МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет	базовой подготовки
Кафедра	высшей математики и естественных наук
	БОЧАЯ ПРОГРАММА ДИСПИПЛИНЫ
	Сопротивление материалов
	(наименование дисциплины)
	08.03.01 Строительство (код, наименование направления)
	Строительство зданий и сооружений (профиль подготовки)
	(профиль подготовки)
15.03	3.02 Технологические машины и оборудование
	(код, наименование направления)
	Металлургическое оборудование
	(профиль подготовки)
Квалификация	бакалавр
	(бакалавр/специалист/магистр)
Форма обучения	очная, очно-заочная, заочная
•	(очная, очно-заочная, заочная)

1 Цели и задачи изучения дисциплины

Цели дисциплины. Основной целью изучения учебной дисциплины «Сопротивление материалов» является обеспечение формирования необходимых теоретических знаний и практических навыков в расчетах на прочность, жесткость и устойчивость элементов конструкций, сооружений, машин и механизмов с учетом условий их эксплуатации.

Цели освоения дисциплины:

- формирование необходимых представлений о работе конструкций и механизмов, расчетных схемах, внешних силовых, деформационных и температурных воздействиях;
- выработка умений и навыков, необходимых при практическом применении изложенных в курсе сопротивления материалов математических идей и методов для проектирования надежных, экономичных, безопасных конструкций, деталей машин и механизмов, для поиска оптимальных решений и выбора наилучших способов их реализации;

Задачи изучения дисциплины «Сопротивление материалов»:

- дать базовые понятия и определения сопротивления материалов, основные методы расчетов элементов конструкций и простейших элементов конструкций, деталей машин и механизмов на прочность и жесткость при различных видах деформаций;
- показать особенности построения эпюр внутренних силовых факторов, выполнения проектировочного расчета, проверочного расчета и расчета несущей способности конструкции и ее элементов при различных силовых, деформационных и температурных воздействиях;
- раскрыть особенности рационального подбора оптимальной формы поперечного сечения, с учетом механических свойств материала конструкции, обеспечивающей требуемые показатели надежности, безопасности, экономичности и эффективности соответствующих сооружений.

Дисциплина направлена на формирование общепрофессиональной компетенции (ОПК-6) выпускника по направлению 08.03.01 Строительство и общепрофессиональной компетенции (ОПК-1) выпускника по направлению 15.03.02 Технологические машины и оборудование.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины — курс входит в обязательную часть Блока 1 «Дисциплины (модули)» по направлениям подготовки 08.03.01 Строительство и 15.03.02 Технологические машины и оборудование.

Дисциплина реализуется кафедрой высшей математики и естественных наук. Основывается на базе дисциплин: «Высшая математика», «Физика».

Является основой для дальнейшего освоения компетенций, связанных со сферами и областями профессиональной деятельности в соответствии с ФГОС ВО и ОПОП ВО.

Для изучения дисциплины необходимы компетенции, сформированные у студента для решения профессиональных задач деятельности, связанных с фундаментальной подготовкой обучающихся.

Курс является основой для изучения дисциплины «Прикладная механика».

Общая трудоемкость освоения дисциплины составляет для специальности 08.03.01 Строительство — 8 зачетных единиц, 288 ак.ч. Программой дисциплины предусмотрены лекционные (72 ак.ч.), практические (54 ак.ч.), лабораторные занятия (36 ак.ч.) и самостоятельная работа студента (126 ак.ч.) для студентов очной формы обучения, а также лекционные (20 ак.ч.), практические (16 ак.ч.), лабораторные (8 ак.ч.) занятия и самостоятельная работа студента (144 ак.ч.) для студентов очно-заочной формы обучения.

Дисциплина изучается на 2 курсе в 3 и 4 семестрах. Форма промежуточной аттестации – экзамен.

Общая трудоемкость освоения дисциплины составляет для специальности 15.03.02 Технологические машины и оборудование — 6 зачетных единицы, 216 ак.ч. Программой дисциплины предусмотрены лекционные (72 ч.), практические (54 ч.) занятия и самостоятельная работа студента (90 ч.) для студентов очной формы обучения, а также лекционные (8 ч.), практические (12 ч.) занятия и самостоятельная работа студента (196 ч.) для студентов заочной формы обучения.

Дисциплина изучается на 2 курсе в 3 и 4 семестрах. Форма промежуточной аттестации: в 3-м семестре – зачет, в 4-м – экзамен.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Сопротивление материалов» направлен на формирование компетенций, представленных в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Код	Наименование специальности, направления подготовки	Компетенция (код, содержание)	Индикатор (код, наименование)
1	2	3	4
08.03.0	Строительство	ОПК-6. Способен участвовать в проектировании объектов строительства и жилищно-коммунального хозяйства, в подготовке расчетного и технико-экономического обоснований их проектов, участвовать в подготовке проектной документации, в том числе с использованием средств автоматизированног о проектирования и вычислительных программных комплексов	ОПК-6.1. Выбирает состав и последовательность выполнения работ по проектированию здания (сооружения), инженерных систем жизнеобеспечения в соответствии с техническим заданием на проектирование ОПК-6.2. Выбирает исходные данные для проектирования здания и их основных инженерных систем ОПК-6.3. Выбирает типовые объёмнопланировочные и конструктивные проектные решения здания в соответствии с техническими условиями с учетом требований по доступности объектов для маломобильных групп населения ОПК-6.4. Выбирает типовые проектные решения и технологическое оборудование основных инженерных систем жизнеобеспечения здания в соответствии с техническими условиями ОПК-6.5. Разрабатывает узлы строительных конструкций здания ОПК-6.6. Выполняет графическую часть проектной документации здания, инженерных систем, в т.ч. с использованием средств автоматизированного проектирования ОПК-6.7. Выбирает технологические решения проекта здания, разрабатывает элементы проекта здания, разрабатывает элементы проекта производства работ ОПК-6.8. Проверяет соответствие проектного решения требованиям нормативно-технических документов и технического задания на проектирование ОПК-6.9. Определяет основные нагрузки и воздействия, действующие на здание (сооружение) ОПК-6.10. Определяет основные параметры инженерных систем здания

Код	Наименование специальности, направления подготовки	Компетенция (код, содержание)	Индикатор (код, наименование)
1	2	3	ОПК-6.11. Составляет расчётную схему здания (сооружения), определяет условия работы элемента строительных конструкций при восприятии внешних нагрузок ОПК-6.12. Оценивает прочность, жёсткость и устойчивость элемента строительных конструкций, в т.ч. с использованием прикладного программного обеспечения ОПК-6.13. Оценивает устойчивость и деформируемость грунтового основания здания ОПК-6.14. Осуществляет расчётное обоснование режима работы инженерной системы жизнеобеспечения здания ОПК-6.15. Определяет базовые параметры теплового режима здания ОПК-6.16. Определяет стоимость строительномонтажных работ на профильном объекте профессиональной деятельности ОПК-6.17. Оценивает основные технико-экономические показатели проектных решений профильного объекта профессиональной деятельности
15.03.0	Технологически е машины и оборудование	ОПК-1. Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности.	ОПК-1.1. Знать основные понятия и законы естественных наук ОПК-1.2. Знать методы математического анализа, моделирования и их применение в профессиональной деятельности ОПК-1.3. Уметь выполнять эксперименты по заданным методикам с использованием современного исследовательского оборудования и приборов ОПК-1.4. Уметь выбирать инструменты и методы математического анализа и моделирования для исследования и решения практических задач ОПК-1.5. Уметь применять естественнонаучные и общеинженерные знания для проведения общетехнических расчетов, обработки результатов экспериментов ОПК-1.6. Владеть навыками использования прикладных компьютерных программ при моделировании технологических машин и оборудования

