Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Вишневский Дмитрий Александрович

Должность: Ректор

03474917c4d012283e5ad996a48a5e70bf8da057

Дата подписания: 17.10.2025 16:47:32 Уникальный программый Сти-ЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБРНАУКИ РОССИИ)

> ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет

Информационных технологий и автоматизации производ-

ственных процессов

Кафедра

Автоматизированного управления и информационных технологий

> **УТВЕРЖДАЮ** И.о. проректора по учебной работе Д.В. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Теория	автоматического управления
•	(наименование дисциплины)
15.03.04 Автоматизация технологических процессов и производств (код, наименование направления) Автоматизированное управление технологическими процессами и производствами (профиль подготовки) Квалификация бакалавр (бакалавр/специалист/магистр)	
(наименование дисциплины) 15.03.04 Автоматизация технологических процессов и производств (код, наименование направления) Автоматизированное управление технологическими процессами и производствами (профиль подготовки) Квалификация бакалавр (бакалавр (бакалавр/специалист/магистр)) Форма обучения очная, заочная	
Автоматизированное	2 04/
Квапификания	бамаларя
тъштификация	
	(оакалавр/специалист/магистр)
Форма обучения	очная, заочная
	(Dunad Duno-Saonnad Saonnad)

1 Цели и задачи изучения дисциплины

Цели дисциплины. Целью изучения «Теория дисциплины формирование автоматического управления» является комплексного решении теоретических и практических представления o профессиональной деятельности, связанной с проектированием, испытанием и эксплуатацией систем автоматического управления.

Задачи изучения дисциплины:

- изучение принципов построения систем автоматического управления;
- изучение протекания процессов в системах автоматического управления;
- освоение методов изучения процессов в системах автоматического управления;
- изучение методов коррекции и синтеза дискретных и непрерывных систем автоматического управления;
- освоение методов изучения и проектирования нелинейных систем автоматического управления.

Дисциплина направлена на формирование общепрофессиональных компетенций (ОПК-6 ОПК-13) выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины – курс входит в обязательную часть Блока I подготовки студентов по направлению 15.03.04 Автоматизация технологических процессов и производств (профиль «Управление и инновации в автоматизированных системах и технологических процессах»).

Дисциплина реализуется кафедрой автоматизированного управления и инновационных технологий. Основывается на базе дисциплин: «Математика», «Физика», «Электротехника».

Является основой для изучения следующих дисциплин: «Автоматизация технологических процессов и производств», «Автоматизированные системы управления технологическими процессами», «Производственная (преддипломная) практика», выпускная квалификационная работа.

Для изучения дисциплины необходимы компетенции, сформированные у студента для решения профессиональных задач деятельности, связанных с обеспечением жизни, здоровья и работоспособности во время работы.

Общая трудоемкость освоения дисциплины для очной формы обучения составляет 15 зачетных единиц, 540 ак.ч. Программой дисциплины предусмотрены лекционные (108 ак.ч.), практические (90 ак.ч.) и лабораторные (90 ак.ч.) занятия и самостоятельная работа студента (252 ак.ч.).

Для заочной формы обучения программой дисциплины предусмотрены лекционные (20 ак.ч.), практические (12 ак.ч.) и лабораторные (12 ак.ч.) занятия и самостоятельная работа студента (496 ак.ч.).

Дисциплина изучается на 2 курсе в 4 семестре, и на третьем курсе в 5 и 6 семестрах Форма промежуточной аттестации в каждом семестре – экзамен.

По дисциплине предусмотрена курсовая работа трудоемкостью 1 зачетная единица, 36 ак. ч. Группа АКТ выполняет курсовой проект в 6 семестре. В группе АКТ предусмотрены практические занятия (18 ак. ч. для группы АКТ и 4 ак. ч. для гр. АКТ-з) и самостоятельная работа студента (18 ак. ч. для групп АКТ и 32 ак. ч. для группы АКТ-з).

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Теория автоматического управления» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание компетенции	Код компетенции	Код и наименование индикатора достижения компетенции
Способен решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационно-коммуникационных технологий	ОПК-6	ОПК-6.2. Владеть способностью аккумулировать научно-техническую информацию, отечественный и зарубежный опыт в области автоматизации технологических процессов и производств
Способен применять стандартные методы расчета при проектировании систем автоматизации технологических процессов и производств	ОПК-13	ОПК-13.1. Знать стандартные методы расчетов при проектировании систем автоматизации; алгоритмы и методы анализа статических и динамических свойств систем и объектов управления

