Документ подписан простой электронной подписью

Информация о владельце:

Должность: Ректор

Дата подписания: 20.10.2025 11:05:46

Уникальный программный ключ:

ФИО: Вишневмий Ниистерствочна УКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБРНАУКИ РОССИИ)

03474917c4d012283e5ad996a48a5e7006da037 АЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

информационных технологий и Факультет автоматизации производственных процессов Кафедра интеллектуальных систем и информационной безопасности

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Математика криптографии (наименование дисциплины) 10.05.03 Информационная безопасность автоматизированных систем (код, наименование специальности) Безопасность открытых информационных систем

Квалификация специалист по защите информации (бакалавр/специалист/магистр) Форма обучения очная (очная, очно-заочная, заочная)

(специализация)

1 Цели и задачи изучения дисциплины

Цели дисциплины. Целью изучения дисциплины «Математика криптографии» является получение базовых знаний математических основ криптографии и криптоанализа.

Задачи изучения дисциплины: формирование навыков использования методов криптографии в профессиональной деятельности для решения прикладных научно-технических задач; овладение знаниями о фундаментальных алгебро-геометрических основах построения криптосистем, о закономерностях создания, использования и анализа современных криптопротоколов, выработка умений применять полученные теоретические сведения для решения практических задач.

Дисциплина направлена на формирование общепрофессиональных (ОПК-10) компетенций выпускника.

2 Место дисциплины в структуре образовательной программы

Логико-структурный анализ дисциплины — курс входит в обязательную часть БЛОКА 1 «Дисциплины (модули)» подготовки студентов по специальности 10.05.03 Информационная безопасность автоматизированных систем.

Дисциплина реализуется кафедрой интеллектуальных систем и информационной безопасности. Основывается на базе дисциплин: «Высшая математика», «Физика», «Информатика», «Основы алгоритмизации», «Дискретная математика».

Является основой для изучения следующих дисциплин: «Криптографические интерфейсы», «Информационная безопасность открытых информационных систем».

Для изучения дисциплины необходимы компетенции, сформированные у студента для решения общепрофессиональных задач деятельности, связанных с применением вычислительных систем в области информационной безопасности.

Курс является фундаментом для ориентации студентов в сфере разработки защищенных информационных систем.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 ак.ч. Программой дисциплины предусмотрены лекционные (36 ак.ч.), практические (36 ак.ч.) занятия, самостоятельная работа студента (72 ак.ч.).

Дисциплина изучается на 3 курсе в 5 семестре. Форма промежуточной аттестации – экзамен.

3 Перечень результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины «Математика криптографии» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание	Код	Код и наименование индикатора
компетенции	компетенции	достижения компетенции
Способен	ОПК-10	ОПК-10.2 Использует средства криптографической
использовать		защиты информации при решении задач
средства		профессиональной деятельности
криптографической		
защиты информации		
при решении задач		
профессиональной		
деятельности		

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 4 зачётных единицы, 144 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим занятиям, текущему контролю, выполнение индивидуального задания, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам 5
Аудиторная работа, в том числе:	72	72
Лекции (Л)	36	36
Практические занятия (ПЗ)	36	36
Лабораторные работы (ЛР)	-	-
Курсовая работа/курсовой проект	-	-
Самостоятельная работа студентов (СРС), в том числе:	72	72
Подготовка к лекциям	9	9
Подготовка к лабораторным работам	-	-
Подготовка к практическим занятиям / семинарам	18	18
Выполнение курсовой работы / проекта	-	-
Расчетно-графическая работа (РГР)	-	-
Реферат (индивидуальное задание)	9	9
Домашнее задание	-	-
Подготовка к контрольным работам	-	-
Подготовка к коллоквиуму	-	-
Аналитический информационный поиск	9	9
Работа в библиотеке	18	18
Подготовка к экзамену	9	9
Промежуточная аттестация – экзамен	Э	E
Общая трудоемкость дисциплины		
ак.ч.	144	144
3.e.	4	4

5 Содержание дисциплины

С целью освоения компетенций, приведенных в п.3 дисциплина разбита на 3 темы:

- тема 1 (Линейные пространства над конечным полем);
- тема 2 (Применение простых чисел в криптографии);
- тема 3 (Дискретное логарифмирование и ПСП).

