Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Вишневский Дмитрий Александрович

Должность: Ректор Дата поминия СОСТРОЗТРОЗТРОЗНДАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Уникальный программный ключ:

(МИНОБРНАУКИ РОССИИ)

03474917c4d012283e5ad996a**48aБe70bRaa0Б**ВНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет горно-металлургической промышленности и строительства Кафедра технологии и организации машиностроительного производства

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Гидравлика и основы гидропневмопривода (наименование дисциплины)

15.03.03 Прикладная механика

(код. наименование направления)

Проектно-конструкторское обеспечение машиностроительных производств (профиль подготовки)

Квалификация

бакалавр (бакалавр/специалист/магистр)

Форма обучения

очная, заочная

(очная, очно-заочная, заочная)

1 Цели и задачи изучения дисциплины

Цели дисииплины. Целью дисциплины «Гидравлика и основы формирование необходимой базы знаний об гидропривода» является основных явлениях, которые имеют место в реальных движущихся жидкостях и газах, а также при взаимодействии с твердыми телами, с целью использования их в практических расчетах гидроприводов, а также при проектировании И моделировании технических систем ДЛЯ машиностроительного производства. Значимость дисциплины определяется усвоением знаний для проведения испытаний и эксплуатации, оценки технического состояния, организации и проведения обслуживания и ремонта, внедрения новейших технологий, проведения научных исследований, использования методов автоматизированного проектирования и диагностики на персональных ЭВМ, а также разработки и ведения технической документации в области технологии машиностроения.

У студентов вырабатываются навыки и умения, необходимые для самостоятельного решения инженерных задач; создаются условия необходимые для дальнейшего изучения дисциплин профессионального цикла и формирования необходимых компетенций.

Задачи изучения дисциплины:

- сформировать минимально-необходимый объем знаний об основных законах статики, кинематики и динамики жидкостей и газов;
- сформировать умение использовать полученные теоретические знания для исследований рабочих процессов различных машин и механизмов, использующих или создающих энергию жидкости или газа;
- привить навык выполнения проектных и проверочных расчетов гидравлических и пневматических машин, гидропневмоаппаратов, различных агрегатов и целых систем с использование типовых методик расчета, основанных на использовании основных законов механики жидкости и газа;
- изучение современного состояния развития гидро- и пневмоприводов, ознакомление с устройствами современных гидро- и пневмоприводов и методами их проектирования;
- овладение методами расчета гидро- и пневмоприводов различного назначения

Дисциплина направлена на формирование универсальных компетенций (ОПК-9) выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины — курс входит в БЛОК 1 «Дисциплины (модули)», элективные дисциплины подготовки студентов по направлению 15.03.03 Прикладная механика, (профиль «Проектно-конструкторское обеспечение машиностроительных производств»).

Дисциплина реализуется кафедрой технологии и организации машиностроительного производства. Основывается на базе дисциплин: «Физика», «Математика», «Теоретическая механика», «Информатика», которые формируют «входные» знания, умения, необходимые для изучения дисциплины «Гидравлика и основы гидропривода». В свою очередь дисциплина является основой для изучения следующих дисциплин: «Детали машин и основы конструирования», «Сопромат», «Эксплуатация и обслуживание машин», «Исполнительные механизмы и кинематика станков».

Для изучения дисциплины необходимы компетенции, сформированные у студента для решения профессиональных задач деятельности, связанных с технологией в машиностроении.

Общая трудоемкость освоения дисциплины для очной формы обучения составляет 3 зачетные единицы, 108 ак.ч. Программой дисциплины предусмотрены лекционные (36 ак.ч.), лабораторные работы (18 ак.ч.), самостоятельная работа студента (54 ак.ч.).

Общая трудоемкость освоения дисциплины для заочной формы обучения составляет 3 зачетные единицы, 108 ак.ч. Программой дисциплины предусмотрены лекционные (6 ак.ч.), лабораторные работы (4 ак.ч.), самостоятельная работа студента (98 ак.ч.).