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 15 зачётных единиц, 540 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим и лабораторным занятиям, текущему контролю, выполнение индивидуального задания, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Dyn ywefyrai acfamy	Всего	Ак.	ч. по семест	рам
Вид учебной работы	ак.ч.	4	5	6
Аудиторная работа, в том числе:	288	108	90	90
Лекции (Л)	108	36	36	36
Практические занятия (ПЗ)	90	36	36	18
Лабораторные работы (ЛР)	90	36	18	36
Курсовая работа/курсовой проект	36			36
Самостоятельная работа студентов (СРС), в том числе:	252	72	90	90
Подготовка к лекциям	54	18	18	18
Подготовка к лабораторным работам	54	18	18	18
Подготовка к практическим занятиям /	45	18	18	9
семинарам				
Выполнение курсовой работы / проекта	36			36
Расчетно-графическая работа (РГР)				
Реферат (индивидуальное задание)				
Домашнее задание	36	9	27	
Подготовка к контрольной работе				
Подготовка к коллоквиуму				
Аналитический информационный поиск	6	2	2	2
Работа в библиотеке	9	3	3	3
Подготовка к экзамену	12	4	4	4
Промежуточная аттестация – экзамен (Э)	Э	Э	Э	Э
Общая трудоемкость дисциплины				
ак.ч.	15	5	5	5
3.e.	540	180	180	180

5 Содержание дисциплины

С целью освоения компетенций, приведенных в п.3 дисциплина разбита на 8 тем:

4 семестр:

- тема 1 (Основные термины и понятия теории автоматического управления);
 - тема 2 (Математическое описание автоматических систем);
- тема 3 (Временные и частотные характеристики динамических звеньев);
- тема 4 (Алгебра передаточных функций и правила преобразования структурных схем);
- тема 5 (Критерии устойчивости линейных систем автоматического управления);
- тема 6 (Анализ качества линейных автоматических систем управления);
 - тема 7 (Синтез линейных систем автоматического регулирования);
 - тема 8 (Оптимизация простых контуров регулирования).

5 семестр:

- тема 9 (Общие сведения о дискретных САУ);
- тема 10 (Общие сведения о дискретных САУ);
- тема 11 (Анализ импульсных систем автоматического управления);
- тема 12 (Синтез импульсных систем управления).

6 семестр:

- тема 13 (Нелинейные автоматические системы);
- тема 14 (Устойчивость нелинейных систем);
- тема 15 (Анализ поведения систем на фазовой плоскости)
- тема 16 (Релейные системы автоматического регулирования).

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 3-5 и 6-8 соответственно.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения) 4 семестр

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
1	Основные термины и понятия теории	Классификация автоматических систем. Задачи теории автоматического управления.	2	Объект управления. Виды задающих и управляющих воздействий.	2	Вступительное занятие. Техника безопасности при проведении лабораторных работ в	2
1	автоматического управления.	Виды систем управления: разомкнутые и замкнутые системы, системы стабилизации, системы программного управления, следящие и адаптивные системы	2	Применение операторного исчисления в ТАУ.	2	ауд. 319 главного корпуса.	2
2	Математическое описание автоматических систем	Математическое описание автоматических систем. Примеры составления математических моделей простых динамических звеньев.	2	Составление функциональной и структурной схемы ДПТ с НВ.	2	Моделирование типовых воздействий в пакете Simulink программы Matlab.	4
3	Временные и частотные характеристики динамических звеньев.	Переходная и импульсная переходная временные характеристики и средства их получения.	2	Пропорционально е и интегрирующее звенья	2	Методика снятия переходных и частотных характеристик линейных динамических звеньев.	4
4	Алгебра передаточных функций и правила преобразования структурных схем.	Передаточные функции различных соединений звеньев. Типичные соединения динамических звеньев. Классификация обратных связей.	2	Передаточная функция эквивалентного соединения	2	Определение параметров типовых динамических звеньев по переходным	2

