Информация о владельце: ФИО: Вишнеруни Ригол ЕРСТВОВНАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Должность: Ректор (МИНОБРНАУКИ РОССИИ) Дата подписания: 30.04.2025 11:55:50 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ Уникальный программный ключ: 03474917c4d012283e5ad9% ВРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ») Факультет горно-металлургической промышленности и строительства Кафедра технологии и организации машиностроительного производства **УТВЕРЖДАЮ** И. о. проректора по учебной работе Д. В. Мулов РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Физико-химические методы формообразования (наименование дисциплины) 15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств (код, наименование направления/специальности) Технология машиностроения (наименование профиля (специализации, программы) подготовки)

Документ подписан простой электронной подписью

Квалификация

Форма обучения

бакалавр (бакалавр/специалист/магистр)

ОЧНАЯ, ЗАОЧНАЯ (очная, очно-заочная, заочная)

1 Цели и задачи изучения дисциплины

Цель дисциплины. Целью изучения дисциплины «Физико-химические методы формообразования» является формирование у студентов систематизированных знаний о физических и химических процессах, лежащих в основе физико-химических методов формообразования и области применения этих методов, овладение методикой определения основных показателей методов физико-химического формообразования.

Задачи изучения дисциплины:

- изучение физико-химических методов формообразования; принципов работы и особенностей эксплуатации основных типов оборудования для данных методов;
- обучение эффективному использованию физико-химических методов формообразования при проектировании технологических процессов изготовления деталей машиностроения.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины — курс относится к элективным дисциплинам (модулям) части Блока 1 «Дисциплины (модули)», формируемой участниками образовательных отношений, по направлению подготовки 15.03.05 — Конструкторско-технологическое обеспечение машиностроительных производств (профиль «Технология машиностроения»).

Дисциплина реализуется кафедрой технологии и организации машиностроительного производства. Основывается на базе дисциплин: «Технологические основы машиностроения», «Метрология, стандартизация и сертификация (МСС)».

Является основой для изучения следующих дисциплин: «Оборудование машиностроительных производств», «Технология обработки типовых деталей».

Общая трудоёмкость освоения дисциплины для очной формы обучения составляет 3 зачётные единицы, 108 ак. ч. Программой дисциплины предусмотрены лекционные занятия (36 ак. ч.), лабораторные работы (18 ак. ч.) и самостоятельная работа студента (54 ак. ч.).

Общая трудоёмкость освоения дисциплины для заочной формы обучения составляет 3 зачётные единицы, 108 ак. ч. Программой дисциплины предусмотрены лекционные занятия (6 ак. ч.), лабораторные работы (6 ак. ч.) и самостоятельная работа студента (96 ак. ч.).

Дисциплина изучается для очной формы обучения на 3-м курсе в 5-м семестре, для заочной — на 3-м курсе в 6-м семестре. Форма промежуточной аттестации — экзамен.

3 Перечень результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Физико-химические методы формообразования» направлен на формирование компетенций, представленных в таблице 1.

Таблица 1 — Компетенции, обязательные к освоению

	Код	Код и наименование индикатора
Содержание компетенции	компе-	достижения компетенции
Способен осваивать на практике и совершенствовать технологии машиностроительных производств, участвовать в разработке и внедрении оптимальных технологий изготовления машиностроительных изделий	пк-1	ПК-1.1 Знает типовые технологические процессы и признаки подобия технологических процессов изготовлении машиностроительных изделий низкой сложности ПК-1.2 Умеет выявлять основные технологические задачи, решаемые при разработке технологических процессов изготовления машиностроительных изделий низкой сложности; составлять технологические маршруты на машиностроительные изделия низкой сложности ПК-1.3 Знает типовые технологические про-
		цессы изготовления машиностроительных изделий низкой сложности (в том числе и на станках с ЧПУ) и правила выбора технологического процесса — аналога
Способен выполнять работы по доводке и освоению технологических процессов, средств и систем технологического оснащения, автоматизации, управления, контроля, диагностики в ходе подготовки производства машиностроительной продукции	ПК-4	ПК-4.1 Умеет анализировать производственную ситуацию и выявлять причины дефектов при изготовлении машиностроительных изделий низкой сложности; выявлять ошибки при проектировании операций для станков с ЧПУ; использовать данные SCADA-систем для анализа производственной ситуации и выявления причин брака при изготовлении машиностроительных изделий низкой степени сложности ПК-4.2 Знает виды и причины брака; технологические факторы, вызывающие погрешности изготовления машиностроительных изделий низкой сложности и методы уменьшения их влияния; функциональные возможности SCADA-систем по сбору, обработке и отображению информации о технологических процессах изготовления машиностроительных изделий низкой сложности ПК-4.3 Умеет выбирать схемы контроля технических требований, предъявляемых к машиностроительным изделиям низкой степени сложности и выбирать средства контроля этих требований