4 Объём и виды занятий по дисциплине

Для направления подготовки 08.03.01 Строительство: общая трудоёмкость учебной дисциплины составляет 8 зачётных единиц, 288 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим занятиям, текущему контролю, выполнение индивидуального задания, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Deve everence and over	Daara ayyy	Ак.ч. по с	семестрам
Вид учебной работы	Всего ак.ч.	3-й	4-й
Аудиторная работа, в том числе:	162	72	90
Лекции (Л)	72	36	36
Практические занятия (ПЗ)	54	18	36
Лабораторные работы (ЛР)	36	18	18
Курсовая работа/курсовой проект	-	-	-
Самостоятельная работа студентов (СРС), в	126	72	54
том числе:	120	12	34
Подготовка к лекциям	18	9	9
Подготовка к лабораторным работам	18	9	9
Подготовка к практическим занятиям /	18	9	9
семинарам			
Выполнение курсовой работы / проекта	-	-	-
Расчетно-графическая работа (РГР)	20	12	8
Реферат (индивидуальное задание)	-	-	-
Домашнее задание	-	-	-
Подготовка к контрольной работе	12	8	4
Подготовка к коллоквиуму	12	8	4
Аналитический информационный поиск	-	-	-
Работа в библиотеке	8	5	3
Подготовка к экзамену	20	12	8
Промежуточная аттестация – экзамен (Э)	Э	Э	Э
Общая трудоемкость дисциплины			
ак.ч.	288	144	144
3.e.	8	4	4

Для направления подготовки 15.03.02 Технологические машины и оборудование: общая трудоёмкость учебной дисциплины составляет 6 зачётных единицы, 216 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим занятиям, текущему контролю, выполнение индивидуального задания, самостоятельное изучение материала и подготовку к зачету и экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 3.

Таблица 3 – Распределение бюджета времени на СРС

D	D	Ак.ч. по с	еместрам
Вид учебной работы	Всего ак.ч.	3-й	4-й
Аудиторная работа, в том числе:	126	54	72
Лекции (Л)	72	36	36
Практические занятия (ПЗ)	54	18	36
Лабораторные работы (ЛР)	-	-	-
Курсовая работа/курсовой проект	-	-	-
Самостоятельная работа студентов (СРС), в	90	54	36
том числе:	70	34	30
Подготовка к лекциям	18	9	9
Подготовка к лабораторным работам	-	-	-
Подготовка к практическим занятиям /	27	18	9
семинарам			
Выполнение курсовой работы / проекта	-	-	-
Расчетно-графическая работа (РГР)	16	8	8
Реферат (индивидуальное задание)	-	-	-
Домашнее задание	-	-	-
Подготовка к контрольной работе	6	4	2
Подготовка к коллоквиуму	6	4	2
Аналитический информационный поиск	-	-	-
Работа в библиотеке	5	3	2
Подготовка к экзамену	12	8	4
Промежуточная аттестация –	20HAT AK29MAH	2	2
экзамен/диф.зачёт/зачёт	зачет, экзамен	3	Э
Общая трудоемкость дисциплины			
ак.ч.	216	108	108
3.e.	6	3	3

5 Содержание дисциплины

С целью освоения компетенций, приведенных в п.3 дисциплина разбита на 9 тем в 3 семестре, на 9 тем в 4 семестре.

3 семестр:

- тема 1 (Основные понятия, допущения и предпосылки (гипотезы) науки сопротивление материалов);
 - тема 2 (Геометрические характеристики плоских сечений);
 - тема 3 (Растяжение-сжатие);
- тема 4 (Элементы теории напряженного и деформированного состояния);
 - тема 5 (Чистый сдвиг, смятие);
 - тема 6 (Кручение прямого стержня);
 - тема 7 (Изгиб прямых стержней);
- тема 8 (Перемещения в стержневой системе при произвольной нагрузке);
 - тема 9 (Статистически неопределимые стержневые системы).

4 семестр:

- тема 1 (Плоские рамы);
- тема 2 (Косой изгиб);
- тема 3 (Изгиб с растяжением-сжатием);
- тема 4 (Внецентренное сжатие брусьев);
- тема 5 (Изгиб с кручением);
- тема 6 (Расчет пространственного бруса в общем случае действия сил);
- тема 7 (Устойчивость сжатых стержней);
- тема 8 (Понятие о динамическом нагружении);
- тема 9 (Прочность при напряжениях, циклически изменяющихся во времени).

Виды занятий по дисциплине и распределение аудиторных часов приведены в таблицах 4-7.

Таблица 4 — Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения) для направления подготовки 8.03.01 Строительство

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
			Сем	естр 3			
	кур жес эле Изу гип схе Тема 1	Введение. Предмет и задачи курса. Понятия о прочности, жесткости и устойчивости элементов конструкций. Изучаемые объекты. Основные гипотезы и принципы. Расчетная схема. Внешние и внутренние усилия. Метод сечений.	2	Составление уравнений равновесия статики.	2	_	_
1	предпосылки (гипотезы) науки сопротивление	Понятие о напряжениях и деформациях. Общие зависимости между внутренними усилиями и напряжениями в сечении.	2	_		Испытание на растяжение образцов из малоуглеродистой стали	2
	материалов	Основные механические характеристики материалов. Диаграммы растяжения. Выбор допускаемых напряжений. Работа внешних и внутренних сил. Потенциальная энергия деформации.	2	Метод сечений. Правило знаков внутренних усилий. Построение эпюр.	2	_	_
2	Тема 2 Геометрические характеристики плоских сечений	Статические моменты площади. Определение центра тяжести сложного сечения. Осевые, полярный и центробежный моменты инерции поперечного сечения, моменты сопротивления, радиусы инерции.	2	_	_	Испытание материалов на сжатие	2

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		Определение моментов инерции при параллельном переносе и повороте координатных осей. Главные оси и главные моменты инерции сечения.	2	Определение центра тяжести сложного сечения. Определение моментов инерции простых фигур. Определение моментов инерции при параллельном переносе и повороте координатных осей. Определение положения главных осей инерции и главных моментов инерции сечения.	2	I	_
3	Тема 3 Растяжение-	Растяжение и сжатие прямых брусьев. Построение эпюр продольных сил. Напряжения и деформации. Условие прочности и жесткости. Основные типы задач. Закон Гука. Типы разрушений при растяжении-сжатии.	2	_	_	Испытание материалов на сжатие	2
3	сжатие	Статически неопределимые системы при растяжении –сжатии	2	Расчет на прочность при растяжении-сжатии статически определимых систем. Построение плана перемещений. Определение перемещений характерных точек системы.	2	_	_

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
	Тема 4	Понятие напряженного состояния тела. Тензор напряжений. Закон парности касательных напряжений. Линейное напряжению состояние. Напряжения на наклонных площадках	2	_	_	Определение модуля упругости I рода для стали	2
4	Элементы теории напряженного и деформированного состояния	Плоское напряженное состояние. Аналитические зависимости между напряжениями при повороте площадок. Главные площадки и главные напряжения. Площадки сдвига. Объемное напряженное состояние. Круги Мора Обобщенный закон Гука. Классические теории прочности.	2	Расчет напряжений при плоском напряженном состоянии. Определение положения главных площадок и площадок сдвига.	2	_	_
5	Тема 5 Чистый сдвиг, смятие	Внутренние усилия при сдвиге. Напряжения и деформации при чистом сдвиге. Закон Гука при сдвиге. Расчет на прочность.		_	_	Определение коэффициента Пуассона	2
6	1 1 2	Внутренние усилия при кручении. Построение эпюры крутящих моментов. Закон распределения напряжений в поперечном сечении вала. Деформации при кручении.	2	Расчет на срез (сдвиг) заклепочного соединения.	2	_	_