J

				динамических звеньев.		характеристикам.	
	Критерии устойчивости линейных систем	Определение устойчивости САУ по алгебраическим критериям Раусса и Гурвица	2	Алгебраические критерии Рауса и Гурвица.	2	Распределение корней и полюсов САУ	2
5	линейных систем автоматического управления.	Определение устойчивости САУ по частотным критериям Найквиста и Михайлова.	2	Частотные критерии Найквиста, Михайлова.	2	ЛАЧХ и АФЧХ системы автоматического управления	2
	Анализ качества	Показатели качества работы системы в установившемся режиме	2	Расчет коэффициентов ошибок в САУ. Астатизм	2	Исследование влияния коэффициента усиления на показатели качества	2
6	Анализ качества линейных автоматических систем управления.	Показатели качества работы в переходном режиме.	2	Прямые и косвенные показатели качества в переходных режимах	2	Исследование влияния постоянных на показатели качества работы САУ	2
7	Синтез линейных систем автоматического регулирования.	Виды корректирующих устройств (КУ)	2	Параллельная коррекция САУ	2	Исследование переходных и установившихся режимов в системах с последовательной коррекцией.	6
	Оптимизация простых	Модульный и симметричный оптимумы	2	ЛАЧХ при различной настройке	2	Получение располагаемой и желаемой ЛАЧХ	2
8	контуров регулирования.	Настройка регулятора тока на модульный оптимум	2	ПИ-регулятор	2	Моделирование контура тока	2
		Настройка регулятора скорости на модульный и симметричный оптимумы	2	П-регулятор	2	Моделирование контура скорости	2

		Настройка регулятора положения	2	Линейный регулятор	2	Моделирование контура положения	2
Всего аудиторных часов		36	_	36	_	36	

Таблица 4 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения, 5 семестр)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
9	Общие сведения о дискретных САУ.	Классификация дискретных систем по виду квантования Понятие о импульсных системах автоматического управления. Структурные схемы импульсных САУ.	4	Виды квантования. АИМ, ШИМ и ЧИМ	6	Исследование дискретной системы автоматического управления с экстраполятором нулевого порядка.	2
10	Модели линейных дискретных систем	Решетчатые функции и разностные уравнения. Уравнения и импульсная передаточная функция разомкнутой импульсной системы.	2	Решетчатые функции. Импульсная передаточная функция импульсной системы.	6	Исследование дискретной системы автоматического управления с экстраполятором первого порядка	4
	управления.	Частотные характеристики импульсных систем.	4	Частотные характеристики импульсных систем.	6	Исследование дискретной САУ с экстраполятором второго порядка	4
11	Анализ импульсных систем автоматического управления.	Оценка точности импульсных САУ. Устойчивость импульсных систем.	2 4	Определение устойчивости импульсных САУ	6	Библиотека Discrete пакета Simulink программы Matlab	4
12	Синтез импульсных систем управления.	Требования к импульсным системам автоматического регулирования Получение частотных характеристик импульсных систем	4	Синтез непрерывных КУ импульсных САУ.	6	Исследование импульсных САУ с непрерывными КУ	2
D	· ·	Синтез корректирующих устройств в импульсных системах	4 36	Синтез дискретных КУ.	6	Исследование дискретных КУ	2
DCCI	о аудиторных часов		30		30		10

Таблица 5 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения, 6 семестр)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
13	Нелинейные автоматические системы.	Понятие нелинейного динамического звена Типичные нелинейности: насыщение, люфт, зона нечувствительности и т.д.	2	Виды нелинейностей и их математическое описание.	4	Виды нелинейностей пакета Simulink программы Matlab.	6
	Устойчивость	І-й метод определения устойчивости нелинейных систем Ляпунова П-й метод определения устойчивости	4	Критерий абсолютной устойчивости		Исследование частоты автоколебаний в нелинейной системе	
14	нелинейных систем.	нелинейных систем Ляпунова Критерий абсолютной устойчивости Попова. Критерий Михайлова	4	Попова. Определение устойчивости по Михайлову		автоматического управления Исследование амплитуды автоколебаний в нелинейной САУ	6
15	Анализ поведения систем на фазовой	Понятие фазовой плоскости Метод фазовой плоскости	2 2	Определение устойчивости нелинейной системы по	4	Исследование влияния люфта на возникновение автоколебаний в нелинейной системе	6
	плоскости.	Получение фазовых портретов нелинейных систем	4	критерию Найквиста		автоматического управления	
		Понятие о системах, работающих в скользящих режимах	4	Расчет регуляторов в		Моделирование задатчика траекторий	6
16	Релейные системы автоматического регулирования	Релейные системы управления в пространстве естественных координат	4	пространстве естественных координат	2	Моделирование релейного САУ в пространстве естественных координат	6
		Релейные системы в пространстве	4	Регуляторы в	2	Моделирование	6

		производных		пространстве производных		релейной системы в пространстве производных	
Всего аудиторных часов		36		18		36	