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 3 зачётные единицы, 108 ак. ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к лабораторным работам, текущему контролю, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределения бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 — Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак. ч. по семестрам 5-й семестр
Аудиторная работа, в том числе:	54	54
Лекции (Л)	36	36
Практические занятия (ПЗ)		_
Лабораторные работы (ЛР)	18	18
Курсовая работа/курсовой проект		
Самостоятельная работа студентов (СРС), в том числе:	54	54
Подготовка к лекциям	6	6
Подготовка к лабораторным работам	18	18
Подготовка к практическим занятиям / семинарам		
Выполнение курсовой работы / проекта		
Расчётно-графическая работа (РГР)		
Реферат (индивидуальное задание)		
Домашнее задание		
Подготовка к контрольной работе		
Подготовка к коллоквиуму	9	9
Аналитический информационный поиск		
Работа в библиотеке		
Подготовка к экзамену	21	21
Промежуточная аттестация — экзамен (Э)	Э	Э
Общая трудоёмкость дисциплины		
ак.ч.	108	108
3.e.	3	3

5 Содержание дисциплины

С целью освоения компетенций, приведенных в п. 3, дисциплина разбита на 7 тем:

- тема 1 (Технология электроэрозионной обработки);
- тема 2 (Технология электрохимической обработки);
- тема 3 (Технология ультразвуковой обработки);
- тема 4 (Технология электронно-лучевой, лазерной и плазменной обработки. Технология электрогидравлического формообразования);
- тема 5 (Технология магнитоимпульсной, магнитоабразивной и виброабразивной обработки);
 - тема 6 (Обработка с помощью электрического разряда в жидкости);
 - тема 7 (Интегрированные технологии формообразования деталей).

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблицах 3 и 4 соответственно.

Таблица 3 — Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудо- ёмкость в ак.ч.	Темы лабораторных работ	Трудо- ёмкость в ак.ч.
1	Технология электроэрозионной обработки	Основные положения электроэрозионной обработки. Классификация электроэрозионной обработки. Выбор основных режимов. Расчет технологических характеристик. Рабочие жидкости, применяемые при электроэрозионной обработке. Требования, предъявляемые к рабочим жидкостям. Зависимость основных технологических показателей от выбора рабочей жидкости Электроды-инструменты, применяемые при электроэрозионной обработке. Конструкции электродов-инструментов. Материалы, применяемые для изготовления электродовинструментов. Расчет электродовинструментов аналитическим и графоаналитическим методами. Средства технологического		Исследование зависимости производи- тельности обработки и износа элек- трода-инструмента от режимов обра- ботки	
2	Технология электрохимической обработки	оснащения Сущность электрохимической обработки. Классификация. Электролиты. Основные характеристики электролитов: концентрация, электропроводность, водородный показатель. Методы очистки электролитов Расчет основных параметров электрохимической обработки. Точность размеров и формы обрабатываемых деталей. Качество обработанных поверхностей Электроды-инструменты (ЭИ), применяемые	2	Исследование зависимости качества поверхности при электроэрозионной обработке от режимов обработки и материалов электрода-инструмента и заготовки	

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудо- ёмкость в ак.ч.	Темы лабораторных работ	Трудо- ёмкость в ак.ч.
		при электрохимической обработке. Основные требования, которые предъявляются к электродам-инструментам. Типы ЭИ. Материалы ЭИ. Способы закрепления ЭИ. Формы, размеры и шероховатость рабочей части ЭИ. Электроизоляционные покрытия. Средства технологического оснащения			
3	Технология ультразвуковой обработки	Сущность ультразвуковой обработки. Классификация. Преимущества и недостатки. Размерная ультразвуковая обработка. Основные технологические характеристики. Классификация материалов в зависимости от обрабатываемости с помощью ультразвука. Типовые операции. Оборудование для УЗО Ультразвуковая обработка абразивонесущим инструментом. Ультразвуковая обработка в абразивной среде	2	Проектирование электрода- инструмента для прошивания отвер- стий	4
		Работа схемы магнитостриктор-концентратор колебаний-инструмент. Расчет концентраторов колебаний			
4		Сущность электронно-лучевой обработки. Технологические параметры. Характеристики электронной пушки. Практическое применение электронно-лучевой обработки		Расчет концентраторов колебаний для ультразвуковой обработки	4
	вания	Сущность лазерной обработки. Классификация. Технологические параметры, закономерности. Виды квантовых генераторов и их эксплуатационные характеристики. Практическое применение лазеров в машиностроении Сущность плазменной обработки. Виды плаз-	2		