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		Условие прочности и жесткости. Статически неопределимые системы. Рациональное поперечное сечение. Характер разрушения вала при кручении.	2	_	_	Испытание материалов на срез	2
		Понятие о прямом и косом изгибе. Внутренние усилия при изгибе. Чистый и поперечный изгиб. Правило знаков поперечных сил и изгибающих моментов. Эпюры внутренних усилий. Дифференциальные зависимости при изгибе. Определение экстремума эпюры изгибающих моментов.	2	Построение эпюры крутящих моментов. Расчет напряжений и деформации при кручении. Статически неопределимые системы при кручении.	2	_	_
7	Определение нормальных напряжений при изгибе брум Закон распределения норма напряжений в поперечном сечении. Условие прочности	напряжений при изгибе брусьев. Закон распределения нормальных	2	_	_	Определение модуля упругости II рода для стали	2
		Касательные напряжения. (Формула Журавского). Проверка прочности по касательным напряжениям. Рациональные сечения при изгибе.	2	Построение эпюр поперечных сил и изгибающих моментов. Проектировочный расчет по нормальным напряжениям при изгибе. Проверка прочности балки по касательным напряжениям.	2	_	_

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		Деформации балок при изгибе. Точное и приближенное дифференциальное уравнение изогнутой оси балки без деформации сдвига. Дифференциальное уравнение для прогибов с учетом деформации сдвига. Особенности определения значительных прогибов. Универсальное уравнение изогнутой оси балки (метод начальных параметров).	2	_	_	Испытание материалов на кручение	2
8	Перемещения в стержневой системе при произвольной нагрузке	Потенциальная энергия стержня в общем случае нагружения. Теорема Кастилиано. Интеграл Мора. Вычисление интегралов Мора способом Верещагина и при помощи формулы Симпсона. Теорема о взаимности работ и принцип взаимности перемещений.	2	Определение прогибов и углов поворота сечений методом начальных параметров.	2	_	_
9	Тема 9 Статистически неопределимые тержневые системь	Анализ структуры простейших стержневых систем. Степень статической неопределимости. Раскрытие статической неопределимости стержневых систем методом сил. Расчет статически неопределимых систем при температуры и наличием натягов при сборке	2	_	_	Определение напряжений при плоском поперечном изгибе	2
	Всего аудиторных	часов	36	18	ı	18	1

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
			Сем	естр 4			
		Плоские рамы. Определение внутренних усилий. Построение эпюр.	2	Построение эпюр в статически определимых рамах	2	_	_
1	Потенциальная энергия стержня в общем случае нагружения. Теорема Кастилиано. Интеграл Мора. Вычисление интегралов Мора способом Верещагина и при помощи формулы Симпсона. Теорема о взаимности работ и принцип взаимности перемещений. Определение перемещений в статически определимых рамах. Анализ структуры простейших стержневых систем. Понятие о степенях свободы и связях. Степень статической неопределимости стержневых систем методом сил. Расчет статически неопределимых рам.	2	Определение перемещений в статически определимых рамах (применение интеграла Мора, способа Верещагина)	2	Определение перемещений при плоском поперечном изгибе	2	
		1 *		Расчет статически неопределимых рам методом сил	2	_	_
		стержневых систем. Понятие о степенях свободы и связях. Степень статической неопределимости. Раскрытие статической неопределимости стержневых систем методом сил. Расчет статически	2	Расчет статически неопределимых рам методом сил	2	Проверка теоремы о взаимности перемещений	2
2	Тема 2 Косой изгиб	Косой изгиб. Нейтральная линия при косом изгибе. Эпюра напряжений в поперечном сечении.	2	Определение внутренних усилий при косом изгибе. Построение эпюры напряжений в опасном сечении.	2	-	_

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		Расчет на прочность при косом изгибе. Деформации балок при косом изгибе. Определение положения линии прогиба.		Расчет на прочность при косом изгибе.	2	Определение лишней неизвестной в статически неопределимой балке	2
3	Тема 3 Изгиб с растяжением- сжатием	Изгиб с растяжением-сжатием. Внутренние силы в поперечном сечении. Распределение напряжений в опасном сечении. Условие прочности.	2	Расчет на прочность при совместном действии растяжения-сжатия с изгибом.	2	_	_
4	Тема 4 Внецентренное сжатие брусьев	Внецентренное сжатие брусьев. Нулевая линия; ее особенности. Расчет на прочность при внецентренном нагружении.	2	Определение допускаемой нагрузки при внецентренном сжатии стержня.	2	Определение перемещений при косом изгибе	2
	сжатие орусьев	Понятие ядра сечения. Принцип его построения.	2	Построение ядра сечения	2	_	_
5	Тема 5 Изгиб с кручением	Изгиб с кручением. Определение опасного сечения вала. Понятие результирующего момента.	2	Построение эпюр внутренних усилий при изгибе с кручением.	2	Испытание на внецентренное нагружение	2
		Вид напряженного состояния в сечении вала. Условие прочности для вала круглого поперечного сечения. Использование теорий прочности.	2	Определение напряженного состояния в опасных точках поперечного сечения. Расчет на прочность вала при изгибе с кручением.	2	_	_

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
6	Расчет пространственного бруса в общем	Расчет пространственного бруса в общем случае действия сил. Построение эпюр внутренних силовых факторов в прямолинейных элементах пространственного бруса.	2	Построение эпюр внутренних силовых факторов в прямолинейных элементах пространственного бруса.	2	Испытание на устойчивость	2
		Устойчивость сжатых стержней. Продольный изгиб. Потеря устойчивости. Формула Эйлера для критической силы центрально сжатого стержня. Влияние способов закрепления стержня на критическую силу. Критическое напряжение. Гибкость стержня. Пределы применимости формулы Эйлера.	2	Расчёт стержней на продольный изгиб. Определение критической силы.	2	_	_
7	Устойчивость сжатых стержней	Понятие о потери устойчивости при напряжениях, превышающих предел пропорциональности. Формула Ясинского. Условие применимости формулы Ясинского. Диаграмма критических напряжений.	2	Принципы рационального проектирования сжатых стержней. Расчеты на устойчивость по коэффициенту уменьшения допускаемых напряжений	2	Испытание на устойчивость	2
		Практические методы расчета сжатых стержней на устойчивость. Коэффициент уменьшения основного допускаемого напряжения.	2	Практические методы расчета сжатых стержней на устойчивость.	2	_	_
8	Понятие о динамическом	Понятие о динамическом нагружении. Динамический расчет. Учет сил инерции. Динамический коэффициент.		Примеры расчета на динамическое действие нагрузок.	2	Определение ударной вязкости для стали	2

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		Ударное действие нагрузки. Основные понятия. Расчеты стержней при ударном действии нагрузки.	2	Примеры расчета стержней при ударном действии нагрузки.	2	-	_
9	Тема 9 Прочность при напряжениях, циклически изменяющихся во времени	Современные представления о прочности материалов при напряжениях, циклически изменяющихся во времени. Механизм усталостного разрушения. Кривые усталости и предел выносливости. Влияние на выносливость качества поверхности, наклепа и окружающей среды. Концентрация напряжений и абсолютные размеры как факторы, влияющие на выносливость.	2	Расчет на прочность при циклически меняющихся во времени напряжениях	2	Испытание образцов на выносливость	2
	Всего аудиторных часов		36	36		18	