Дисциплина изучается на 3 курсе в 5 семестре. Форма промежуточной аттестации – экзамен.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Гидравлика и основы гидропривода» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание компетенции	Код	Код и наименование индикатора
	компетенции	достижения компетенции
Способен участвовать в разработке изделий машиностроения	ОПК-9	ОПК-9.1. Владеет базовыми знаниями, методиками проведения расчётов, информационным обеспечением разработки проектов изделий машиностроения ОПК-9.2. Осуществляет разработку проектов изделий машиностроения ОПК-9.3. Владеет навыками разработки проектов
		изделий машиностроения, в том числе с использованием основных программных продуктов

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 3 зачётных единицы, 108 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к текущему контролю, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам 5
Аудиторная работа, в том числе:	54	54
Лекции (Л)	36	36
Практические занятия (ПЗ)	-	-
Лабораторные работы (ЛР)	18	18
Курсовая работа/курсовой проект	-	-
Самостоятельная работа студентов (СРС), в том числе:	54	54
Подготовка к лекциям	4	4
Подготовка к лабораторным работам	18	18
Подготовка к практическим занятиям / семинарам	18	18
Выполнение курсовой работы / проекта	-	-
Расчетно-графическая работа (РГР)	-	-
Реферат (индивидуальное задание)	4	4
Домашнее задание	-	-
Подготовка к контрольной работе	-	-
Подготовка к коллоквиуму	-	-
Аналитический информационный поиск	4	4
Работа в библиотеке	-	-
Подготовка к экзамену	6	6
Промежуточная аттестация – экзамен (Э)	Э	Э
Общая трудоемкость дисциплины		
ак.ч.	108	108
3.e.	3	3

5 Содержание дисциплины

С целью освоения компетенции, приведенной в п.3 дисциплина разбита на 12 тем:

- тема 1 (Содержание и задачи курса);
- тема 2 (Основные физические свойства жидкостей);
- тема 3 (Основное уравнение гидростатики);
- тема 4 (Уравнения равновесия жидкости);
- тема 5 (Кинематика и динамика жидкости);
- тема 6 (Режимы движения жидкости);
- тема 7 (Гидравлический расчет трубопроводов);
- тема 8 (Истечение жидкости через отверстия и насадки);
- тема 9 (Обтекание тел жидкостью);
- тема 10 (Общие вопросы проектирования ГПС);
- тема 11 (Общие сведения о гидро- и пневмопроводах);
- тема 12 (Исследование работы гидропневмоприводов);

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 3 и 4 соответственно.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
	Содержание и задачи курса	Введение. Цели и задачи дисциплины. Исторические данные. Выдающиеся ученые и их основные открытия.	2	-	-	-	-
2	Основные физические свойства жидкостей	Плотность. Удельный вес. Температурное расширение. Объемное сжатие. Вязкость.	2	-	-	Изучение устройств для измерения давления и расхода жидкости	4
3	Основное уравнение гидростатики	Массовые и поверхностные силы, действующие в жидкости. Гидростатическое давление. Свойства гидростатического давления. Единицы измерения давления. Основное уравнение гидростатики. Абсолютное, манометрическое давление.	2	-	-	-	-
4	Уравнения равновесия жидкости	Дифференциальное уравнение равновесия жидкости. Поверхности постоянного давления. Уравнения Эйлера равновесия жидкости. Три характерных случая состояния равновесия жидкости.	2	-	-	-	-

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
5	Кинематика и динамика жидкости	Методы изображения течения жидкости. Виды течения жидкости. Струйная модель течения жидкости. Линия тока. Трубка тока. Элементарная струйка. Живое сечение. смоченный периметр. Гидравлический радиус. Уравнение Бернулли для идеальной жидкости. Понятия о расходе и скорости течения жидкости.	2	-	-	Опытная проверка уравнения Бернулли.	4
6	Режимы движения жидкости	Ламинарный и турбулентный режимы течения жидкости. Число Рейнольдса. Кавитация — причины возникновения и способы борьбы с ней. Структура турбулентного потока. Ламинарный пограничный слой. Гидравлически гладкие и шероховатые трубы.	2	-	-	-	-