Виды занятий по дисциплине и распределение аудиторных часов для очной формы приведены в таблице 3.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1	2	3	4	5	6	7	8
1	Линейные пространства над конечным полем	Линейные пространства над конечным полем. Базис и размерность. Порождающая матрица. Расширенный алгоритм Евклида. Применение к многочленам над полем рациональных чисел и конечным полем. Конечные поля (поля Галуа). Расширение простого поля. Арифметика конечных полей. Нахождение обратного элемента поля.	12	Алгоритм Евклида, алгоритм Эратосфена Функция Эйлера. Подходящие дроби	6	_	_
2	Применение простых чисел в криптографии	Применение простых чисел в криптографии. Проверка чисел на простоту. Алгоритмы генерации простых чисел. Задача факторизации чисел. Алгоритмы факторизации.	12	Решение линейных сравнений первой степени Решение системы линейных сравнений 1 степени с помощью Китайской теоремы об остатках	6	_	_

Завершение таблицы 3

1	2	3	4	5	6	7	8
		Определение дискретного логарифма. Количество значений дискретного		Диофантовы уравнения	4		
	Дискретное логарифмирование и ПСП	логарифма элемента поля.	12	Символ Якоби и Лежандра	4	-	-
		Определение ПСП. Методы генерации ПСП. Применение ПСП в криптографии.		Решение квадратичных сравнений	4		
Всег	го аудиторных часов	36		36			

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации студентов по дисциплине

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 4.

Таблица 4 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
ОПК-10	Экзамен	Комплект контролирующих материалов для экзамена

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- реферат всего 20 баллов;
- практические работы всего 80 баллов.

Оценка по экзамену проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Экзамен по дисциплине «Математика криптографии» проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время сессии студент имеет право повысить итоговую оценку в форме устного собеседования по приведенным ниже вопросам.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 5.

Таблица 5 – Шкала оценивания знаний

Сумма баллов за все виды учебной	Оценка по национальной шкале
деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашнее задание

Домашнее задание не предусмотрено.

6.3 Темы для рефератов (презентаций) – индивидуальное задание

- 1. Теорема Кука
- 2. Основные NP-полные задачи
- 3. NP-полные задачи в теории кодирования
- 4. Задача об упаковке рюкзака
- 5. Методы вычисления дискретных логарифмов
- 6. Алгоритмы на эллиптических кривых
- 7. Простые числа и "основная" теорема арифметики.
- 8. Полная и приведенная системы вычетов.
- 9. Теорема Эйлера и теорема Ферма.
- 10. Алгоритм Евклида.
- 11. Бинарный алгоритм возведения в степень.
- 12. Китайская теорема об остатках.
- 13. Квадратичные вычеты
- 14. Метод пробных делений.
- 15. Критерий Вильсона.
- 16. Тест Лукаса.
- 17. Алгоритм Конягина-Померанса.
- 18. Детерминистические и вероятностные тесты на простоту.
- 19. Тест Соловея-Штрассена.
- 20. Тест Рабина-Миллера.
- 21. Построение больших простых чисел
- 22. Задача факторизации составного числа.
- 23. (Р-1)-метод Полларда.
- 24. Ро-метод Полларда.
- 25. Факторизация чисел с помощью квадратичного решета.
- 26. Основные понятия теории сложности.
- 27. Детерминированные машины Тьюринга и класс задач Р.

- 28. Недетерминированные алгоритмы и класс задач NP.
- 29. Полиномиальная сводимость и NP-полные задачи.
- 30. Методы теории сложности в криптографии.
- 31. Детерминистические тесты на простоту. Метод пробныхделений. Критерий Вильсона. Тест Лукаса. Алгоритм Конягина-Померанса.
 - 32. Построение больших простых чисел
 - 33. Бинарный алгоритм возведения в степень.
 - 34. Китайская теорема об остатках.
 - 35. Квадратичные вычеты
 - 36. Основные требования к шифрам.
- 37. Совершенные шифры. Безусловно стойкие и практически стойкие шифры. Избыточность языка и расстояние единственности.
 - 38. Переход о стандартного базиса конечного поля к нормальному.
 - 39. Группа точек эллиптической кривой.
 - 40. Тестирование неприводимости многочлена над конечным полем.
 - 41. Алгоритмы умножения в конечном поле.
 - 42. Быстрое возведение в степень в конечном поле.
- 43. Вероятностные алгоритмы проверки числа на простоту. Алгоритм Соловея Штрассена. Алгоритм АКЅ (Агравала Кайала Сахены).
 - 44. Построение алгоритмов проверки чисел на простоту.
- 45. Символы Лежандра. Алгоритм RSA. Символы Якоби. Закон взаимности.
 - 46. Основы квантовой криптографии.