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудо- ёмкость в ак.ч.	Темы лабораторных работ	Трудо- ёмкость в ак.ч.
		мотронов. Основные технологические характеристики обработки. Основные закономерности. Типовые операции и практическое применение плазмотронов в промышленности			
		Сущность электрогидравлической обработки. Основные технологические параметры обработки. Средства технологического оснащения. Типовые операции и режимы обработки	2		
5	Технология магнитоимпульсной, магнитоабразивной и виброабразивной обработки	Сущность магнитоимпульсной обработки. Технологические параметры, закономерности и рабочие среды. Средства технологического оснащения. Типовые операции и применение их в машиностроении			
		Сущность магнитоабразивной обработки. Технологические параметры, закономерности и рабочие среды. Средства технологического оснащения. Типовые операции и применение их в машиностроении			
		Сущность виброабразивной обработки. Клас- сификация. Основные режимы обработки. Ра- бочие жидкости. Абразив, применяемый при виброабразивной обработке. Типовые опера- ции, универсальное оборудование			
6	Обработка с помощью электрического разряда в жидкости	Обработка с помощью электрического разряда в жидкости. Сущность процесса. Основные операции, применяемые в машиностроении. Режимы обработки. Рабочие жидкости. Выбор электролита. Качество обрабатываемых поверхностей. Производительность. Взаимосвязь основных параметров обработки. Достоинства		Расчет основных закономерностей электрохимической обработки	4

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий		Темы лабораторных работ	Трудо- ёмкость в ак.ч.
		и недостатки			
	формообразования деталей	Сущность интегрированных технологий. Клас- сификация комбинированных методов обра- ботки. Область применения. Электроэрозион- но-химическая обработка. Ультразвуковая об- работка с применением химических веществ Типовые операции комбинированных методов обработки. Основные параметры. Качествен- ные характеристики обрабатываемых поверх- ностей. Экономическая оценка комбинирован- ных методов обработки. Прототипирование деталей. Сущность и технологии	2		
		удиторных часов	36		18

Таблица 4 — Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудо- ёмкость в ак.ч.	Темы лабораторных работ	Трудо- ёмкость в ак.ч.
1	Технология электроэрозионной обработки	Основные положения электроэрозионной обработки. Классификация электроэрозионной обработки. Выбор основных режимов. Расчет технологических характеристик. Рабочие жидкости, применяемые при электроэрозионной обработке. Требования, предъявляемые к рабочим жидкостям. Зависимость основных технологических показателей от выбора рабочей жидкости Электроды-инструменты, применяемые при электроэрозионной обработке. Конструкции электроов-инструментов. Материалы, применяемые для изготовления электродовинструментов. Расчет электродовинструментов аналитическим и графоаналитическим методами. Средства технологического	2	Исследование зависимости производительности обработки и износа электрода-инструмента от режимов обработки	
		оснащения			
3	Технология ультразвуковой обработки	Сущность ультразвуковой обработки. Классификация. Преимущества и недостатки. Размерная ультразвуковая обработка. Основные технологические характеристики. Классификация материалов в зависимости от обрабатываемости с помощью ультразвука. Типовые операции. Оборудование для УЗО		Проектирование электрода- инструмента для прошивания отвер- стий	
	Всего а	удиторных часов:	6		6

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценке сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень работ по дисциплине и способы оценивания знаний приведены в таблице 6.

Таблица 6 — Перечень работ по дисциплине и способы оценивания знаний

Вид учебной работы	Способ оценивания	Количество баллов	
<u> </u>	Предоставление отчётов по лабораторным работам	30—50	
Тестовый контроль или письменные ответы на коллоквиумах (2 работы)	Более 60% правильных ответов	30—50	
	ИТОГО:	60—100	

Экзамен по дисциплине проставляется автоматически, если студент набрал по текущей работе не менее 60 баллов и отчитался за каждую контрольную позицию по каждому модулю. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального. В случае, если набранная в семестре сумма баллов не устраивает студента, он имеет право повысить итоговую оценку на экзамене во время экзаменационной сессии.

Экзамен по дисциплине «Физико-химические методы формообразования» проводится в форме устного опроса. Экзаменационный билет включает два теоретических вопроса из приводимого ниже (п. 6.4) перечня и практическое задание. Билеты составлены таким образом, чтобы вопросы относились к разным темам. Студент на устном экзамене может набрать до 100 баллов.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 7.

Таблица 7 — Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале			
учебной деятельности	экзамен			
0–59	неудовлетворительно			
60–73	удовлетворительно			
74–89	хорошо			
90–100	отлично			

6.2 Тематика и содержание заданий для лабораторных работ

Лабораторная работа №1

Исследование зависимости производительности обработки и износа электрода-инструмента от режимов обработки.