Таблицы 6 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения) 4 семестр

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
1	Основные термины и понятия теории автоматического управления.	Виды систем управления: разомкнутые и замкнутые системы, системы стабилизации, системы программного управления, следящие и адаптивные системы	2	Объект управления. Виды задающих и управляющих	2	Вступительное занятие. Техника безопасности при проведении лабораторных работ. Методика снятия	2
2	Временные и частотные характеристики динамических звеньев.	Переходная и импульсная переходная временные характеристики и средства их получения.	2	воздействий. Пропорционально е и интегрирующее звенья	2	переходных и частотных характеристик линейных динамических звеньев.	2
3	Анализ качества линейных автоматических систем управления.	Показатели качества работы системы в установившемся и переходном режиме	2	Метод коэффициентов ошибок	2	Исследование влияния коэффициента усиления на показатели качества	2
Всег	о аудиторных часов		6	_	4	_	4

Таблица 7 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения, 6 семестр)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
9	Общие сведения о дискретных САУ.	Классификация дискретных систем по виду квантования Понятие о импульсных системах автоматического управления. Структурные схемы импульсных САУ.	2	Виды квантования. АИМ, ШИМ и ЧИМ	4	Исследование дискретной системы автоматического управления с экстраполятором нулевого порядка.	4
Всег	Всего аудиторных часов		6		4		4

Таблица 8 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения, 6 семестр)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
13	Нелинейные автоматические системы.	Понятие нелинейного динамического звена. Типичные нелинейности: насыщение, люфт, зона нечувствительности и т.д.	4	Виды нелинейностей и их математическое описание.	2	Виды нелинейностей пакета Simulink программы Matlab.	2
14	Устойчивость нелинейных систем.	I-й метод определения устойчивости нелинейных систем Ляпунова	4	Критерий абсолютной устойчивости Попова.	2	Исследование амплитуды автоколебаний в нелинейной САУ	2
Всего аудиторных часов			8		4		4

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license-certificate/polog-kred-modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 9.

Таблица 9 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство	
ОПК-6, ОПК-13	Экзамен	Комплект контролирующих материалов для экзамена	
ОПК-6, ОПК-13	Дифференцированный зачет	Комплект контролирующих материалов для защиты курсового проекта	

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

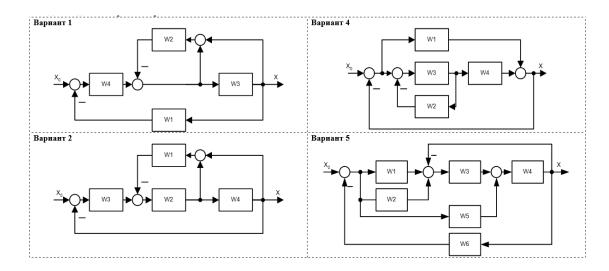
- лабораторные работы всего 40 баллов (4 семестр);
- за практические работы всего 60 баллов (4 семестр);
- лабораторные работы всего 40 баллов (5 семестр);
- за практические работы всего 60 баллов (5 семестр);
- лабораторные работы всего 60 баллов (6 семестр);
- за практические работы всего 40 баллов (6 семестр)

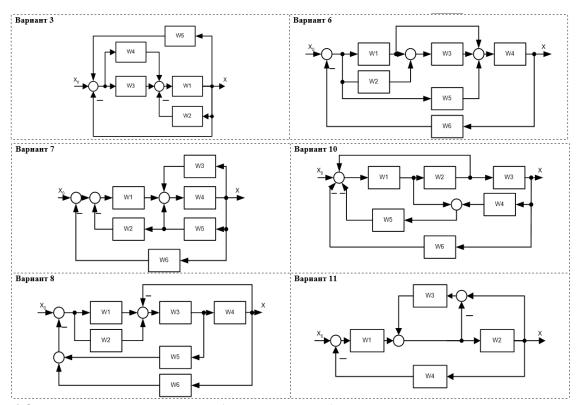
Экзамен проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Экзамен по дисциплине «Теория автоматического управления» проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время зачетной недели студент имеет право повысить итоговую оценку либо в форме устного собеседования по приведенным ниже вопросам (п.п. 6.5), либо в результате

тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 10.


Таблица 10 – Шкала оценивания знаний


Сумма баллов за все виды	Оценка по национальной шкале	
учебной деятельности	зачёт/экзамен	
0-59	Не зачтено/неудовлетворительно	
60-73	Зачтено/удовлетворительно	
74-89	Зачтено/хорошо	
90-100	Зачтено/отлично	

6.2 Домашнее задание

В качестве домашнего задания студенты выполняют:

- определение (согласно варианта) по структурной схеме системы передаточной функции разомкнутой системы, передаточной функции системы по ошибке и передаточной функции по возмущению;
- проверку системы на устойчивость по заданному критерию устойчивости;
- определение показателей качества работы системы в установившемся режиме;
- определение прямых и косвенных показателей качества работы системы в переходном режиме;
 - оценку качества процесса управления.