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
7	Гидравлический расчет трубопроводов	Простой трубопровод. Напорные характеристики трубопроводов. Принцип сложения потерь для простого трубопровода. Обобщенные сопротивления уравнение напорной характеристики трубопроводов. Трубопроводов.	2	-	-	Определение режимов течения жидкости.	4
8	Истечение жидкости через отверстия и насадки	Истечение жидкости через малое отверстие в тонкой стенке при постоянном напоре. Определение коэффициентов истечения. Истечение жидкости через насадки.	2	-	-	-	-

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
9	Обтекание тел жидкостью	Свободные струи. Обтекание тел жидкостью. Взаимодействие струи с твердым телом. Подъемная сила и сила лобового сопротивления. Основы пневмоавтоматики.	2	-	-	-	-
10	Общие вопросы проектирования ГПС	Требования к качеству проектирования, нормативные акты и стадии проектирования: технические, экономические и социальные критерии проектирования, их взаимосвязь и основные этапы; единая система конструкторской документации; структура процесса проектирования; стадии проектирования, их особенности, содержание и взаимосвязь. Основные ГОСТы, связанные с проектированием гидропневмоприводов.	6	-	-	Истечение жидкости через отверстия и насадки	6

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
11	Общие сведения о гидро- и пневмопроводах	Типовые схемы приводов: схема подключения гидроаппаратуры управления в приводах, групповой привод. Источники питания гидро- и пневмоприводов стационарных и мобильных машин. Выбор гидро и пневмомашин и агрегатов приводов. Способы и устройства для снижения шума и устранения загрязнения окружающей среды. Выбор гидро- и пневмолиний для приводов. Типы соединений и рекомендации по их применению.	6	-	-	-	-
12	Исследование работы гидро- пневмоприводов	Методы исследования работы ГПП и ГПС. Средства исследования работы ГПП и ГПС. Математический аппарат для описания и исследования гидросистем. Современные компьютерные и информационные технологии в области проектирования гидропневмоприводов.	6	-	-	-	-
	Всего аудиторных ча	СОВ	36	-	ı	18	ı

Таблицы 4 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

№ п/п	Наименование раздела дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
	Основное уравнение гидростатики	Гидростатическое давление и его свойства. Основное уравнение гидростатики. Виды давления. Сила давления жидкости на плоские и криволинейные поверхности.	2	-	-	Изучение устройств для измерения давления и расхода жидкости	2
	Гидравлический расчет трубопровода	Уравнение Бернулли для потока реальной жидкости. Общие сведения о гидравлических потерях. Простой трубопровод. Напорные характеристики трубопроводов	2	-	-	Опытная проверка уравнения Бернулли	2
	Общие вопрось проектирования ГПС	Требования к качеству проектирования, нормативные акты и стадии проектирования.	2	-	-		
	Всего аудиторных часов			-		4	

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
ОПК-9	Экзамен	Комплект контролирующих материалов для экзамена

Критерии оценки знаний студентов.

Всего по текущей работе в семестре студент может набрать 100 баллов:

- устный опрос всего 20 баллов;
- защита лабораторных работ всего 30 баллов;
- выполнение и защита индивидуального задания всего 50 баллов.

Текущий контроль успеваемости — проверка усвоения учебного материала, регулярно осуществляемая на протяжении семестра. Итоговая аттестация осуществляется в конце семестра в виде экзамена и завершает изучение дисциплины.

Экзамен проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку, а также выполнил индивидуальное задание. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Экзамен по дисциплине «Гидравлика и основы гидропривода» проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время аттестационной недели студент имеет право повысить итоговую оценку либо в форме устного собеседования по приведенным ниже вопросам (п.п. 6.4).

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Тематика и содержание индивидуального задания

Индивидуальное задание заключается в решении шести задач по следующим основным разделам курса:

- физические свойства жидкостей;
- гидростатика;
- основы гидродинамики;
- гидравлические сопротивления;
- гидравлический расчет трубопроводов;
- истечение жидкости через отверстия и насадки.

Вариант индивидуального задания определяется по порядковому номеру обучающегося из списка в журнале группы на момент начала изучения дисциплины. Варианты и задачи для каждого варианта индивидуального задания указаны в соответствующем задачнике (учебном пособии).

Индивидуальное задание оформляется на листах А4

6.3 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Тема 1 Содержание и задачи курса

- 1) Исторические данные по дисциплине.
- 2) Каких выдающихся ученых вы знаете и их основные открытия?
- 3) Назовите основные исторические этапы становления курса.