Лабораторная работа №2

Исследование зависимости качества поверхности при электроэрозионной обработке от режимов обработки и материалов электрода-инструмента и заготовки.

Лабораторная работа №3

Выполнить расчет и проектирование электрода-инструмента для прошивания отверстий.

Номера вариантов и исходные данные приведены в таблице 8.

Таблица 8 — Номера вариантов и исходные данные к лабораторной работе N_{2}

Вари- ант	Эскиз		Размер	ы полост	Припуск,	Rа мим	Материал		
Ba	Jenns	D1	D2	d	L1	L2	MM.	ra, mrm	заготовки
1	a	40H11	20H11	_	50	20	1,0	10,0	Сталь 45
2	б	50H10	_	25e12	_	20	1,5	8,0	Сталь 40Х
3	В	36 _{-0,1}	39,6	24h10	40	_	1,0	6,3	Сталь 50
4	Γ	30F11	_	15	15	_	1,3	6,3	BK20
5	Д	30	25		40	_	2,0	12,5	Сталь 35
6	a	63H11	40H11	_	80	25	2,0	8,0	Сталь 45
7	б	63F9	_	31,5	_	25	2,5	6,3	Сталь 45
8	В	$27_{-0,52}$	33,3	20e10	_	25	1,5	2,5	BK20
9	Γ	40E9	_	20	20	_	2,0	10,0	Сталь 45
10	Д	60	50	_	80	_	2,0	16,0	Сталь 45
11	a	30E9	20H10	_	40	20	1,5	2,5	BK8
12	б	40H12	_	20	_	10	1,0	20,0	BT-3
13	В	24 _{-0,24}	26,8	10h10	32	_	2,0	8,0	Сталь 45
14	Γ	36	_	18	18	_	1,8	12,5	Сталь 45
15	Д	30H10	20	_	16	_	1,5	10,0	Сталь 45
16	a	32H10	20H10	_	40	25	1,0	1,25	Сталь 45
17	б	36F11	=	18	_	10	2,5	5,0	Сталь 45
18	В	30 _{-0,28}	33,6	12h9	10	_	2,0	5,0	BK20
19	Γ	32F12	=	16	16	_	1,5	2,5	BK8
20	Д	20	12	_	20	_	2,0	8,0	Сталь 45

Лабораторная работа №4

Выполнить расчет продольно-колеблющихся ультразвуковых инструментов и концентраторов.

Номера вариантов и исходные данные приведены в таблице 9.

Таблица 9 — Номера вариантов и исходные данные к лабораторной работе N_04

№ варианта	Тип концентратора	Частота, f, кГц	Коэффициент усиления К _у	Входное значение амплитуды A_0 , мкм	Диаметр входного торца D, мм
1	a	18,00	2,0	6	20
2	б	20,35	2,0	6	24
3	В	22,00	2,5	5	24
4	Γ	19,00	4,0	5	30
5	Д	19,35	2,5	6	$D_128 D_314$
6	a	23,65	2,5	6	28
7	б	22,50	2,5	5	30
8	В	16,65	2,0	5	20
9	Γ	20,35	3,5	6	26
10	Д	22,00	3,0	8	$D_126 D_313$
11	a	16,65	2,3	8	25
12	б	19,35	1,8	12	25
13	В	21,50	2,8	10	32
14	Γ	22,00	4,2	8	32
15	Д	20,35	2,8	8	$D_130 D_315$
16	a	17,00	2,2	10	30
17	б	21,00	2,3	6	26
18	В	19,50	2,4	8	26
19	Γ	23,65	3,8	7	28
20	Д	16,50	2,3	8	$D_130 D_315$

Лабораторная работа №5

Произвести расчет основных закономерностей электрохимической обработки.

Номера вариантов и исходные данные приведены в таблице 10.

Таблица 10 — Номера вариантов и исходные данные к лабораторной работе $N_{\overline{0}}5$

Вариант Материал		Электролит		Параметры обработки		Параметры отверстия		Параметры ЭИ		Станок
Вар	Withophan	Вид	t, °C	Uэ, В	δ, мм	Do, mm	Х, мм	d, мм	h, мм	Clanok
1	12ХГН3	2	25	9,0	0,10	16	40	2,0	1,0	ЭХО-1
2	X18H9T	1	30	9,5	0,15	20	42	3,0	1,5	АГЭ-2
3	30Χ10Γ10	2	35	10,0	0,20	24	44	4,0	2,0	АГЭ-10
4	ШХ15	1	40	10,5	0,25	28	46	2,0	2,5	ЭГС-23