6.3 Темы для рефератов (презентаций) – индивидуальное задание Рефераты по дисциплине отсутствуют.

6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Тема 1. Основные термины и понятия теории автоматического управления.

- 1. Каковы термины и понятия теории автоматического управления?
- 2. Какова классификация автоматических систем?
- 3. Какова основная задача теории автоматического управления?
- 4. Для чего в ТАУ применяют преобразование Лапласа?
- 5. Какие есть характеристики задающих и возмущающих воздействий? Тема 2. Математическое описание автоматических систем.
- 1. Как математически описывают автоматические системы?
- 2. Как составить модель простых динамических звеньев?
- 3. Как составить структурную схему объекта управления по математической модели в форме системы дифференциальных уравнений?
- *Тема 3. Временные и частотные характеристики динамических звеньев.*
- 1. Что такое переходная характеристика динамического звена? Как ее получить?
- 2. Что такое импульсная переходная характеристика динамического звена? Как ее получить?

- 3. Как получить частотные характеристики динамических звеньев? Для чего?
- 4. Как получить логарифмические частотные характеристики (ЛАЧХ и ЛФЧХ)? Что такое асимптотическая ЛАЧХ?
- Тема 4. Алгебра передаточных функций и правила преобразования структурных схем.
- 1. Чему равна передаточная функция САУ при последовательном соединении звеньев?
- 2. Чему равна передаточная функция САУ при параллельном соединении звеньев?
- 3. Чему равна передаточная функция САУ при встречно-параллельном соединении звеньев?
 - 4. Каковы правила преобразования структурных схем?
 - 5. Какова алгебра передаточных функций?
 - 6. Какие бывают обратные связи?
- *Тема 5. Критерии устойчивости линейных систем автоматического управления.*
- 1. Какие существуют критерии устойчивости линейных систем автоматического управления?
 - 2. Какова математическая трактовка устойчивости линейных систем?
 - 3. В чем заключаются алгебраические критерии Рауса и Гурвица?
 - 4. Частотные критерии Найквиста, Михайлова.
- 5. Чем различаются структурно-устойчивые и структурно-неустойчивые системы?

Тема 6. Анализ качества линейных автоматических систем управления.

- 1. Что такое запасы устойчивости? Как их определяют?
- 2. Каковы показатели качества работы системы в установившемся режиме?
 - 3. В чем заключается метод коэффициентов ошибок?
 - 4. Какие есть прямые показатели качества работы в переходном режиме?
- 5. Какие есть косвенные показатели качества работы в переходном режиме?

Тема 7. Синтез линейных систем автоматического регулирования.

- 1. Какие существуют виды корректирующих устройств?
- 2. Что такое последовательная и параллельная коррекция?
- 3. Как осуществляется синтез последовательного корректирующего устройства?
 - 4. Что такое корректирующие устройства?

5. Как осуществляется синтез желаемой ЛАЧХ (низкочастотного, среднечастотного и высокочастотного участков)?

Тема 8. Оптимизация простых контуров регулирования.

- 1. Что предполагает настройка на модульный и симметричный оптимумы?
- 2. Как настроить регулятора тока на модульный оптимум? Почему регулятор тока настраивают именно на модульный оптимум?
- 3. Как настроить регулятор скорости на модульный и симметричный оптимумы?
 - 4. Как настраивается регулятор положения?

Тема 9. Общие сведения о дискретных САУ.

- 1. Какие существуют дискретные системы по виду квантования?
- 2. Что такое импульсные системы автоматического управления?
- 3. Как выглядят структурные схемы импульсных САУ?
- 4. Что такое фиксатор в импульсных системах?
- 5. Какие существуют виды квантования?
- 6. Что такое амплитудно-импульсная, широтно-импульсная и частотно-импульсная модуляция?

Тема 10. Модели линейных дискретных систем управления.

- 1. Что такое решетчатые функции?
- 2. Что такое разностные уравнения?
- 3. Как математически описывается идеальный импульсный элемент?
- 4. Как получить передаточную функцию разомкнутой импульсной системы?
 - 5. Что такое экстраполятор нулевого порядка?
 - 6. Что такое экстраполятор первого порядка?

Тема 11. Анализ импульсных систем автоматического управления.

- 1. Как определяют частотные характеристики импульсных систе?.
- 2. Как построить ЛАЧХ импульсных систем?
- 3. Как проводят анализ импульсных систем автоматического управления?
- 4. Как составить структурные схемы и передаточные функции замкнутых импульсных систем?
 - 5. Как оценить точность импульсных САУ в установившемся режиме.
 - 6. Как определить устойчивость импульсных систем?