Тема 2 Основные физические свойства жидкостей

- 1) В каких единицах выражают плотность, объемный вес, коэффициенты температурного расширения и объемного сжатия?
- 2) Что представляет собой коэффициент температурного расширения?
- Какая связь между коэффициентом объемного сжатия и объемным модулем упругости?
 - 4) От чего зависит давление насыщенного пара жидкости?

Тема 3 Основное уравнение гидростатики

- 1) Что такое гидростатическое давление? Назовите его свойства.
- 2) Какие единицы измерения давления вы знаете?

- 3) Дайте определение абсолютное, манометрическое и вакуумметрическое давление.
- 4) Что такое гидростатика? Дайте определение массовым и поверхностным силам.
 - 5) Какое основное определение гидростатики?

Тема 4 Уравнения равновесия жидкости

- 1) Уравнение поверхности равного давления в случае покоящейся жидкости. Что оно собой представляет?
 - 2) Напишите уравнение Эйлера для равновесия жидкости.
 - 3) Как выражается состояние равновесия жидкости?
 - 4) Что представляет собой коэффициент объемного сжатия?
 - 5) Какая разница между напором и давлением?

Тема 5 Кинематика и динамика жидкости

- 1) Какие виды течения жидкости вы знаете?
- 2) Напишите уравнение Бернулли для идеальной жидкости.
- 3) Что такое расход и скорость течения жидкости?
- 4) Как определяется сила давления жидкости на плоскую поверхность?

Тема 6 Режимы движения жидкости

- 1) Дать определение ламинарный и турбулентный режимы течения жидкости.
 - 2) Какая структура турбулентного потока?
 - 3) Что такое ламинарный пограничный слой?
- 4) Чем различаются структуры потока при ламинарном и турбулентном режимах движения жидкости?
- 5) От каких параметров зависят гидравлические потери в ламинарном потоке?

Тема 7 Гидравлический расчет трубопроводов

- 1) Что называется простым трубопроводом?
- 2) Чему равны потери напора в простом трубопроводе?
- 3) Что такое напорные характеристики трубопроводов?
- 4) Напишите уравнение напорной характеристики трубопровода.
- 5) Приведите классификацию трубопроводов.

Тема 8 Истечение жидкости через отверстия и насадки

- 1) Дайте определение коэффициентов истечения.
- 2) Какими признаками характеризуется малое отверстие в тонкой стенке?
- 3) Истечение жидкости через малое отверстие при постоянном напоре.
- 4) Какая связь существует между коэффициентами расхода, сжатия, скорости и сопротивления?
 - 5) В чем заключается сущность гидравлического удара?

Тема 9 Обтекание тел жидкостью

- 1) Объясните понятие свободные струи. Что оно собой представляет?
 - 2) Как происходит взаимодействие струи с твердым телом?
 - 3) Что такое подъемная сила?
 - 4) Что собой представляет сила лобового сопротивления?
 - 5) Назовите основы пневмоавтоматики.

Тема 10 Общие вопросы проектирования ГПС

- 1) Какие требования предъявляются к качеству проектирования?
- 2) Назовите нормативные акты и стадии проектирования?
- 3) Какая структура процесса проектирования ГПС?

Тема 11 общие сведения о гидро- и пневмоприводах

- 1) Назовите типовые схемы приводов.
- 2) Как осуществляется выбор гидро и пневмомашин?
- 3) Какие типы соединений вы знаете и дайте рекомендации по их применению.

Тема 12 исследование работы гидро и пневмоприводов

- 1) Назовите методы исследования работы ГПП и ГПС.
- 2) Какой математический аппарат применяется к исследованию $\Gamma\Pi\Pi$ и $\Gamma\Pi C$?
- 3) Перечислить и дать понятия основным характеристикам ГПС.
- 4) Назовите современные компьютерные и информационные технологии в исследовании ГПП и ГПС.