Таблица 5 – Виды занятий по дисциплине и распределение аудиторных часов (очно-заочная форма обучения) по

направлению подготовки 08.03.01 Стрительство

№ п/п	Наименование темы	Содержание лекционных занятий	в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
			Семестр	3			
1	Геометрические характеристики	Статические моменты площади. Определение центра тяжести сложного сечения. Осевые, полярный и центробежный моменты инерции поперечного сечения, моменты сопротивления, радиусы инерции. Определение моментов инерции при параллельном переносе и повороте координатных осей. Главные оси и главные моменты инерции сечения.	2	Определение центра тяжести сложного сечения. Определение моментов инерции простых фигур. Определение моментов инерции при параллельном переносе и повороте координатных осей. Определение положения главных осей инерции и главных моментов инерции сечения.	2	Испытание на растяжение образцов из малоуглеродистой стали Основные механические характеристики материалов. Диаграммы растяжения.	2
2	Тема 3 Растяжение- сжатие	Растяжение и сжатие прямых брусьев. Построение эпюр продольных сил. Гипотезы при растяжении-сжатии. Напряжения и деформации. Условие прочности и жесткости. Основные типы задач. Закон Гука. Типы разрушений при растяжении-сжатии.	2	Расчет на прочность при растяжении- сжатии статически определимых систем. Определение перемещений.	2	_	_
3	Кручение прямого	Внутренние усилия при кручении. Построение эпюры крутящих моментов. Закон распределения	2	Построение эпюры крутящих моментов. Расчет напряжений и	2	_	_

_	_
Ù	0

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		напряжений в поперечном сечении вала. Деформации при кручении. Условие прочности и жесткости. Статически неопределимые системы. Рациональное поперечное сечение. Характер разрушения вала при кручении.		деформации при кручении. Статически неопределимые системы при кручении.			
4	Тема 7	Понятие о прямом и косом изгибе. Внугренние усилия при изгибе. Чистый и поперечный изгиб. Правило знаков поперечных сил и изгибающих моментов. Эпюры внугренних усилий. Дифференциальные зависимости при изгибе. Определение экстремума эпюры изгибающих моментов. Определение нормальных напряжений при изгибе брусьев. Закон распределения нормальных напряжений напряжений в поперечном сечении. Условие прочности при изгибе.	2	Построение эпюр поперечных сил и изгибающих моментов. Проектировочный расчет по нормальным напряжениям при изгибе. Проверка прочности балки по касательным напряжениям.	2	Определение напряжений при плоском поперечном изгибе	2
Bcei	го аудиторных часог	В	8	8		4	
	.		Семестр	4		I	
		Плоские рамы. Определение внутренних усилий. Построение эпюр.	2	Построение эпюр в статически определимых рамах	2		
1		Теорема Кастилиано. Интеграл Мора. Вычисление интегралов Мора способом Верещагина и при помощи формулы Симпсона.		_	-	_	_

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		Определение перемещений в статически определимых рамах. Раскрытие статической неопределимости стержневых систем методом сил. Расчет статически неопределимых рам.	2	Расчет статически неопределимых рам методом сил	2		
2	Тема 4 Внецентренное сжатие брусьев	Внецентренное сжатие брусьев. Нулевая линия; ее особенности. Расчет на прочность при внецентренном нагружении. Понятие ядра сечения. Принцип его построения.	2	Определение допускаемой нагрузки при внецентренном сжатии стержня. Построение ядра сечения	2	Испытание на внецентренное нагружение	2
3	Изгио с кручением	Вид напряженного состояния в сечении вала. Условие прочности для вала круглого поперечного сечения. Использование теорий прочности. Построение эпюр внутренних усилий при изгибе с кручением.	2	_	_	_	_
4	Устойчивость сжатых стержней	Устойчивость сжатых стержней. Основные понятия. Продольный изгиб. Потеря устойчивости. Формула Эйлера для критической силы центрально сжатого стержня.	2	Расчёт стержней на устойчивость	2	Испытание на устойчивость	
	Всего аудиторных ч	асов	12	8		4	

Таблица 6 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения) для направления подготовки 15.03.02 Технологические машины и оборудование

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
			Сем	вестр 3			
	Тема 1 Основные понятия, допущения и предпосылки (гипотезы) науки сопротивление материалов	Введение. Предмет и задачи курса. Понятия о прочности, жесткости и устойчивости элементов конструкций. Изучаемые объекты. Основные гипотезы и принципы. Расчетная схема. Внешние и внутренние усилия. Метод сечений.	2	Составление уравнений равновесия статики.	2	_	_
1		Понятие о напряжениях и деформациях. Общие зависимости между внутренними усилиями и напряжениями в сечении.	2	_	_	-	_
		Основные механические характеристики материалов. Диаграммы растяжения. Работа внешних и внутренних сил. Потенциальная энергия деформации.	2	Метод сечений. Правило знаков внутренних усилий. Построение эпюр.	2	-	_
2	Тема 2 Геометрические характеристики плоских сечений надиусы ин Определени Определени	Статические моменты площади. Определение центра тяжести сложного сечения. Осевые, полярный и центробежный моменты инерции поперечного сечения, моменты сопротивления, радиусы инерции.	2	_	_	_	_
		Определение моментов инерции при параллельном переносе и	2	Определение центра тяжести сложного	2	_	_

<u>№</u> п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		повороте координатных осей. Главные оси и главные моменты инерции сечения.		сечения. Определение моментов инерции простых фигур. Определение моментов инерции при параллельном переносе и повороте координатных осей. Определение положения главных осей инерции и главных моментов инерции сечения.			
3	Тема 3 Растяжение-	Растяжение и сжатие прямых брусьев. Построение эпюр продольных сил. Гипотезы при растяжении-сжатии. Напряжения и деформации. Условие прочности и жесткости. Основные типы задач. Закон Гука. Типы разрушений при растяжении-сжатии.	2	_	_	_	_
5	сжатие	Статически неопределимые системы при растяжении –сжатии	2	Расчет на прочность при растяжении-сжатии статически определимых систем. Построение плана перемещений. Определение перемещений характерных точек системы.	2	_	_
4	Тема 4 Элементы теории	Понятие напряженного состояния тела. Тензор напряжений. Закон	2	_	_	_	_

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
	-	парности касательных напряжений. Линейное напряженное состояние. Напряжения на наклонных площадках					
		Плоское напряженное состояние. Аналитические зависимости между напряжениями при повороте площадок. Главные площадки и главные напряжения. Площадки сдвига. Объемное напряженное состояние. Круги Мора Обобщенный закон Гука. Классические теории прочности.	2	Расчет напряжений при плоском напряженном состоянии. Определение положения главных площадок и площадок сдвига.	2	_	_
5	Тема 5 Чистый сдвиг, смятие	Внутренние усилия при сдвиге. Напряжения и деформации при чистом сдвиге. Закон Гука при сдвиге. Расчет на прочность.		_		-	_
6	Тема 6 Кручение прямого стержня	Внутренние усилия при кручении. Построение эпюры крутящих моментов. Закон распределения напряжений в поперечном сечении вала. Деформации при кручении.	2	Расчет на срез (сдвиг) заклепочного соединения.	2	_	_
		Условие прочности и жесткости. Статически неопределимые	2	-	_	-	_