Тема 12. Синтез импульсных систем управления.

- 1. Как осуществить синтез импульсных систем управления?
- 2. Как получить частотные характеристики?

- 3. Как синтезировать непрерывные корректирующие устройства?
- 4. Как синтезировать дискретные корректирующие устройства?

Тема 13. Нелинейные автоматические системы.

- 1. Что такое нелинейное динамическое звено?
- 2. Какие есть типичные нелинейности?
- 3. Что такое зона нечувствительности?
- 4. Что такое люфт?
- 5. Что такое насыщение?

Тема 14. Устойчивость нелинейных систем.

- 1. В чем заключается І-й метод определения устойчивости нелинейных систем Ляпунова?
- 2. В чем заключается ІІ-й метод определения устойчивости нелинейных систем Ляпунова?
 - 3. В чем заключается критерий абсолютной устойчивости Попова?
 - 4. В чем заключается критерий Михайлова?

Тема 15. Анализ поведения систем на фазовой плоскости.

- 1. Что такое фазовая плоскость?
- 2. Для чего применяют метод фазовой плоскости?
- 3. Как получить фазовый портрет нелинейной системы?

Тема 16. Релейные системы автоматического регулирования.

- 1. Что такое скользящий режим?
- 2. Какова частота переключения реального релейного регулятора?
- 3. Чем отличается релейная система в пространстве естественных координат от релейной системы в пространстве производных?
 - 4. Что такое задатчик траекторий? Для чего он нужен?

6.5 Вопросы для подготовки к экзамену за 4 семестр

- 1. Каковы термины и понятия теории автоматического управления?
- 2. Какова классификация автоматических систем?
- 3. Какова основная задача теории автоматического управления?
- 4. Для чего в ТАУ применяют преобразование Лапласа?
- 6. Как математически описывают автоматические системы?
- 7. Как составить модель простых динамических звеньев?
- 8. Как составить структурную схему объекта управления по математической модели в форме системы дифференциальных уравнений?
- 9. Что такое переходная характеристика динамического звена? Как ее получить?
 - 10. Что такое импульсная переходная характеристика динамического

звена? Как ее получить?

- 11. Как получить частотные характеристики динамических звеньев? Для чего?
- 12. Как получить логарифмические частотные характеристики (ЛАЧХ и ЛФЧХ)? Что такое асимптотическая ЛАЧХ?
- 13. Чему равна передаточная функция САУ при последовательном соединении звеньев?
- 14. Чему равна передаточная функция САУ при параллельном соединении звеньев?
- 15. Чему равна передаточная функция САУ при встречно-параллельном соединении звеньев?
 - 16. Каковы правила преобразования структурных схем?
 - 17. Какова алгебра передаточных функций?
 - 18. Какие бывают обратные связи?
- 19. Какие существуют критерии устойчивости линейных систем автоматического управления?
 - 20. Какова математическая трактовка устойчивости линейных систем?
 - 21. В чем заключаются алгебраические критерии Рауса и Гурвица?
 - 22. Частотные критерии Найквиста, Михайлова.
- 23. Чем различаются структурно-устойчивые и структурно-неустойчивые системы?
 - 24. Что такое запасы устойчивости? Как их определяют?
- 25. Каковы показатели качества работы системы в установившемся режиме?
 - 26. В чем заключается метод коэффициентов ошибок?
- 27. Какие есть прямые показатели качества работы в переходном режиме?
- 28. Какие есть косвенные показатели качества работы в переходном режиме?
 - 29. Какие существуют виды корректирующих устройств?
 - 30. Что такое последовательная и параллельная коррекция?
- 31. Как осуществляется синтез последовательного корректирующего устройства?
 - 32. Что такое корректирующие устройства?
- 33. Как осуществляется синтез желаемой ЛАЧХ (низкочастотного, среднечастотного и высокочастотного участков)?
- 34. Что предполагает настройка на модульный и симметричный оптимумы?

- 35. Как настроить регулятора тока на модульный оптимум? Почему регулятор тока настраивают именно на модульный оптимум?
- 36.. Как настроить регулятор скорости на модульный и симметричный оптимумы?
 - 37. Как настраивается регулятор положения?