Вариант	Материал	Электролит		Параметры обработки		Параметры отверстия		Параметры ЭИ		- Станок
Вар		Вид	t, °C	Uэ, В	δ, мм	D _O , _{MM}	Х, мм	d, мм	h, мм	Classes
5	5XHB	2	37	11,0	0,30	32	48	3,0	3,0	MA4427
6	35ХГС	1	33	11,5	0,10	15	50	4,0	1,0	MA4429
7	7X3	2	28	12,0	0,15	20	52	2,0	1,5	ЭХО-1
8	3X2B8	1	25	11,5	0,20	25	54	3,0	2,0	АГЭ-2
9	12XH3A	1	27	11,0	0,25	30	40	4,0	2,5	АГЭ-10
10	12X18H9T	1	30	10,5	0,30	18	43	2,0	3,0	ЭГС-23
11	ХН70ВМТЮФ	1	32	10,0	0,10	22	46	3,0	1,0	MA4427
12	ХН62МВКЮ	1	35	9,5	0,15	26	49	4,0	1,5	MA4429
13	ХН62ВНКЮ	2	38	9,0	0,20	30	52	2,0	2,0	ЭХО-1
14	XH70BMTЮ	1	40	9,5	0,25	16	55	3,0	2,5	АГЭ-2
15	Бр.ОЦС6-6-3	2	36	10,0	0,30	20	40	4,0	3,0	АГЭ-10
16	Л62	1	34	10,5	0,10	24	44	2,0	1,0	ЭГС-23
17	AK4	2	31	11,0	0,15	28	48	3,0	1,5	MA4427
18	АЛ4	1	29	11,5	0,20	32	52	4,0	2,0	MA4429
19	АМц	2	26	12,0	0,25	15	56	2,0	2,5	ЭХО-1
20	АЛ10В	1	25	11,5	0,30	20	40	3,0	3,0	АГЭ-2

6.3 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Тема 1. Технология электроэрозионной обработки

- 1) Приведите основные положения электроэрозионной обработки?
- 2) Дайте классификацию электроэрозионной обработки?
- 3) Какие рабочие жидкости применяются при электроэрозионной обработке?
 - 4) Какие требования предъявляются к рабочим жидкостям?
 - 5) Приведите основные режимы при электроэрозионной обработке?
- 6) Какие электроды-инструменты применяются при электроэрозионной обработке?
 - 7) Приведите конструкции электродов-инструментов?
- 8) Какие материалы применяются для изготовления электродов-инструментов?
- 9) Как рассчитываются электроды-инструменты аналитическим и графоаналитическим методами?
 - 10) Какие Вы знаете средства технологического оснащения?

Тема 2. Технология электрохимической обработки

- 1) В чем сущность электрохимической обработки?
- 2) Дайте классификацию электрохимической обработки?
- 3) Какие электролиты применяются при электрохимической обработке?
- 4) Какие основные характеристики электролитов Вы знаете?
- 5) Приведите методы очистки электролитов?

- 6) Приведите расчет основных параметров электрохимической обработки?
- 7) Какая достигается точность размеров и формы обрабатываемых деталей при электрохимической обработке?
- 8) Какие электроды-инструменты применяются при электрохимической обработке?
- 9) Какие основные требования предъявляются к электродам-инструментам?
- 10) Какие типы, материалы и способы крепления электродов-инструментов Вы знаете?
 - 11) Какие Вы знаете средства технологического оснащения?

Тема 3. Технология ультразвуковой обработки

- 1) В чем сущность ультразвуковой обработки?
- 2) Дайте классификацию ультразвуковой обработки?
- 3) Назовите преимущества и недостатки ультразвуковой обработки?
- 4) Назовите основные технологические характеристики размерной ультразвуковой обработки?
- 5) Приведите классификацию материалов в зависимости от обрабатываемости с помощью ультразвука?
- 6) Назовите типовые операции, применяемые при ультразвуковой обработке?
 - 7) Какое оборудование применяется для ультразвуковой обработки?
- 8) Дайте характеристику ультразвуковой обработки абразивонесущим инструментом?
- 9) Дайте характеристику ультразвуковой обработки в абразивной среде?
- 10) Как работает схема магнитостриктор-концентратор колебаний-инструмент?
 - 11) Приведите расчет концентраторов колебаний?
- Тема 4. Технология электронно-лучевой, лазерной и плазменной обработки. Технология электрогидравлического формообразования
 - 1) В чем сущность электронно-лучевой обработки?
- 2) Перечислите технологические параметры электронно-лучевой обработки?
 - 3) Дайте характеристику электронной пушки?
 - 4) Какое практическое применение электронно-лучевой обработки?
 - 5) В чем сущность лазерной обработки?
 - 6) Перечислите технологические параметры лазерной обработки?
 - 7) Дайте классификацию лазерной обработки?