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		системы. Рациональное поперечное сечение. Характер разрушения вала при кручении.					
	изгибе. Внутренние уси изгибе. Чистый и попер изгиб. Правило знаков поперечных сил и изгиб моментов. Эпноры внут усилий. Дифференциал зависимости при изгибе Определение экстремум изгибающих моментов. Определение нормальн напряжений при изгибе Тема 7 Изгиб прямых стержней сечении. Условие прочи	Понятие о прямом и косом изгибе. Внутренние усилия при изгибе. Чистый и поперечный изгиб. Правило знаков поперечных сил и изгибающих моментов. Эпюры внутренних усилий. Дифференциальные зависимости при изгибе. Определение экстремума эпюры изгибающих моментов. Определение нормальных	2	Построение эпюры крутящих моментов. Расчет напряжений и деформации при кручении. Статически неопределимые системы при кручении.	2	_	_
7		напряжений при изгибе брусьев. Закон распределения нормальных напряжений в поперечном сечении. Условие прочности при изгибе.	2	_	_	-	_
		Касательные напряжения. (Формула Журавского). Проверка прочности по касательным напряжениям. Рациональные сечения при изгибе.	2	Построение эпюр поперечных сил и изгибающих моментов. Проектировочный расчет по нормальным напряжениям при изгибе. Проверка прочности балки по касательным напряжениям.	2	_	_
		Деформации балок при изгибе. Точное и приближенное	2	_	_	-	_

)
5	ı

<u>№</u> п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		дифференциальное уравнение изогнутой оси балки без деформации сдвига. Дифференциальное уравнение для прогибов с учетом деформации сдвига. Особенности определения значительных прогибов. Универсальное уравнение изогнутой оси балки (метод начальных параметров).					
8	Тема 8 Перемещения в стержневой системе при произвольной нагрузке	Потенциальная энергия стержня в общем случае нагружения. Теорема Кастилиано. Интеграл Мора. Вычисление интегралов Мора способом Верещагина и при помощи формулы Симпсона. Теорема о взаимности работ и принцип взаимности перемещений.	2	Определение прогибов и углов поворота сечений методом начальных параметров.	2	_	_
9	Тема 9 Статистически неопределимые тержневые системь	Анализ структуры простейших стержневых систем. Степень статической неопределимости. Раскрытие статической неопределимости стержневых систем методом сил. Расчет статически неопределимых систем при температуры и наличием натягов при сборке	2	_	_	_	_
	Всего аудиторных	часов	36	18		_	
1	Tava 1	Плосине рамы Определения			2		
1		Плоские рамы. Определение		нестр 4 Построение эпюр в	2	-	_

№ п/п	Наименование темы (раздела) дисциплины Плоские рамы	Содержание лекционных занятий внутренних усилий. Построение	Трудоемкость в ак.ч.	Темы практических занятий статически определимых	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		эпюр.		рамах			
		Потенциальная энергия стержня в общем случае нагружения. Теорема Кастилиано. Интеграл Мора. Вычисление интегралов Мора способом Верещагина и при помощи формулы Симпсона. Теорема о взаимности работ и принцип взаимности перемещений.	2	Определение перемещений в статически определимых рамах (применение интеграла Мора, способа Верещагина)	2	_	_
		Определение перемещений в статически определимых рамах.	2	Расчет статически неопределимых рам методом сил	2	-	_
		Анализ структуры простейших стержневых систем. Понятие о степенях свободы и связях. Степень статической неопределимости. Раскрытие статической неопределимости стержневых систем методом сил. Расчет статически неопределимых рам.	2	Расчет статически неопределимых рам методом сил	2	-	_
2	Тема 2 Косой изгиб	Косой изгиб. Нейтральная линия при косом изгибе. Эпюра напряжений в поперечном сечении.	2	Определение внутренних усилий при косом изгибе. Построение эпюры напряжений в опасном сечении.	2	_	_
		Расчет на прочность при косом изгибе. Деформации балок при	,	Расчет на прочность при косом изгибе.	2	_	_

№ π/π		Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		косом изгибе. Определение положения линии прогиба.					
3	Тема 3 Изгиб с растяжением- сжатием	Изгиб с растяжением-сжатием. Внутренние силы в поперечном сечении. Распределение напряжений в опасном сечении. Условие прочности.	2	Расчет на прочность при совместном действии растяжения-сжатия с изгибом.	2	-	_
4	Тема 4 Внецентренное сжатие брусьев	Внецентренное сжатие брусьев. Нулевая линия; ее особенности. Расчет на прочность при внецентренном нагружении.	2	Определение допускаемой нагрузки при внецентренном сжатии стержня.	2	-	_
	сжатие орусьев	Понятие ядра сечения. Принцип его построения.	2	Построение ядра сечения	2	-	_
		Изгиб с кручением. Определение опасного сечения вала. Понятие результирующего момента.	2	Построение эпюр внутренних усилий при изгибе с кручением.	2	-	_
5	Тема 5 Изгиб с кручением	Вид напряженного состояния в сечении вала. Условие прочности для вала круглого поперечного сечения. Использование теорий прочности.	2	Определение напряженного состояния в опасных точках поперечного сечения. Расчет на прочность вала при изгибе с кручением.	2	-	_
6	Тема 6 Расчет пространственного бруса в общем случае действия сил	Расчет пространственного бруса в общем случае действия сил. Построение эпюр внутренних силовых факторов в прямолинейных элементах пространственного бруса.	2	Построение эпюр внутренних силовых факторов в прямолинейных элементах пространственного бруса.	2	-	_
7	Тема 7	Устойчивость сжатых стержней. Основные понятия. Продольный		Расчёт стержней на продольный изгиб.	2	_	_

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		изгиб. Потеря устойчивости. Формула Эйлера для критической силы центрально сжатого стержня. Влияние способов закрепления стержня на критическую силу. Критическое напряжение. Гибкость стержня. Пределы применимости формулы Эйлера.		Определение критической силы.			
		Понятие о потери устойчивости при напряжениях, превышающих предел пропорциональности. Формула Ясинского. Условие применимости формулы Ясинского. Диаграмма критических напряжений.	2	Расчеты на устойчивость по коэффициенту уменьшения допускаемых напряжений	2	_	_
		Практические методы расчета сжатых стержней на устойчивость. Коэффициент уменьшения основного допускаемого напряжения.	2	Практические методы расчета сжатых стержней на устойчивость.	2	-	_
8	Тема 8 Понятие о динамическом	Понятие о динамическом нагружении. Динамический расчет. Учет сил инерции. Динамический коэффициент.	2	Примеры расчета на динамическое действие нагрузок.	2	-	_
8	нагружении	Ударное действие нагрузки. Основные понятия. Расчеты стержней при ударном действии нагрузки.	2	Примеры расчета стержней при ударном действии нагрузки.	2	_	_
9	Тема 9 Прочность при	Прочность материалов при напряжениях, циклически	2	Расчет на прочность при циклически меняющихся во времени	2	_	_

№	Наименование		Трупоемкость	Темы практических	Трудоемкость	Тема	Трудоемкость
п/г	темы (раздела)	Содержание лекционных занятий	в ак.ч.	занятий	в ак.ч.	лабораторных	в ак.ч.
	дисциплины		в ак.ч.	занятии	в ак.ч.	занятий	
	напряжениях,	изменяющихся во времени.		напряжениях			
	циклически	Механизм усталостного					
	изменяющихся во	разрушения. Кривые усталости и					
	времени	предел выносливости. Влияние на					
		выносливость качества					
		поверхности, наклепа и					
		окружающей среды.					
	Всего аудиторных часов		36	36		_	

Таблица 7 – Виды занятий по дисциплине и распределение аудиторных часов (очно-заочная форма обучения) по направлению подготовки 15.03.02 Технологические машины и оборудование