Вопросы для подготовки к экзамену за 5 семестр

- 38. Какие существуют дискретные системы по виду квантования?
- 39. Что такое импульсные системы автоматического управления?
- 40. Как выглядят структурные схемы импульсных САУ?
- 41. Что такое фиксатор в импульсных системах?
- 42. Какие существуют виды квантования?
- 43. Что такое амплитудно-импульсная, широтно-импульсная и частотно-импульсная модуляция?
 - 44. Что такое решетчатые функции?
 - 45. Что такое разностные уравнения?
 - 46. Как математически описывается идеальный импульсный элемент?
- 47. Как получить передаточную функцию разомкнутой импульсной системы?
 - 48. Что такое экстраполятор нулевого порядка?
 - 49. Что такое экстраполятор первого порядка?
 - 50. Как определяют частотные характеристики импульсных систем?
 - 51. Как построить ЛАЧХ импульсных систем?
- 52. Как проводят анализ импульсных систем автоматического управления?
- 53. Как составить структурные схемы и передаточные функции замкнутых импульсных систем?
 - 54. Как оценить точность импульсных САУ в установившемся режиме.
 - 55. Как определить устойчивость импульсных систем?
 - 56. Как осуществить синтез импульсных систем управления?
 - 57. Как получить частотные характеристики?
 - 58. Как синтезировать непрерывные корректирующие устройства?
 - 59. Как синтезировать дискретные корректирующие устройства?

Вопросы для подготовки к экзамену за 6 семестр

- 60. Что такое нелинейное динамическое звено?
- 61. Какие есть типичные нелинейности?
- 62. Что такое зона нечувствительности?
- 63. Что такое люфт?
- 64. Что такое насыщение?

- 65. В чем заключается І-й метод определения устойчивости нелинейных систем Ляпунова?
- 66. В чем заключается ІІ-й метод определения устойчивости нелинейных систем Ляпунова?
 - 67. В чем заключается критерий абсолютной устойчивости Попова?
 - 68. В чем заключается критерий Михайлова?
 - 69. Что такое фазовая плоскость?
 - 70. Для чего применяют метод фазовой плоскости?
 - 71. Как получить фазовый портрет нелинейной системы?
 - 72. Что такое скользящий режим?
 - 73. Какова частота переключения реального релейного регулятора?
- 74. Чем отличается релейная система в пространстве естественных координат от релейной системы в пространстве производных?
 - 75. Что такое задатчик траекторий? Для чего он нужен?

6.6 Примерная тематика курсовых работ

По дисциплине предусмотрен курсовая работа на тему «Расчет и исследование системы стабилизации скорости вращения электродвигателя постоянного тока» трудоемкостью 1 зачетная единицы, 36 ак. ч. Группы ЭМС и ЭМС-з выполняют курсовую работу в 6 семестре. В группе ЭМС предусмотрены практические занятия (9 ак. ч. для группы ЭМС и 4 ак. ч. для гр. ЭМС-з) и самостоятельная работа студента (27 ак. ч. для групп ЭМС и 32 ак.ч. для группы ЭМС-з). Курсовая работа выполняется по методическим указаниям:

Методические указания к выполнению курсовой работы по дисциплине "Теория автоматического управления " (для студентов направления 13.03.02 Электроэнергетика и электротехника, профиль подготовки " Электропривод и автоматика промышленных установок и технологических комплексов ") / Сост. Сергиенко Н.Н. – Алчевск, ДонГТУ, 2024. – 41 с. https://moodle.dstu.education/pluginfile.php/56515/mod_resource/content/1/КП%20ЭА%20v14.pdf.

Кроме этого, используется литература, приведенная в разделе 7.1.

Курсовой проект состоит из расчетно-пояснительной записки объемом 35-40 страниц. В ней должны содержаться следующие разделы:

Введение;

Раздел 1. Анализ качества управления в исходной системе с пропорциональным регулятором скорости при единичной обратной связи

Раздел.2. Оптимизация контура регулирования скорости по модульному

оптимуму.

Раздел 3. Моделирование спроектированной системы. Исследование влияния параметров системы электропривода на устойчивость и качество работы системы в переходном и установившемся режимах.

Выводы.

.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Коновалов, Б. И. Теория автоматического управления : учебное пособие для вузов / Б. И. Коновалов, Ю. М. Лебедев. 6-е изд., стер. Санкт-Петербург : Лань, 2022. 220 с. ISBN 978-5-507-44643-8. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/ book/238508 (дата обращения: 10.08.2024). Режим доступа: для авториз. пользователей. Текст : электронный
- 2. Федотов, А. В. Основы теории автоматического управления : учебное пособие / А. В. Федотов. 2-е изд. Саратов : Ай Пи Эр Медиа, 2019. 278 с. ISBN 978-5-4486-0570-3. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/83344.html (дата обращения: 10.08.2024). Режим доступа: для авториз. пользователей. Текст : электронный