- 8) Какие Вы знаете виды квантовых генераторов и их эксплуатационные характеристики?
 - 9) Какое практическое применение лазеров в машиностроении?
 - 10) В чем сущность плазменной обработки?
 - 11) Какие Вы знаете виды плазмотронов?
- 12) Перечислите основные технологические характеристики плазменной обработки?
 - 13) Какое практическое применение плазмотронов в промышленности?
 - 14) В чем сущность электрогидравлической обработки?
- 15) Перечислите основные технологические параметры электрогидравлической обработки?
 - 16) Какие Вы знаете средства технологического оснащения?
- 17) Какие типовые операции существуют при электрогидравлической обработке?
- Тема 5. Технология магнитоимпульсной, магнитоабразивной и виброабразивной обработки
 - 1) В чем сущность магнитоимпульсной обработки?
- 2) Перечислите технологические параметры, закономерности и рабочие среды?
 - 3) Какие Вы знаете средства технологического оснащения?
- 4) Перечислите типовые операции и применение их в машиностроении?
 - 5) В чем сущность магнитоабразивной обработки?
- 6) Перечислите технологические параметры, закономерности и рабочие среды?
 - 7) Какие Вы знаете средства технологического оснащения?
- 8) Перечислите типовые операции и применение их в машиностроении?
 - 9) В чем сущность виброабразивной обработки?
 - 10) Дайте классификацию виброабразивной обработки?
 - 11) Какие применяются режимы при виброабразивной обработке?
- 12) Перечислите рабочие жидкости, применяемые при виброабразивной обработке?
- 13) Дайте характеристику абразива, применяемого при виброабразивной обработке?
 - 14) Перечислите типовые операции и универсальное оборудование?

Тема 6. Обработка с помощью электрического разряда в жидкости

- 1) В чем сущность процесса обработки с помощью электрического разряда в жидкости?
 - 2) Перечислите основные операции, применяемые в машиностроении?

- 3) Какие применяются режимы обработки?
- 4) Перечислите рабочие жидкости, которые применяются при обработке с помощью электрического разряда в жидкости?
 - 5) Как происходит выбор электролита?
 - 6) Чем обеспечивается качество обрабатываемых поверхностей?
 - 7) Чем достигается производительность обработки?
 - 8) Как взаимосвязь основных параметров обработки?
 - 9) Назовите достоинства и недостатки метода обработки?

Тема 7. Интегрированные технологии формообразования деталей

- 1) В чем сущность интегрированных технологий?
- 2) Дайте классификацию комбинированных методов обработки?
- 3) Какая область применения комбинированных методов обработки?
- 4) Дайте характеристику электроэрозионно-химической обработке?
- 5) Дайте характеристику ультразвуковой обработке с применением химических веществ?
- 6) Перечислите типовые операции комбинированных методов обработки?
- 7) Какие основные параметры применяются при комбинированных методах обработки?
- 8) Как обеспечиваются качественные характеристики обрабатываемых поверхностей?
- 9) Дайте экономическую оценку комбинированным методам обработки?
 - 10) В чем сущность прототипирования деталей?
 - 11) Какие применяются технологии при прототипировании деталей?

6.4 Вопросы для подготовки к экзамену

Для оценки знаний, приобретённых студентом в процессе освоения дисциплины, используются следующие вопросы:

- 1. Дайте анализ физико-химическим методам обработки материалов?
- 2. Дайте классификацию физико-химическим методам обработки материалов. Назовите их достоинства и недостатки?
 - 3. В чем сущность электроэрозионной обработки?
 - 4. Дайте классификацию электроэрозионной обработки (ЭЭО)?
 - 5. Какие применяются типовые операции ЭЭО?
 - 6. Перечислите основные параметры ЭЭО. Какая их взаимосвязь?
- 7. Какие применяются задачи при проектировании операций и выборе режимов обработки?
- 8. Какие рабочие жидкости применяются при ЭЭО? Какая зависимость выбора рабочих жидкостей от режимов обработки?