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
			Семестр	3			
1	Тема 3 Растяжение- сжатие	Растяжение и сжатие прямых брусьев. Построение эпюр продольных сил. Гипотезы при растяжении-сжатии. Напряжения и деформации. Условие прочности и жесткости. Закон Гука.	2	Расчет на прочность при растяжении- сжатии статически определимых систем. Определение перемещений.	2	_	_
2	_	_	_	Построение эпюры крутящих моментов. Расчет напряжений и деформации при кручении. Статически неопределимые системы при кручении.	2	_	_
3	Тема 7 Изгиб прямых стержней	Понятие о прямом и косом изгибе. Внугренние усилия при изгибе. Чистый и поперечный изгиб. Правило знаков поперечных сил и изгибающих моментов. Эпюры внугренних усилий. Условие прочности при изгибе.	2	Проектировочный расчет по нормальным напряжениям при изгибе. Проверка прочности балки по касательным напряжениям.	2	_	_
Bce	то аудиторных часоі	<u></u>	4	6	1		

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
			Семестр	4			
1	Тема 1 Плоские рамы	Плоские рамы. Определение внутренних усилий. Построение эпюр. Раскрытие статической неопределимости стержневых систем методом сил.	2	Построение эпюр в статически определимых рамах. Расчет статически неопределимых рам методом сил	2	-	_
2	_	_	_	Определение допускаемой нагрузки при внецентренном сжатии стержня. Построение ядра сечения	2	-	_
3	Тема 5 Изгиб с кручением	Вид напряженного состояния в сечении вала. Условие прочности для вала круглого поперечного сечения. Использование теорий прочности. Построение эпюр внутренних усилий при изгибе с кручением.	2	Расчет на прочность при изгибе с кручением.	2	_	_
	Всего аудиторных часов			6		_	

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень работ по дисциплине и способы оценивания знаний приведены в таблице 8.

Таблица 8 – Перечень работ по дисциплине и способы оценивания знаний

Вид учебной работы	Способ оценивания	Количество баллов
Выполнение расчетно-графических работ		24 - 40
Прохождение тестов 1, 2	Более 60% правильных ответов	24 - 40
Выполнение контрольных работ	Предоставление решения	12 - 20
Итого	_	60 - 100

Экзамен по дисциплине «Сопротивление материалов» проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время зачетной недели студент имеет право повысить итоговую оценку либо в форме устного собеседования по приведенным ниже вопросам (п.п. 6.5), либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 9.

Таблица 9 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашнее задание

В качестве домашнего задания студенты выполняют:

- проработка лекционного материала;
- подготовка отчетов о лабораторных работах;
- -решения заданных преподавателем расчетно-графических заданий.

6.3 Тематика и содержание расчетно-графических заданий

3-й семестр

1) Растяжение и сжатие прямых брусьев.

Построение эпюр продольных сил и перемещений. Подбор размеров поперечного сечения. Расчет на прочность при растяжении-сжатии.

2) Геометрические характеристики плоских сечений.

Определение положения центра тяжести поперечного сечения. Определение осевых и центробежных моментов инерции относительно центральных осей. Положение главных осей. Главные моменты инерции. Момент сопротивления.

3) Расчеты на прочность при кручении.

Определение внутренних силовых факторов. Построение эпюр крутящих моментов и углов закручивания. Расчет на прочность

4) Плоский изгиб прямых брусьев.

Определение внутренних силовых факторов. Построение эпюр поперечных сил и изгибающих моментов. Определение размеров поперечного сечения с использованием условий прочности.

4-й семестр

1) Расчет статически неопределимой рамы методом сил.

Установление степени статической неопределимости системы. Выбор основной системы. Составление канонических уравнений метода сил. Определение изгибающих моментов в грузовом состоянии системы. Определение изгибающих моментов в единичном состоянии. Определение неизвестных усилий. Построение эпюр внутренних усилий.

2) Расчеты на прочность при изгибе с кручением.

Определение крутящих моментов по участкам вала. Определение внешних усилий в вертикальной и горизонтальной плоскостях. Построение эпюр крутящих моментов, изгибающих моментов в вертикальной и горизонтальной плоскостях. Определение результирующего момента по III теории прочности для опасного сечения вала. Определение диаметра вала

6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

3-й семестр

Тема 1 Основные понятия, допущения и предпосылки (гипотезы) науки сопротивление материалов

- 1) Что представляют собой внутренние силы?
- 2) В чем состоит задача расчета на прочность? на жесткость? на устойчивость?
- 3) Какие внутренние силовые факторы могут возникать в поперечных сечениях брусьев, и виды деформации с ними связаны?
 - 4) В чем состоит сущность метода сечений?
- 5) В чем заключается принцип независимости действия сил, гипотеза плоских сечений, принцип Сен-Венана?

Тема 2 Геометрические характеристики плоских сечений

- 1) Что называется осевым, полярным и центробежным моментами инерции сечения?
- 2) Как изменяются геометрические характеристики сечения при параллельном переносе осей и при повороте осей?
- 3) Что представляют собой главные центральные моменты инерции? Запишите их выражения.
- 4) Что называется полярным моментом сопротивления, в каких единицах он измеряется и чему равен (для круга и кольца)?
- 5) Чему равен статический момент относительно оси, проходящей через центр тяжести поперечного сечения? Размерность статического момента?

Тема 3 Растяжение и сжатие прямых брусьев

- 1) Как вычисляются нормальные и касательные напряжения в поперечных и наклонных сечениях центрально растянутого (сжатого) бруса?
 - 2) Как формулируется закон Гука?
- 3) Что такое предел пропорциональности, предел упругости, предел текучести, предел прочности?
 - 4) Чем отличается диаграмма растяжения пластичной стали от диаграммы хрупкой стали? Что такое условный предел текучести?
 - 5) Как записываются условия прочности при растяжении?

Тема 4 Элементы теории напряженного и деформированного состояния

- 1) Сформулируйте закон парности касательных напряжений.
- 2) Что такое главные напряжения и главные площадки?
- 3) Как формулируется обобщенный закон Гука?

- 4) Как формулируется третья теория прочности. Для каких материалов она применяется?
- 5) Чему равны экстремальные касательные напряжения в случае плоского напряженного состояния?

Тема 5 Чистый сдвиг. Смятие

- 1) Что называется чистым сдвигом? Приведите примеры.
- 2) Как формулируется закон Гука при сдвиге.
- 3) Как определяются нормальные и касательные напряжения при слвиге?
 - 4) Какие внутренние силовые факторы возникают при смятии?
 - 5) Какой вид имеет условие прочности при сдвиге,

Тема 6 Кручение прямого стержня

- 1) Какой вид нагружения называется кручением?
- 2) Как определяется полный угол закручивания на участке длиною l?
- 3) Что называется относительным углом закручивания?
- 4) На каких положениях основана теория кручения стержней, имеющих сплошное круглое или кольцевое сечение.
- 5) Какие напряжения возникают при кручении стержней и как они определяются?

Тема 7 Изгиб прямых брусьев

- 1) Что называют прямым и косым изгибом, чистым и поперечным изгибом?
- 2) По какой формуле определяются нормальные напряжения в поперечном сечении балки при чистом изгибе?
 - 3) Дайте определение условия прочности при изгибе.
- 4) Какая геометрическая характеристика сечения является определяющим при оценке прочности балки по нормальным напряжениям при изгибе?
- 5) Где находятся опасные точки в поперечном сечении балки при чистом изгибе, поперечном изгибе?