6.4 Вопросы для подготовки к экзамену

- 1) Что называется давлением насыщенного пара жидкости? От чего оно зависит?
- 2) В каких единицах выражают плотность, объемный вес, коэффициенты температурного расширения и объемного сжатия, объемный модуль упругости, кинематический коэффициент вязкости?
 - 3) Перечислите основные физические свойства жидкостей.
 - 4) Какое различие между плотностью и удельным весом?
- 5) Назовите связь между коэффициентом объемного сжатия и объемным модулем упругости.
 - 6) Что представляет собой коэффициент температурного расширения?
- 7) Чем отличается идеальная жидкость от реальной? В каких случаях при практических расчетах жидкость можно считать идеальной?
 - 8) Что такое свойства гидростатического давления? Дайте определение.
- 9) Напишите дифференциальные уравнения равновесия жидкости и газа.
- 10) Что такое гидростатика? Дайте определение «массовые и поверхностные силы».
 - 11) Дать определение понятия «жидкость»?

- 12) Напишите уравнение поверхности равного давления в случае покоящейся жидкости.
- 13) Напишите уравнение поверхности равного давления в случае равноускоренного движения жидкости.
- 14) Напишите уравнение поверхности равного давления в случае равномерного вращения жидкости.
 - 15) Что такое плотность? Дайте определение.
- 16) Что такое вязкость? Напишите кинематический коэффициент вязкости и его единицы измерения.
 - 17) Что такое удельный вес? Дайте определение.
 - 18) Что собой представляет сила гидростатического давления?
 - 19) Что представляет собой коэффициент объемного сжатия?
- 20) Дайте определение гидростатическому давлению, его основным свойствам и единицам измерения.
 - 21) Сформулируйте основное уравнение гидростатики.
- 22) Что называют абсолютным давлением, манометрическим давлением, вакуумом?
 - 23) Какой наибольший вакуум возможен и чем он ограничивается?
 - 24) В чем заключается разница между напором и давлением?
- 25) Почему при определении силы давления жидкости на поверхность чаще всего оперируют не абсолютным, а манометрическим давлением или вакуумом?
 - 26) Как определить силу давления жидкости на плоскую поверхность?
 - 27) Что такое центр давления?
- 28) Чем различаются эпюры давления в случае манометрического давления и в случае вакуума?
 - 29) Сформулируйте закон Архимеда?
- 30) Как определить силу давления жидкости на криволинейную поверхность?
- 31) В чем состоит смысл уравнения неразрывности для элементарной струйки и потока?
- 32) Что представляют собой члены уравнения Бернулли с геометрической и энергетической точек зрения?
- 33) Чем различаются структуры потока при ламинарном и турбулентном режимах движения жидкости?
 - 34) Как определить число Рейнольдса для круглой трубы?
- 35) От каких параметров зависят гидравлические потери в ламинарном потоке?
 - 36) Какое явление называется облитерацией?
- 37) Чем установившееся движение жидкости отличается от неустановившегося, равномерное от неравномерного, напорное от безнапорного?
- 38) Чем различаются уравнения Бернулли для идеальной и реальной жидкости, для элементарной струйки и потока?

- 39) Какие основные свойства трубки тока?
- 40) Что такое средняя скорость потока? Напишите ее математическое выражение.
- 41) Почему одна и та же труба в одном случае может быть гидравлически гладкой, а в другом случае гидравлически шероховатой?
- 42) Какой вид энергии, выраженный в виде напора, расходуется на преодоление гидравлических сопротивлений при движении жидкости в напорном горизонтальном трубопроводе?
- 43) Какие типы насадок применяются в технике и каково их назначение?
- 44) Какой вид имеют эпюры скоростей по сечению круглой трубы при ламинарном и турбулентном режимах движения?
- 45) В чем заключается принцип сложения потерь и каковы условия его применимости?
- 46) Каковы причины возникновения ламинарной пограничного слоя и от каких факторов и как зависит его толщина?
- 47) Какие сопротивления называют местными? По какой формуле определяют местные потери?
 - 48) Приведите классификацию трубопроводов.
- 49) Какова физическая природа гидравлических сопротивлений по длине трубопровода и местных гидравлических сопротивлений?
- 50) Какими признаками характеризуется малое отверстие в тонкой стенке?
- 51) Какая связь существует между коэффициентами расхода, сжатия, скорости и сопротивления?
- 52) Что называется простым трубопроводом? Чему равны потери напора в таком трубопроводе?
- 53) Когда расход больше: при истечении через насадок или через отверстие равного диаметра? Дайте объяснение физической сущности этого явления.
- 54) Чему равна теоретическая скорость при истечении, если давление на поверхности жидкости в сосуде отличается от давления вне его?
- 55) Напишите уравнение трубопровода и начертите его напорные характеристики при наличии геометрической высоты и при отсутствии ее.
- 56) Постройте суммарные напорные характеристики трубопровода при последовательном и параллельном соединении труб.
- 57) В чем заключается сущность гидравлического удара? Чему равно приращение давления при гидравлическом ударе и скорость распространения ударной волны?
- 58) Каковы меры для уменьшения или преодоления гидравлического удара?
 - 59) Что такое абсолютная и относительная шероховатость труб?
- 60) Что такое эквивалентная длина трубопровода и как она определяется?

