационные системы. Принципы комплексирования
 - 16) Арифметические операции над кватернионами.
 - 17) Алгоритм ориентации на основе кватернионов.

6.4 Вопросы для подготовки к зачету

- 1) Понятие навигации. Классификация навигационных систем?
- 2) Системы координат. Фигура Земли. Эллипсоиды. Гравитационное поле Земли. Матрицы ориентации?
- 3) Инерциальные навигационные системы. Классификация ИНС. Требования к ИНС?
- 4) Инерциальные датчики первичной информации. Погрешности ДПИ?
 - 5) Платформенные ИНС. Принципы построения. Алгоритмы ИНС?
- 6) Бесплатформенные ИНС. Алгоритмы ориентации. Уравнения Пуассона?
- 7) Классификация и анализ погрешностей БИНС. Решение уравнений ошибок?

- 8) Коническое движение. Ошибки БИНС на коническом движении. Алгоритмы ориентации, адаптированные к коническим движениям?
 - 9) Начальная подготовка БИНС. Классификация методов?
- 10) Автономная начальная выставка на неподвижном и качающемся основании?
- 11) Неавтономная начальная выставка на подвижном основании. Угловое и векторное согласование?
 - 12) Калибровка БИНС и БЧЭ?
- 13) Навигационные приборы, устройства и системы. ДИСС, радиовысотомер, баровысотомер, ГСН?
- 14) Навигационные приборы, устройства и системы. Радиосистемы ближней и дальней навигации?
- 15) Радиотехническая система спутниковой навигации. История развития, состав, структура, общие принципы работы?
- 16) Погрешности СНС. Дифференциальный режим работы. Принципы дальномерных измерений в СНС. Сравнение методов навигационно-временных измерений?
 - 17) Геометрический фактор ухудшения точности?
- 18) Обзорно-сравнительные радионавигационные системы. Системы навигации по рельефу местности?
- 19) Применение методов оптимальной фильтрации в комплексных навигационных системах?
 - 20) Комплексирование ИНС/СНС. Наблюдаемость ошибок БИНС?
- 21) Комплексирование по навигационной и псевдодальномерной информации?
- 22) Адаптивные и субоптимальные модификации комплексирующего фильтра?
- 23) Проектирование ИИС для беспилотных объектов. Этапы проектирования, методика?
 - 24) Ось конечного поворота. Параметры Родрига-Гамильтона?
 - 25) Кватернионы?

6.5 Примерная тематика курсовых работ

Курсовая работа по данной дисциплине не предусмотрена учебным планом.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- Прохорцов, А. В. Навигационные системы управляемых ракет ближней тактической зоны: принципы построения особенности функционирования интегрированных навигационных систем Α. Прохорцов, A. Э. Соловьев, В. A. Смирнов. Тула: Тульский государственный университет, 2022. 91 c. https://elibrary.ru/item.asp?id=48983988 (дата обращения: 19.05.2024)
- 2. Матвеев, Валерий Владимирович. Основы построения бесплатформенных инерциальных навигационных систем [Текст] : учеб. пособие для вузов по направлению подгот. 200100 -"Приборостроение" / В.В. Матвеев, В.Я. Распопов ; под общ. ред. В.Я. Распопова, 2009. -278 с.
- 3. Разработка и испытания интегрированных навигационных систем [Текст]: учеб.-метод. пособие / [А. М. Боронахин [и др.], 2019. -71 с.

Дополнительная литература

- 1. Куршин, А. В. Комплексирование на подводном аппарате данных инерциальной навигационной системы, магнитометра и глобальной навигационной спутниковой системы ГЛОНАСС: специальность 05.13.01 "Системный анализ, управление и обработка информации (по отраслям)": автореферат диссертации на соискание ученой степени кандидата технических наук / Куршин Андрей Владимирович. Москва, 2016. 22 с. URL: https://viewer.rsl.ru/ru/rsl01006660957?page=22&rotate=0&theme=white (дата обращения: 19.05.2024)
- 2. Интегрированные системы управления технических средств транспорта [Текст] : учеб. пособие для вузов в обл. радиотехники, электроники, биомед. техники и автоматизации / В.М. Амбросовский, О.В. Белый, Д.А., Скороходов, С.Н. Турусов ; под ред. Ю.А. Лукомского, 2001. -287 с.
- 3. Система навигации проходческо-очистного комбайна на калийных рудниках / Л.Ю. Левин, Д.С. Кормщиков, Е.Г. Кузьминых, А.М. Мачерет // Горный журнал. 2021. №4. С. 92-96. URL: https://library.dontu.ru/list.php?IDlist=Q_1 (дата обращения: 19.05.2024)

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ : официальный сайт. Алчевск. URL: <u>library.dstu.education</u>. Текст : электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст : электронный.

- 3. Консультант студента : электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст : электронный.
- 4. Университетская библиотека онлайн: электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст: электронный.
- 5. IPR BOOKS : электронно-библиотечная система. Красногорск. URL: http://www.iprbookshop.ru/. Текст : электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО. Материально-техническое обеспечение представлено в таблице 6.

Таблица 7 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местоположение)
патменование оборудованиям у теоним каопистов	учебных кабинетов
Специальные помещения:	
Лекционная аудитория. (90 посадочных мест)	ауд. <u>315</u> корп. <u>1</u>
Аудитории для проведения практических занятий, для	
самостоятельной работы:	ауд. <u>209</u> корп. <u>1</u>
компьютерный класс (учебная аудитория) для проведения	
лабораторных, практических занятий, групповых и	
индивидуальных консультаций, организации самостоятельной	
работы, в том числе, научно-исследовательской, <u>оборудованная</u>	
учебной мебелью, компьютерами с неограниченным доступом к	
<u>сети Интернет, включая доступ к ЭБС</u>	
Персональные компьютеры Sepron 3200, Int Celeron 420, принтер	
LBP2900, локальная сеть с выходом в Internet	

Лист согласования РПД

Разработал

доцент кафедры автоматизированного управления и инновационных технологи (должность)	ий (подпись)	<u>Е. В. Мова</u>
старший преподаватель кафедры автоматизированного управления и инновационных технологий (должность)	(подпись)	<u>А. С. Пономаренко</u> (Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
И.о. заведующего кафедрой автоматизированного управления и инновационных технологий	(подпись)	<u>Е. В. Мова</u> (Ф.И.О.)
Протокол № <u>1</u> заседания кафедры автоматизированного управления и инновационных технологий		от 09.07.20 <u>24</u> г.

Согласовано

Председатель методической комиссии по направлению подготовки 15.04.04 Автоматизация технологических процессов и производств

Е.В. Мова

Начальник учебно-методического центра

<u>(подпись)</u> О. А. Ковали (Ф.И.О.)

(подпись)

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения		
изменений		
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	
, ,		
Основ	зание:	
Подпись лица, ответственного за внесение изменений		