Тема 8 Перемещения в стержневой системе при произвольной нагрузке

- 1) В чем состоит принцип возможных перемещений для деформируемых систем?
- 2) Как определяется потенциальная энергия деформации в общем случае нагружения?
 - 3) Что такое грузовое и единичное состояния?
- 4) В каких случаях по направлению искомого перемещения в системе прикладывается единичная сосредоточенная сила, в каких сосредоточенный момент?
 - 5) В чем состоит метод Мора?

Тема 9 Статистически неопределимые стержневые системы

- 1) Что понимают под степенью статической неопределимости?
- 2) Сколько раз статически неопределим замкнутый контур?
- 3) Что называется эквивалентной системой?

- 4) Какой вид имеют канонические уравнения метода сил?
- 5) Чем определяется число уравнений, записываемых для заданной системы?

4-й семестр

Тема 1 Плоские рамы

- 1) Какая конструкция называется рамой?
- 2) В каком порядке производится расчет статически неопределимых рам методом сил?
 - 3) Какие внутренние силовые факторы возникают в рамах?
- 4) Как производится деформационная (кинематическая) проверка окончательной (суммарной) эпюры изгибающих моментов?
- 5) Как производится определение перемещений в статически неопределимых рамах?

Тема 2 Косой изгиб

- 1) Какой вид нагружения называется косым изгибом?
- 2) Каким образом проходит нейтральная линия при косом изгибе?
- 3) В чем заключается расчет на прочность при косом изгибе?
- 4) Из каких составляющих состоит общая деформация балок при косом изгибе?
 - 5) Как определить положение линии прогиба?

Тема 3 Изгиб с растяжением-сжатием

- 1) Какие внутренние силовые факторы возникают в поперечном сечении при изгибе с растяжением-сжатием?
 - 2) Распределение напряжений в опасном сечении.
 - 3) Как формулируется условие прочности при изгибе с растяжением?
- 4) Где находятся опасные точки в поперечном сечении балки при изгибе с сжатием или растяжением?
- 5) Как определить опасное сечение балки при растяжении-сжатии с изгибом?

Тема 4 Внецентренное сжатие брусьев

- 1) Что называется внецентренным сжатием брусьев?
- 2) Где проходит нулевая линия; каковы ее особенности?
- 3) В чем заключается расчет на прочность при внецентренном нагружении?
 - 4) В чем заключается принцип построения ядра сечения?
- 5) Какие внутренние силовые факторы возникают при внецентренном нагружении?

Тема 5 Изгиб с кручением

- 1) Как определить опасное сечения вала?
- 2) Понятие результирующего момента.
- 3) Какой вид напряженного состояния возникает в сечении вала при изгибе с кручением?
 - 4) Как формулируется условие прочности для вала круглого

поперечного сечения при изгибе с кручением?

5) Какие гипотезы прочности используются при расчетах на изгиб с кручением?

Тема 6 Расчет пространственного бруса в общем случае действия сил

- 1) Сколько внутренних силовых факторов возникает в общем случае действия сил на пространственный брус?
 - 2) Как определить опасное сечение?
- 3) Как вычисляются перемещения в пространственных системах в случае общего нагружения?
- 4) Как вычисляется потенциальная энергия деформации в общем случае нагружения?

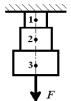
Тема 7 Устойчивость сжатых стержней

- 1) Что такое потеря устойчивости системы?
- 2) Какие величины внешних сил называются критическими?
- 3) В чем заключается суть задачи Эйлера?
- 4) Какие закономерности обнаруживаются между различными формами потери устойчивости систем?
- 5) Зависит ли величина критических значений внешних сил от характера закрепления стержня?

Тема 8 Понятие о динамическом нагружении

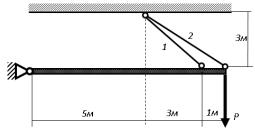
- 1) Какое явление называется ударом?
- 2) Какие допущения используются при решении практических задач и при определении динамического коэффициента при вертикальном ударе?
 - 3) Запишите формулу коэффициента динамичности при ударе.
- 4) В чем заключается влияние на коэффициент величины массы падающего тела и ударяемой системы?
- 5) Объясните особенности расчетов при динамическом нагружении по сравнению со статическим.

Тема 9 Прочность при напряжениях, циклически изменяющихся во времени


- 1) Какие напряжения называются переменными?
- 2) Цикл напряжений, характеристики цикла. Предел выносливости.
- 3) Как выглядит диаграмма предельных амплитуд напряжений?
- 4) Какие факторы влияют на предел выносливости материала?
- 5) В чем заключаются особенности расчета на прочность при переменных напряжениях?

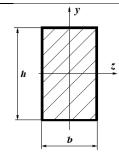
6.5 Фонд тестовых заданий к экзамену (тестовому коллоквиуму)

- 1. Какие внутренние усилия возникают при растяжении прямого стержня?
- а) поперечная сила;
- б) продольная сила;
- в) крутящий момент;
- г) изгибающий момент.


- 2. Укажите вид условия прочности при растяжении (сжатии) в случае определения силы, которую выдерживает образец.
- a) $\sigma \leq [\sigma]$; $\sigma = [\sigma]$; $[\sigma] \cdot A$.

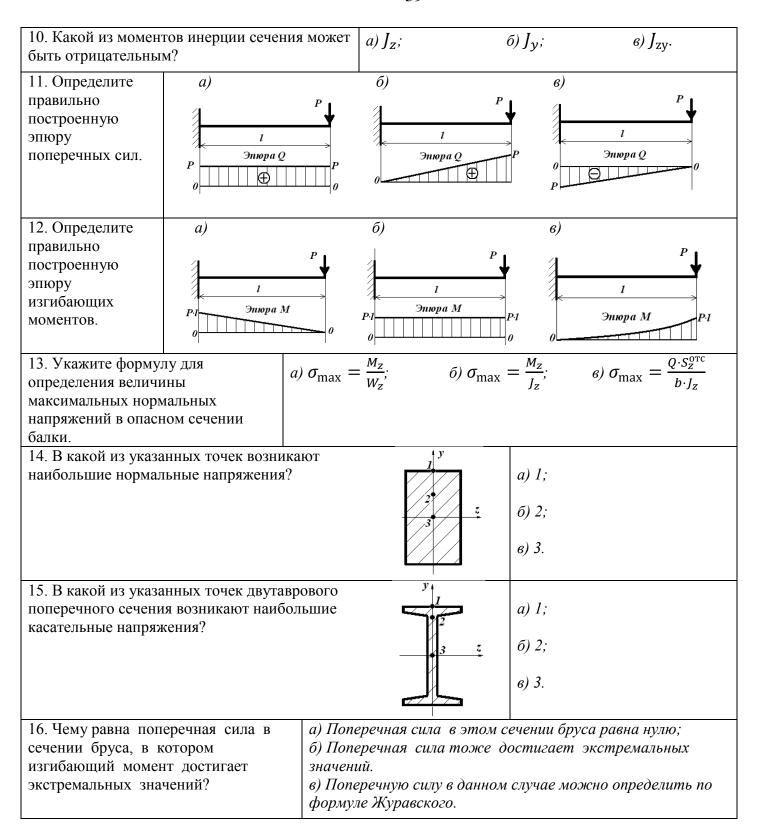
3. Трехступенчатый стержень круглого поперечного сечения находится под действием растягивающей силы. В какой точке напряжения будут максимальными?

- *а) В точке 1;*
- б) В точке 2;
- в) В точке 3;
- г) Напряжения равнозначны.