- 61) Какова роль гидро- и пневмоприводов в развитии современной техники и производства?
- 62) Сформулируйте области применения гидравлических, электрогидравлических, пневматических и электрических приводов.
 - 63) Назовите основные этапы анализа гидро- и пневмосистем.
- 64) В чем суть функционально-стоимостного анализа гидро- и пневмосистем?
- 65) Перечислить основные этапы проектирования ГПС, обозначить суть каждого этапа.
- 66) Привести структуру ГПС и их классификацию по различным признакам.
 - 67) Перечислить и дать понятия основным характеристикам ГПС.
- 68) Объяснить и подтвердить аналитически смысл мультипликационного эффекта ГПС по давлению.
- 69) Объяснить и подтвердить аналитически смысл мультипликационного эффекта ГПС по усилию.
- 70) Дать понятие и привести основные характеристики дроссельного способа регулирования скорости в ГПС.

6.5 Примерная тематика курсовых работ

Не предусмотрено учебным планом.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Щербинина О.А. Гидравлика: учебное пособие / О.А. Щербинина, А.И. Алифанова, Ю.В. Елисьратова, Н.Ю. Никулин, Н.Ю. Саввин. Белгород: Белгородский государственный технологический университет им. В.Г. Шухова, 2024. 243 с. Режим доступа: https://www.elibrary.ru/item.asp?id=64008592 (дата обращения 10.07.2024).
- 1. Гришин. Б.М. Механика жидкости и газа: учебное пособие / Б.М. Гришин, С.Ю. Андреев, А.С. Кочергин, С.М. Салмин, М.А. Сафронов, Е.А. Титов Пермь: Пензенский государственный университет архитектуры и строительства, 2023. 124 с. Режим доступа: https://www.elibrary.ru/item.asp?id=54738507 (дата обращения 10.07.2024).
- 3. Викулин Л.Д. Гидравлика и аэродинамика систем водоснабжения и водоотведения: учебное пособие / Л.Д. Викулин, В.Б. Викулин. М.: Национальный исследовательский Московский государственный строительный университет, 2022. 396 с. Режим доступа: https://www.elibrary.ru/item.asp?id=49433145 (дата обращения 10.07.2024).

Дополнительная литература

- 1. Гришин Б.М. Насосы и насосные станции: учебное пособие / Б.М. Гришин, С.М. Салмин, М.В. Бикунова, А.С. Кочергин. Пермь: Пензенский государственный университет архитектуры и строительства, 2023. 112 с. Режим доступа: https://www.elibrary.ru/item.asp?id=54629355 (дата обращения: 10.07.2024).
- 2. Косиченко Ю.М. Гидравлика и инженерная гидрология: учебное пособие / Ю.М. Косиченко, О.А. Баев Новочеркасск: РосНИИПМ, 2023. 174 с. Режим доступа: https://www.elibrary.ru/item.asp?id=54226230 (дата обращения: 10.07.2024).
- 3. Али М.С. Насосы и насосные установки: учебное пособие / М.С. Али, Д.С. Бегляров: М.: Российский государственный аграрный университет МСХА им. К.А. Тимирязева, 2022. 130 с. Режим доступа: https://www.elibrary.ru/item.asp?id=50033503 (дата обращения: 10.07.2024).
- 4. Гидравлические машины, гидроприводы и гидропневмоавтоматика: сборник трудов конференции / XXVI Международная научно-техническая конференция. М.: Общество с ограниченной ответственностью "Издательство "Мир науки", 2022. 224 с. Режим доступа: https://www.elibrary.ru/item.asp?id=50086771 (дата обращения: 10.07.2024).
- 5. Кузьминский Р.А. Гидравлика и гидрология: учебное пособие / Р.А. Кузьминский, А.В. Елсуков. М.: Федеральное государственное автономное