6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Тема 1 (Линейные пространства над конечным полем)

Базовые тесты (выбор одного из 4 вариантов)

- 1. Что такое конечное поле?
- а) Множество всех действительных чисел.
- b) Множество всех комплексных чисел.
- с) Множество с конечным числом элементов, где определены операции сложения, вычитания, умножения и деления.
- d) Множество всех целых чисел. Ответ: c)
 - 2. Что такое базис линейного пространства?
- а) Минимальное множество линейно независимых векторов, порождающих пространство.
 - b) Максимальное множество линейно зависимых векторов.

- с) Любое множество векторов.
- d) Множество всех векторов пространства.

Ответ: а)

- 3. Что такое порождающая матрица?
- а) Матрица, строки которой образуют базис линейного пространства.
- b) Матрица, столбцы которой образуют базис линейного пространства.
- с) Матрица, которая не имеет обратной.
- d) Матрица, состоящая из нулей.

Ответ: b)

- 4. Что делает расширенный алгоритм Евклида?
- а) Находит наибольший общий делитель двух чисел.
- b) Находит наименьшее общее кратное двух чисел.
- с) Решает системы линейных уравнений.
- d) Находит обратный элемент в поле.

Ответ: а)

Тесты повышенного уровня (вставить пропущенный термин)

- 1. Конечное поле F_q содержит $q = _____$ элементов. Ответ: p^n , где p простое число, n натуральное число.
- 2. Базис линейного пространства это минимальное множество векторов, порождающих пространство. Ответ: линейно независимых.
- 3. Расширенный алгоритм Евклида позволяет найти _____ двух чисел. Ответ: наибольший общий делитель.
- 4. Для нахождения обратного элемента в поле F_p используется _____ алгоритм Евклида.

Ответ: расширенный.

Тесты высокого уровня (написать формулу или определение)

- 1. Запишите формулу для нахождения обратного элемента $a^{-}(-1)$ в поле F_p с использованием расширенного алгоритма Евклида. Ответ: $a * a^{-}(-1) \equiv 1 \pmod{p}$.
- 2. Дайте определение линейного пространства над конечным полем. Ответ: Линейное пространство над конечным полем F_q это множество векторов, замкнутое относительно операций сложения и умножения на элементы поля, удовлетворяющее аксиомам линейного пространства.
- 3. Запишите формулу для нахождения НОД двух чисел а и b с использованием алгоритма Евклида. Ответ: HOД(a, b) = HOД(b, a mod b).

13			
Запишите формулу для расширения простого поля F_p до поля F_{p^n} . Ответ: $F_{p^n} = F_p[x] / (f(x))$, где $f(x)$ — неприводимый многочлен степени			
n над F_p.			
Тема 2 (Применение простых чисел в криптографии)			
Базовые тесты (выбор одного из 4 вариантов)			
1. Какой алгоритм используется для проверки чисел на простоту?			
а) Алгоритм Евклида.			
b) Тест Миллера-Рабина.			
с) Алгоритм Флойда.			
d) Алгоритм Дейкстры.			
Ответ: b)			
2. Что такое задача факторизации?			
а) Нахождение наибольшего общего делителя двух чисел.			
b) Разложение числа на простые множители.			
с) Нахождение обратного элемента в поле.			
d) Решение системы линейных уравнений.			
Ответ: b)			
3. Какой алгоритм используется для генерации больших простых			
чисел?			
а) Алгоритм Евклида.			
b) Решето Эратосфена.			
с) Алгоритм Диффи-Хеллмана.			
d) Алгоритм RSA.			
Ответ: b)			
4. Что такое дискретный логарифм?			
а) Логарифм от действительного числа.			
b) Породифу от комплексного инсле			

- b) Логарифм от комплексного числа.
- с) Логарифм в конечном поле или группе.
- d) Логарифм от матрицы.