- 9. Приведите конструкции и расчет электродов-инструментов при ЭЭО. Что собой представляет относительный и линейный износ электродов-инструментов?
 - 10. Приведите расчет рабочей части электродов-инструментов?
- 11. Как происходит коррекция рабочей части электродов-инструментов при обработке фасонных поверхностей?
 - 12. Приведите расчет электрода-инструмента с учетом износа?
 - 13. В чем сущность виброабразивной обработки (ВАО)?
 - 14. Приведите типовые операции ВАО?
 - 15. Какое универсальное оборудование применяется для ВАО?
 - 16. В чем технологическая сущность ультразвуковой обработки (УЗО)?
 - 17. Дайте классификацию процессов УЗО?
- 18. В чем сущность процесса и дайте классификацию ультразвуковой размерной обработки (УЗРО)?
 - 19. Приведите основные параметры УЗРО. Какая их взаимосвязь?
- 20. Какие параметры влияют на производительность и качество обрабатываемой поверхности?
- 21. Приведите точностные параметры УЗРО и факторы, влияющие на них?
 - 22. Приведите типовые операции УЗРО?
 - 23. Какое универсальное оборудование применяется для УЗРО?
- 24. Что такое комбинированные методы обработки? Дайте их классификацию.
- 25. В чем сущность и какие типовые операции анодно-механической обработки Вы знаете?
- 26. В чем сущность и какие основные параметры электроэррозионно-химической обработки Вы знаете?
- 27. Дайте классификацию ультразвуковой электрохимической обработки?
 - 28. В чем физические основы светолучевой обработки?
 - 29. Приведите виды и характеристики квантовых генераторов?
 - 30. В чем суть технологического использования лазеров?
 - 31. В чем принцип работы лазеров?
- 32. В чем сущность и какие типовые операции электронно-лучевой обработки Вы знаете?
 - 33. В чем сущность ионно-лучевой обработки?
- 34. В чем сущность плазменно-механической обработки? В чем принцип работы плазмотрона?
- 35. Назовите основные технологические характеристики плазменномеханической обработки?

- 36. Приведите типовые операции плазменно-механической обработки?
- 37. Электрический разряд в жидкости. В чем сущность процесса?
- 38. Перечислите основные технологические процессы, использующие электрический разряд в жидкости?
- 39. Как происходит коррекция инструмента при ультразвуковой обработке?
 - 40. Приведите виды концентраторов колебаний?
- 41. Как происходит работа схемы «магнитостриктор-концентратор колебаний-инструмент»?
- 42. Назовите виды генераторов колебаний при ультразвуковой обработке?
 - 43. Приведите расчет концентраторов колебаний?
 - 44. Электрохимическая обработка (ЭХО). В чем сущность метода?
 - 45. Приведите классификацию методов электрохимической обработки?
 - 46. Перечислите типовые операции ЭХО?
 - 47. В чем состоит кинематика процесса ЭХО?
- 48. Какие рабочие жидкости применяются при электрохимической обработке?
 - 49. Перечислите методы очистки электролитов?
- 50. Какие типы электродов-инструментов применяются? Какие материалы применяются для изготовления электродов-инструментов?
- 51. Назовите требования, предъявляемые к конструкции электродов-инструментов?
 - 52. Какие основные закономерности электрохимической обработки?
 - 53. Дайте расчет параметров электрохимической обработки?

Для оценки уровня сформированности умений и навыков, приобретённых студентом в процессе изучения дисциплины, на экзамене используются задания, представленные в подразделе 6.2.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Электрофизические и электрохимические методы обработки в машиностроении: учебник / М. М. Радкевич, В. И. Никифоров, Ю. М. Барон [и др.]; под. ред. М. М. Радкевича, В. И. Никифорова. Москва; Вологда: Инфра-Инженерия, 2022. 532 с. ISBN 978-5-9729-0955-1. Текст: электронный. URL: https://znanium.com/catalog/product/1902790 (дата обращения: 05.07.2024). Режим доступа: по подписке.
- 2. Современные технологии формообразования : учебное пособие / В. А. Лебедев, А. И. Болдырев, М. А. Тамаркин, Ю. П. Анкудимов. 2-е изд. Москва : ИНФРА-М, 2023. 320 с. ISBN 978-5-16-015252-3. Текст : электронный. URL: https://znanium.com/catalog/product/1976144 (дата обращения: 06.07.2024). Режим доступа : по подписке.

Дополнительная литература

- 3. Клименков, С. С. Инновационные технологии в машиностроении : учебное пособие / С. С. Клименков, В. В. Рубаник. Минск : Беларуская навука, 2021. 404 с. ISBN 978-985-08-2760-9. Текст : электронный. URL: https://znanium.com/catalog/product/1865692 (дата обращения: 05.07.2024). Режим доступа : по подписке.
- 4. Халдеев, В. Н. Электрофизические и электрохимические методы обработки : учебник для машиностроительных специальностей вузов / В. Н. Халдеев. 2-е изд. Саров : Российский федеральный ядерный центр ВНИИЭФ, 2022. 385 с. ISBN 978-5-9515-0486-9. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/132628.html (дата обращения: 06.07.2024). Режим доступа : для авторизир. пользователей.
- 5. Желтобрюхов, Е. М. Высокоэффективные физико-химические методы формообразования поверхностей деталей в машиностроении : учебное пособие / Е. М. Желтобрюхов. Москва ; Вологда : Инфра-Инженерия, 2024. 140 с. ISBN 978-5-9729-1909-3. Текст : электронный. URL: https://znanium.ru/catalog/product/2170324 (дата обращения: 05.07.2024). Режим доступа : по подписке.
- 6. Киселев, М. Г. Электрофизические и электрохимические способы обработки материалов: Учебное пособие / М. Г. Киселев, Ж. А. Мрочек, А. В. Дроздов. Москва: НИЦ ИНФРА-М, Нов. знание, 2014. 389 с. ISBN 978-985-475-624-0. Текст : электронный. URL:

<u>https://znanium.com/catalog/product/441209</u> (дата обращения: 06.07.2024). — Режим доступа : по подписке.