образовательное учреждение высшего образования "Российский университет транспорта", 2021. – 278 с. Режим доступа: https://www.elibrary.ru/item.asp?id=44631985 (дата обращения: 10.07.2024).

Учебно-методическое обеспечение

- 1. Финкельштейн, З.Л. Гидравлика и гидропривод (краткий курс) [Текст]: учеб. пособие / З.Л. Финкельштейн, В.Г. Чебан. Алчевск : ДГМИ, 2002. 165с. Режим доступа: <u>library.dstu.education.</u> Текст : электронный.
- 2. Брожко, Н.Ф. Гидравлика, гидропневмопривод и элементы гидропневмоавтоматики (теория и практика) [Текст]: учебное пособие / Н.Ф. Брожко, В.Г. Чебан, А.Н. Тумин. Алчевск: ГОУ ВПО ЛНР «ДонГТУ», 2017. 233с. Режим доступа: library.dstu.education. Текст : электронный.
- 3. Методические указания к выполнению лабораторных работ №1, №4 по курсу «Гидравлика и гидропневмопривод» / Сост.: Н.Ф. Брожко, В.Г. Чебан, М.С. Конивец. Алчевск: ДонГТУ, 2009. 41с. (10 экземпляров)
- 4. Методические указания к выполнению лабораторных работ № 2, № 3, № 5 по дисциплинам «Гидравлика и гидропневмопривод», «Техническая гидромеханика», «Гидрогазодинамика», «Гидравлика, гидропневмопривод горных машин», «Гидромеханика» / Сост.: Н.Ф. Брожко, В.Г. Чебан, Р.Н. Брожко. Алчевск: ДонГТУ, 2013. 41с. (10 экземпляров).

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт. Алчевск. URL: library.dstu.education. Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст : электронный.
- 3. Консультант студента : электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст : электронный.
- 4. Университетская библиотека онлайн : электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст : электронный.
- 5. Либрусек. Интернет-библиотека. [Электронный ресурс]. Режим доступа: https://lib.rus.ec/.
- 6. Информационная система «Единое окно доступа к образовательным ресурсам». [Электронный ресурс]. Режим доступа: http://window.edu.ru/.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

	Адрес
Наименование оборудованных учебных кабинетов	(местоположение)
	учебных кабинетов
Специальные помещения:	
Лекционная аудитория. (30 посадочных мест), оборудованная	ауд. <u>312</u>
специализированной (учебной) мебелью (стол – 20 шт., стул– 1	корп. <u> <i>пятый</i></u>
шт., доска аудиторная– 1 шт.), набор материалов.	
- барометр;	
- манометры;	
- микроманиметр;	
- секундомер;	
- стенд лабораторный.	
Лаборатория САПР (20 посадочных мест), оборудованная	
учебной мебелью, компьютерами с неограниченным доступом к	
сети Интернет:	ауд. <u>307</u>
Компьютер –10 шт., Принтер Canon 3110 –1 шт., Принтер MF	корп. <u>третий</u>
3200 –1 шт., Доска маркерная магнитная	

Лист согласования РПД Разработал: Доцент кафедры технологии и организации машиностроительного Э.П. Левченко производства (должность) (Ф.И.О.) (подпись) (должность) Заведующий кафедрой технологии и организации машиностроительного производства заседания кафедры технологии и организации Протокол No 11 машиностроительного производства от 10.07.2024. Декан факультета горно-металлургической промышленности и строительства Согласовано: Председатель методической комиссии по специальности 15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств (технология машиностроения)

Начальник учебно-методического центра

О.А. Коваленко (Ф.И.О.)

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для					
внесения изменений					
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:				
Oc	нование:				
Подпись лица, ответственного за внесение изменений					