- 4. Укажите размерность нормальных напряжений.
- a) M^2 :
- б) м:
- в) Па;
- г) Безразмерная величина.
- 5. При рассмотрении диаграммы растяжения пластичной стали наибольшее напряжение, до которого остаточной деформации при разгрузке образца не наблюдается, называется:
- а) Пределом пропорциональности;
- б) Пределом упругости;
- в) Пределом текучести;
- г) Пределом прочности.
- 6. Укажите правильное уравнение совместности деформаций для представленного на рисунке случая.

- a) $\Delta l_1 = \Delta l_2 \frac{\sin 45^{\circ}}{\sin 36^{\circ}}$; b) $\Delta l_1 = \frac{9 \cdot \Delta l_2}{8}$;
- $6) \Delta l_1 = \frac{8 \cdot \Delta l_2 \cdot \sin 45^0}{9 \cdot \sin 36^0}; \quad | \varepsilon\rangle \Delta l_1 = \frac{4 \cdot \Delta l_2 \cdot \sin 36^0}{5 \cdot \sin 45^0}.$

- 7. Что называется начальными напряжениями?
- а) Напряжения, возникающие в статически неопределимых конструкциях при неточном изготовлении ее элементов;
- б) Напряжения, возникающие в статически определимых конструкциях под действием внешних сил;
- в) Напряжения, возникающие в статически неопределимых конструкциях при нагревании ее элементов;
- г) Напряжения, возникающие в статически определимых конструкциях от действия сил тяжести.


- 8. Что называется главными площадками?
- а) Площадки, на которых нормальные напряжения равны нулю;
- б) Площадки, на которых касательные напряжения равны нулю;
- в) Площадки, на которых касательные напряжения являются максимальными;
- г) Площадки, на которых нормальные напряжения равны касательным напряжениям.
- 9. Как определить осевой момент инерции J_z прямоугольного поперечного сечения?

$$a) J_z = \frac{b \cdot h^3}{12};$$
$$b \cdot h^3$$

$$\begin{aligned}
\delta) \, J_Z &= \frac{b \cdot h^3}{36}, \\
\epsilon) \, J_Z &= \frac{b \cdot h^3}{48}.
\end{aligned}$$

$$B) J_Z = \frac{b \cdot h^3}{48}$$

6.6 Примерная тематика курсовых работ

Курсовые работы не предусмотрены.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Эрдеди, Н. А. Сопротивление материалов: учебное пособие / Н. А. Эрдеди, А. А. Эрдеди. Москва: КноРус, 2024. 157 с. ISBN 978-5-406-12812-1. URL: https://book.ru/book/952692 (дата обращения: 21.06.2024).
- 2. Практикум по сопротивлению материалов. Часть 1: учебное пособие с грифом МОН ЛНР/ Л.А.Чепурная, А.А. Бревнов, И.А.Никишина. Алчевск: ГОУ ВО ЛНР «ДонГТИ», 2022. 141с. (20 экз.)

Дополнительная литература

- 1. Рубежанский В.И. Сопротивление материалов : курс лекций / В.И. Рубежанский, Л.А. Чепурная . 2 изд., доп. Алчевск : ГОУ ВПО ЛНР ДонГТУ, 2019 . 151 с. : ил. Режим доступа: https://library.dstu.education (дата обращения: 21.06.2024).
- 2. Сопротивление материалов [Текст]: учебник для студ. вузов, обуч. по машиностроит. спец. / под ред. Г.Д. Межецкого, Г.Г. Загребина. 2-е изд. М.: Дашков и К, 2010.-416 с.: ил. + прил. (3 экз.)
- 3. Сопротивление материалов [Текст]: учеб. пособие / под ред. В.И. Филяева. 2-е изд., перераб. и доп. Ростов-на-Дону: Феникс, 2001. 367 с.: ил. (11 экз.)
- 4. Саргсян, А.Е. Сопротивление материалов, теории упругости и пластичности. Основы теории с примерами расчетов [Текст]: учебник для втузов / А.Е. Саргсян. 2-е изд., испр. и доп. М.: Высшая школа, 2000. 287 с.: ил. (16 экз)

Учебно-методическое обеспечение

- 1. Бревнов, А.А. Методические указания к решению задач «Плоский балок» по дисциплине «Сопротивление поперечный изгиб прямых 13.03.03 08.03.01 «Строительство», «Энергетическое материалов» машиностроение» 1-2 курсов всех форм обучения) : (для обучающихся направлений подготовки 21.05.04 «Горное дело», 15.03.02 «Технологические оборудование», 15.03.05 «Конструкторско-технологическое обеспечение машиностроительных производств», 22.03.02 «Металлургия», 07.03.01 «Архитектура» / А.А. Бревнов ; Каф. Теоретической и строительной механики. Алчевск: ГОУ ВПО ЛНР ДонГТУ, 2019. 46 с. . – [Электронный pecypc]. — Режим доступа: https://library.dstu.education (дата обращения: 21.06.2024).
- 2. Пачиков, И.С. Сопротивление материалов [Текст]: учеб.-метод. пособие для студ. инж. спец. вузов / И.С. Пачиков; м-во образования и науки Украины. ДонГТУ. 2-е изд., доп. и испр. Алчевск: ДонГТУ, 2006. 250 с.:

ил. (117 экз.)

- 3. Пупков, В.С. Сопротивление материалов [Текст]: метод. указания (для студ. спец. 2 курса заоч. формы обучения) : аудитор. расчет.-графич. работы / В.С. Пупков, А.А. Бревнов, Л.А. Чепурная ; Каф. Теоретической и строительной механики. Алчевск : ДонДТУ, 2013. 48 с. : ил. (32экз.)
- 4. Дарков, А.В. Сопротивление материалов [Текст]: метод. указания и контрольные задания для студ.-заоч. всех спец. техн. высш. учеб. заведений, кроме машиностроит. и строит. спец. / А.В. Дарков, Б.Н. Кутуков. 13-е изд. М.: Высшая школа, 1979. 48 с.: ил. (179 экз.)

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ : официальный сайт. Алчевск. URL: <u>library.dstu.education</u>. Текст : электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст : электронный.
- 3. Консультант студента : электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст : электронный.
- 4. Университетская библиотека онлайн : электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст : электронный.
- 5. IPR BOOKS : электронно-библиотечная система. Красногорск. URL: http://www.iprbookshop.ru/. Текст : электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

	Адрес
Наименование оборудованных учебных кабинетов	(местоположение)
паименование оборудованных у теоных каоинетов	учебных
	кабинетов
Предметная аудитория (30 посадочных мест),	ауд. <u>301</u> корп. <u>6</u>
Раздаточный материал	
Предметная аудитория(30 посадочных мест),	ауд. <u>302</u> корп. <u> 6</u>
Раздаточный материал	
Предметная аудитория(30 посадочных мест),	ауд. <u>303</u> корп. <u>6</u>
Раздаточный материал	

Лист согласования РПД

Разработал <u>старший преподаватель кафедры</u> <u>высшей математики и естественных наук</u> (должность)

<u>Л.А. Чепурная</u> (Ф.И.О.)

Заведующий кафедрой высшей математики и естественных наук (наименование кафедры)

Д.А.Мельничук (Ф.И.О.)

Протокол № 1 заседания кафедры от 26.08.2024г.

Согласовано

Председатель методической комиссии по направлению подготовки/специальности 08.03.01 Строительство

Председатель методической комиссии по направлению подготовки/специальности 15.03.02 Технологические машины и оборудование

В.В. Псюк (Ф.И.О.)

Н.А.Денисова

Начальник учебно-методического центра

(подпись)

(подпись)

О.А.Коваленко

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения изменений				
изменении				
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:			
Осно	вание:			
Подпись лица, ответственного за внесение изменений				
,, , , , , , , , , , , , , , , , , , , ,				