- 7. Архипова, Н. А. Электрофизические и электрохимические методы обработки поверхностей / Н. А. Архипова, Т. А. Блинова. Белгород : Белгородский государственный технологический университет им. В.Г. Шухова, ЭБС АСВ, 2012. 305 с. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/28423.html (дата обращения: 06.07.2024). Режим доступа : для авторизир. пользователей.
- 8. Ставицкий, И. Б. Лабораторный практикум по курсу «Теория электрофизических и электрохимических методов обработки материалов» : методические указания / И. Б. Ставицкий, Н. П. Малевский. Москва : Московский государственный технический университет имени Н.Э. Баумана, 2010. 40 с. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/31041.html (дата обращения: 06.07.2024). Режим доступа : для авторизир. пользователей.
- 9. Обловацкая, Н. С. Электроэрозионная и электрохимическая обработка: учебное пособие / Н. С. Обловацкая, Е. Н. Лаптева. Москва: ИНФРА-М, 2021. 91 с. (Высшее образование: Бакалавриат). ISBN 978-5-16-109435-8. Текст : электронный. URL: https://znanium.com/catalog/product/1247742 (дата обращения: 05.07.2024). Режим доступа: по подписке.

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека Федерального государственного бюджетного образовательного учреждения высшего образования «Донбасский государственный технический университет» (ФГБОУ ВО «ДонГТУ») : официальный сайт. URL : http://library.dstu.education. Текст : электронный.
- 2. Научно-техническая библиотека Белгородского государственного технологического университета им. В. Г. Шухова : официальный сайт. Белгород. URL : https://ntb.bstu.ru/jirbis2. Текст : электронный.
- 3. Электронная библиотечная система Консультант студента : [сайт]. Москва. URL : https://www.studentlibrary.ru/?ysclid=m0p04ni4nl646701969. Текст : электронный.
- 4. Университетская библиотека ONLINE :[сайт]. URL : https://biblioclub.ru/index.php?page=book_blocks&view=main_ub. Текст : электронный.
- 5. IPR BOOKS : электронно-библиотечная система : [сайт]. Красногорск. URL : http://www.iprbookshop.ru/. Текст : электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 11.

Таблица 11 — Материально-техническое обеспечение

Наименование оборудования учебных кабинетов	Адрес (местоположение) учебных кабинетов
Специальные помещения: Лекционная аудитория (60 посадочных мест), оборудованная специализированной (учебной) мебелью (парта — 20 шт., стол компьютерный — 1 шт., доска аудиторная — 2 шт.), АРМ преподавателя (системный блок ПК + монитор), мультимедийный проектор, широкоформатный экран Аудитория для проведения лабораторных работ, для самостоятельной работы:	ауд. <u>103</u> корп. <u>третий</u>
Предметная аудитория (25 посадочных мест), оборудованная специализированной (учебной) мебелью (парта — 10 шт., доска для написания мелом — 1 шт.) Учебные мастерские (30 рабочих мест)	
Оборудование: станок универсальный электроэрозионный копировально- прошивочный 4Г721М; генератор импульсов ШГИ–40–440А	ауд. <u>102</u> корп. <u>третий</u>

Лист согласования РПД

Разработал	0	
доцент кафедры технологии и		
организации машиностроительного		. D. T.
производства		А. Б. Таровик
(должность)	'(подпись)	(Ф.И.О)
Заведующий кафедрой		
технологии и организации		
машиностроительного производства (наименование кафедры)	(подпись)	А. М. Зинченко (Ф.И.О)
Протокол № <u></u> заседания кафеду машиностроительного г		-
И.о. декана факультета горно-металлургической промышленности и	O West	О. В. Князьков
строительства (наименование факультета)	(подпись)	(Ф.И.О)
Согласовано		
Председатель методической комиссии по		
направлению подготовки/специальности		
15.03.05 Конструкторско-		
технологическое обеспечение		
машиностроительных производств		
(«Технология машиностроения»)	(подпись)	А. М. Зинченко (Ф.И.О)

Начальник учебно-методического центра

О. А. Коваленко

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения изменений				
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:			
Основ	зание.			
Подпись лица, ответственного за внесение изменений				