()	твет:	\sim	۱
\mathbf{v}	'IBCI.		,

Other: c)
Тесты повышенного уровня (вставить пропущенный термин)
1. Алгоритм используется для проверки чисел на простоту.
Ответ: Миллера-Рабина.
2. Задача заключается в разложении числа на простые
иножители.
Ответ: факторизации.

3. Дискретный логарифм элемента $g^x \equiv h \pmod{p}$ — это _____. Ответ: х.

4. Алгоритм _____ используется для генерации больших простых чисел.

Ответ: решето Эратосфена.

Тесты высокого уровня (написать формулу или определение)

1. Запишите формулу для задачи дискретного логарифмирования в группе Z_p^* .

Ответ: $g^x \equiv h \pmod{p}$, где g — образующий элемент, h — элемент группы, g — искомый дискретный логарифм.

- 2. Дайте определение простого числа. Ответ: Простое число это натуральное число, большее 1, которое делится только на 1 и на само себя.
- 3. Запишите формулу для нахождения НОД двух чисел а и b с использованием алгоритма Евклида. Ответ: HOД(a, b) = HOД(b, a mod b).

Запишите формулу для расширения простого поля F_p до поля F_{p^n} . Ответ: $F_{p^n} = F_p[x] / (f(x))$, где f(x) — неприводимый многочлен степени f(x) п над f(x) над f(x) п над f(x) неприводимый многочлен степени f(x) над f(x) над f(x) неприводимый многочлен степени f(x) над f(x) на

Тема 3 (Дискретное логарифмирование и ПСП)

Базовые тесты (выбор одного из 4 вариантов)

- 1. Что такое псевдослучайная последовательность (ПСП)?
- а) Последовательность, которая полностью случайна.
- b) Последовательность, которая выглядит случайной, но генерируется детерминированно.
 - с) Последовательность, которая всегда повторяется.
- d) Последовательность, которая не используется в криптографии. Ответ: b)
 - 2. Какой алгоритм используется для генерации ПСП?
 - а) Алгоритм Евклида.
 - b) Линейный регистр сдвига (LFSR).
 - с) Алгоритм Диффи-Хеллмана.
 - d) Алгоритм RSA.

Ответ: b)

- 3. Что такое дискретный логарифм?
- а) Логарифм от действительного числа.
- b) Логарифм от комплексного числа.
- с) Логарифм в конечном поле или группе.
- d) Логарифм от матрицы.

Ответ: с)

- 4. Какой алгоритм используется для решения задачи дискретного логарифмирования?
 - а) Алгоритм Евклида.
 - b) Алгоритм "гигантских шагов малых шагов".
 - с) Алгоритм Флойда.
 - d) Алгоритм Дейкстры.

Ответ: b)

Тесты повышенного уровня (вставить пропущенный термин)

1. Псевдослучайная последовательность генерируется с использованием _____ регистра сдвига. Ответ: линейного.

2. Задача _____ заключается в нахождении показателя степени x в уравнении $g^x \equiv h \pmod{p}$.

Ответ: дискретного логарифмирования.

3. Алгоритм _____ используется для решения задачи дискретного логарифмирования.

Ответ: "гигантских шагов — малых шагов".

4. Псевдослучайные последовательности используются в _____ шифрах.

Ответ: потоковых.

Тесты высокого уровня (написать формулу или определение)

- 1. Запишите формулу для генерации псевдослучайной последовательности с использованием линейного регистра сдвига (LFSR). Ответ: $s_n = c_1 * s_{n-1} + c_2 * s_{n-2} + ... + c_k * s_{n-k}$, где $c_i \kappa$ коэффициенты, $s_i \kappa$ биты последовательности.
- 2. Дайте определение псевдослучайной последовательности. Ответ: Псевдослучайная последовательность это последовательность чисел, которая выглядит случайной, но генерируется детерминированным алгоритмом.
- 3. Запишите формулу для задачи дискретного логарифмирования в группе Z_p^* .

Ответ: $g^x \equiv h \pmod p$, где g — образующий элемент, h — элемент группы, x — искомый дискретный логарифм.

4. Запишите формулу для нахождения обратного элемента $a^{-}(-1)$ в поле F_p с использованием расширенного алгоритма Евклида. Ответ: $a * a^{-}(-1) \equiv 1 \pmod{p}$.