Дополнительная литература

- 1. Первозванский, А. А. Курс теории автоматического управления : учебное пособие / А. А. Первозванский. 3-е изд., стер. Санкт-Петербург : Лань, 2021. 624 с. ISBN 978-5-8114-0995-2. Текст : электронный // Лань : электроннобиблиотечная система. URL: https://e.lanbook.com/book/168873 (дата обращения: 07.08.2024). Режим доступа: для авториз. пользователей. Текст : электронный
- 2. Ивченко, В. Д. Теория автоматического управления : учебнометодическое пособие / В. Д. Ивченко, В. Н. Арбузов. Москва : РТУ МИРЭА, 2020. 275 с. Текст : электронный // Лань : электроннобиблиотечная система. URL: https://e.lanbook.com/book/167590 (дата обращения: 04.08.2024). Режим доступа: для авториз. пользователей. Текст : электронный
- 3. Певзнер, Л. Д. Теория автоматического управления. Задачи и решения : учебное пособие / Л. Д. Певзнер. Санкт-Петербург : Лань, 2021. 604 с. ISBN 978-5- 8114-2161-9. Текст : электронный // Лань : электроннобиблиотечная система. URL: https://e.lanbook.com/book/168937 (дата обращения: 03.08.2024). Режим доступа: для авториз. пользователей. Текст : электронный.

Учебно-методическое обеспечение

1. Методические указания к домашним заданиям по курсу «Теория

- автоматического управления» / Сост. Сергиенко Н.Н.. Алчевск: ДонГТУ, 2013. 54 с. URL: $\frac{\text{https://moodle.dstu.education/course/view.php?id=1369\#section-5}}{\text{доступа: для авториз. пользователей.}} Текст: электронный.$
- 3. Теория автоматического управления: Практикум. / Сост.: Н.Н. Сергиенко. Алчевск: ДонГТУ, 2015. 79 с. URL: https://moodle.dstu.education/course/view.php?id=1369#section-5. Режим доступа: для авториз. пользователей. Текст: электронный.

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ : официальный сайт. Алчевск. URL: library.dstu.education. Текст : электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст : электронный.
- 3. Консультант студента : электронно-библиотечная система. Mосква. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст : электронный.
- 4. Университетская библиотека онлайн : электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст : электронный.
- 5. IPR BOOKS : электронно-библиотечная система. Красногорск. URL: http://www.iprbookshop.ru/. Текст : электронный.
- 6. Федеральная служба по экологическому, технологическому и атомному надзору (Ростехнадзор) : официальный сайт. Москва. https://www.gosnadzor.ru/. Текст : электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

	Адрес
Наименование оборудованных учебных кабинетов	(местоположение)
танменование осорудованных у теоных каоннетов	учебных
	кабинетов
Специальные помещения:	
Компьютерный класс кафедры:	ауд 319, главный
- ПТК AMD AthlonX2 255 (4 шт.);	корп.
- С/б Sempron 140 2.71 (1 шт.), монитор Hanns'g (1 шт.);	
- ПТК Intel Ce1eron E3300 2,5 ГГц (3 шт.);	
- ПТК AMD Athlon 64×2 360 (1 шт.);	
- ПТК AMD Athlon (1 шт.);	
- ПТК Intel Ce1eron 1.60 GHz (1 шт.);	
- ПТК AMD Athlon 64×2 5200+ (1 шт.);	
- ПТК IntelCore 2Duo E7500 (1 шт.);	
- лабораторная мебель: столы, стулья для студентов (по	
количеству обучающихся), рабочее место преподавателя.	

Лист согласования РПД

Разработал

доц. кафедры автоматизированного			
управления и инновационных			
технологий	A	Ямковая М.А.	
(должность)	(подпись)	(Ф.И.О.)	
(должность)	(подпись)	(Ф.И.О.)	
Заведующий кафедрой			
автоматизированного управления			
и инновационных	2 kmals		
технологий	(подпись)	<u>Мова Е.В.</u> (Ф.И.О.)	
Протокол № 1 заседания			
кафедры автоматизированного			
управления и инновационных			
технологий	от 09.07.2024 г.		
Декан факультета информационных			
технологий и автоматизации			
производственных процессов	(подпись)	<u>Дьячкова В.В.</u> (Ф.И.О.)	
Согласовано	V		
Председатель методической комиссии по направлению подготовки 15.03.04 Автоматизация			
технологических процессов и производств	(подпись)	<u>Мова Е.В.</u> (Ф.И.О.)	
Начальник учебно-методического центра	(подпись)	О.А. Коваленко	

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения			
изменений			
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:		
Основание:			
Основанис.			
Подпись лица, ответственного за внесение изменений			