6.5 Вопросы для подготовки к экзамену

- 1. Определение линейного пространства (ЛП) над полем. Примеры линейных пространств?
- 2. Определение линейной комбинации векторов ЛП. Линейно зависимые и линейно независимые системы векторов?
- 3. Определение базиса и размерности ЛП. Разложение вектора по базису. Число базисных векторов и количество базисов в Ln?
 - 4. Выражение результатов линейных операций над векторами в базисе.
 - 5. Основные теоремы о базисе. Канонический базис?
 - 6. Переход от одного базиса к другому. Матрица перехода?
 - 7. Нахождение базиса системы векторов?
- 8. Определение линейного подпространства. Его размерность. Примеры линейных подпространств?
- 9. Линейная оболочка системы векторов как подпространство. Его базис и размерность?
 - 10. Изоморфизм линейных подпространств?
- 11. Решение системы линейных однородных уравнений. Общее решение системы?
- 12. Пространства со скалярным произведением. Геометрия пространства?
- 13. Ортогональные и ортонормированные системы векторов. Ортогональный и ортонормированный базис. Выражение скалярного произведения: в базисе; в ортонормированном базисе?
 - 14. Процесс ортогонализации Грамма-Шмидта?
- 15. Ортогональное дополнение к линейному подпространству евклидова пространства?
- 16. Линейное пространство над конечным полем X. Пространство Q=Xn; его размерность и мощность?
- 17. Подпространства пространства Q. Порождающая и проверочная матрицы. Их канонические формы?
 - 18. Алгоритм быстрого возведения в степень?
 - 19. Определение и свойства функции Эйлера?
 - 20. Приведенная система вычетов?
 - 21. Теорема Ферма и Эйлера. Их применение?
- 22. Различные формы расширенного алгоритма Евклида в кольце целых чисел?
- 23. Расширенный алгоритм Евклида в кольце Zn. Вычисление обратного элемента?
 - 24. Расширенный алгоритм Евклида для многочленов: над полем

рациональных чисел; над конечным полем Zp?

- 25. Общее определение конечного поля (поля Галуа). Простые поля?
- 26. Алгебраические свойства конечных полей?
- 27. Определение примитивного элемента конечного поля. Теорема его существования?
- 28. Характер конечного поля. Числа поля. Степень суммы элементов поля?
- 29. Основная теорема теории конечных полей. Количество элементов поля?
 - 30. Расширение полей с помощью неприводимого многочлена?
 - 31. Примитивный элемент и примитивный многочлен поля GF(pm)?
 - 32. Структура конечного поля?
- 33. Арифметика конечного поля. Операция умножения. Процедура xtime?
 - 34. Структура полей: GF(p2); GF(pm)?
- 35. Количество простых чисел? Неравенство Чебышева? Числа Ферма? Числа Мерсенны?
- 36. Детерминированные и вероятностные тесты проверки чисел на простоту?
 - 37. Критерий Вильсона. Полиномиальный тест?
 - 38. Тест Ферма. Псевдопростые числа. Числа Кармайкла?
 - 39. Тест «испытание квадратным корнем»?
- 40. Различные варианты теста Миллера-Рабина Алгоритмы генерации простых чисел с заданной разрядностью?
- 41. Теорема Поклингтона и ее применение для генерации простых чисел?
 - 42. Алгоритм Маурера генерации простых чисел?
 - 43. Задача факторизации чисел. Метод пробных делений?
 - 44. Алгоритм вычисления [□n]?
 - 45. Метод Ферма факторизации чисел?
 - 46. р-метод Полларда факторизации чисел?
 - 47. (р-1) метод Полларда факторизации чисел?
- 48. Определение дискретного логорифма в циклической мультипликативной группе. Условие его существования. Случай неединственности?
 - 49. р-метод Полларда вычисления дискретного логарифма?
- 50. Вычисление дискретного логарифма с помощью КТО (Метод Нечаева)?
 - 51. Алгоритм «baby-step»?

- 52. Шифр Вернама?
- 53. Генераторы псевдослучайных чисел (ПСЧ)?
- 54. Алгоритм RC4?
- 55. Алгоритм RSA. Генератор ПСЧ на основе RSA?
- 56. Датчики М-последовательностей?
- 57. Тест «стопка книг»?

6.6 Тематика и содержание курсового проекта

Курсовой проект не предусмотрен.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Деза Е. И. Введение в криптографию: Теоретико-числовые основы защиты информации. Учебное пособие. Изд. стереотип. М.: ЛЕНАНД, 2022. 376 с. Режим доступа: https://coollib.cc/b/616620-elena-ivanovna-deza-vvedenie-v-kriptografiyu-teoretiko-chislovyie-osnovyi-zaschityi-informatsii . (Дата обращения 26.08.2024).
- 2. Мартынов Л. М. Алгебра и теория чисел для криптографии : учебное пособие / Л. М. Мартынов. Санкт Петербург : Лань, 2020. 456 с. : ил. Режим доступа: https://www.researchgate.net/profile/Leonid-Martynov/publication/343787756_Algebra_and_Number_Theory-for-Cryptography-in-Russian.pdf . (Дата обращения 26.08.2024).
- 3. Рацеев С.М. Математические методы защиты информации [Электронный ресурс]: Электронное учеб. пособие/ С.М. Рацеев. Ульяновск: УлГУ, 2018. 1 CD-R. № гос. регистрации 0321901084. [Электронный ресурс] Режим доступа: https://www.ulsu.ru/media/documents/Paцеев_C.M._Mатематические_методы_защиты_информации.pdf. (Дата обращения: 26.08.2024).

Дополнительная литература

1. Математические основы криптографии: тексты лекций для студентов специальности 1-98 01 03 «Программное обеспечение информационной безопасности мобильных систем» / авт.-сост. Е. И. Ловенецкая. — Минск: БГТУ, 2019. — 171 с. [Электронный ресурс]: Режим доступа: https://elib.belstu.by/bitstream/123456789/31285/1/Loveneckaja_matematicheskie_osnovy_kriptografii.pdf?ysclid=m7i2jvcq4d411197836 . (Дата обращения: 26.08.2024).

Учебно-методические материалы и пособия

1. Закутный А.С. Математика криптографии: методические указания к лабораторно-практическим работам [Электронный ресурс] — URL: https://3kl.dontu.ru/course/. Режим доступа: для авториз. пользователей. — Текст: электронный. (Дата обращения 26.08.2024).

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт.— Алчевск. —URL: library.dstu.education.— Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/ .— Текст : электронный.
- 3. Консультант студента : электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x . Текст : электронный.
- 4. Университетская библиотека онлайн: электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red . Текст : электронный.
- 5. IPR BOOKS : электронно-библиотечная система.—Красногорск. URL: http://www.iprbookshop.ru/ . —Текст : электронный.
 - 6. Сайт кафедры ИСИБ http://scs.dstu.education.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 6.

Таблица 6 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местоположение) учебных кабинетов
Специальные помещения: Аудитории для проведения лекций: Мультимедийная аудитория. (60 посадочных мест), оборудованная специализированной (учебной) мебелью (парта трехместная – 18 шт., парта двухместная – 6 шт, стол– 1 шт., доска аудиторная– 1 шт.), учебное ПК (монитор + системный блок), мультимедийная стойка с оборудованием – 1 шт., широкоформатный экран.	ауд. <u>207</u> корп. <u>4</u>
Компьютерные классы (22 посадочных места), оборудованный учебной мебелью, компьютерами с неограниченным доступом к сети Интернет, включая доступ к ЭБС:	ауд. <u>217</u> корп. <u>3</u> ауд. <u>211</u> корп. <u>4</u>

Лист согласования РПД

Разработал:

ст. преподаватель кафедры интеллектуальных систем и информационной безопасности

(должность)

А.С. Закутный (Ф.И.О.)

И.о. заведующего кафедрой интеллектуальных систем и информационной безопасности

(наименование кафедры)

Протокол № 1 заседания кафедры

от <u>27.08. 2024</u>г.

И.о. декана факультета информационных технологий и автоматизации производственных процессов:

(наименование факультета)

<u>В.В. Дьячкова</u> (Ф.И.О.)

Согласовано

Председатель методической комиссии по специальности 10.05.03 Информационная безопасность автоматизированных систем

(подпись)

Е.Е. Бизянов (Ф.И.О.)

Начальник учебно-методического центра

О.А. Коваленко (Ф.И.О.)

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для		
внесения изменений		
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	
Oc	нование:	
Подпись лица, ответственного за внесение изменений		
подпись лица, ответство	синого за виссение изменении	