Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Вишневский Дмитрий Александрович

Должность: Ректор

Дата подписания: МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Уникальный программный ключ:

(МИНОБРНАУКИ РОССИИ)

03474917c4d012283e5ad996a48a5e70bf8da057 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет	информационных технологий и автоматизации производственных процессов
Кафедра	электроники и радиофизики

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Математическое моделирование в электронике										
(наименование дисциплины)										
11.03.03 K	11.03.03 Конструирование и технология электронных средств									
	(код, наименование направления)									
Информационн	ные технологии проектирования электронных устройств									
	(профиль подготовки)									
Квалификация	бакалавр									
	(бакалавр/специалист/магистр)									
Форма обучения	очная, очно-заочная, заочная									

(очная, очно-заочная, заочная)

1 Цели и задачи изучения дисциплины

Цели дисциплины: подготовка специалистов, способных выполнять научно-исследовательскую деятельность, направленную на математическое и компьютерное моделирование электронных приборов, устройств различного функционального назначения.

Задачи дисциплины: освоение основных принципов математического моделирования электронных приборов, устройств электроники, изучение на примерах специфики разработки и применения математических моделей, ознакомление с примерами современного использования математического моделирования в различных сферах прикладной деятельности; выработки навыков планирования вычислительного эксперимента, умение анализировать полученные результаты, привить им навыки самостоятельного изучения литературы по прикладным аспектам математического моделирования.

Дисциплина нацелена на формирование: профессиональной компетенции (ПК-1) выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины — дисциплина входит в часть БЛОКА 1 «Дисциплины (модули)», формируемую участниками образовательных отношений основной профессиональной образовательной программы подготовки бакалавров по направлению 11.03.03 Конструирование и технология электронных средств (профиль подготовки «Информационные технологии проектирования электронных устройств»).

Дисциплина реализуется кафедрой электроники и радиофизики.

Основывается на базе дисциплин: «Высшая математика», «Физика», «Физические основы электроники», «Методы анализа и расчета электронных схем», «Информатика», «Методы анализа и расчета электронных схем», «Схемотехника аналоговых устройств», «Схемотехника цифровых устройств».

В свою очередь, дисциплина «Математическое моделирование в электронике» является основой для изучения следующих дисциплин: «САПР электронных устройств и систем», «Электромагнитная совместимость электронных устройств и систем», «Системы электропитания» «Организация научных исследований», а также, приобретенные знания, могут быть использованы при подготовке и защите выпускной квалификационной работы, при прохождении преддипломной практики, а также в профессиональной деятельности.

Общая трудоемкость освоения дисциплины составляет 5 зачетных единиц, 180 ак.ч. Программой дисциплины предусмотрены для очной формы обучения лекционные (36 ак.ч.), практические (36 ак.ч.) занятия и самостоятельная работа студента (108 ак.ч.). Для очно-заочной формы обучения программой дисциплины предусмотрены лекционные (16 ак.ч.), практические (12 ак.ч.) занятия и самостоятельная работа студента (152 ак.ч.). Для заочной формы обучения программой дисциплины предусмотрены лекционные (8 ак.ч.), практические (6 ак.ч.) занятия и самостоятельная работа студента (166 ак.ч.).

Дисциплина изучается на 3 курсе в 6 семестре и на 4 курсе в 8 семестре при очно-заочной и заочной форме обучения.

Форма промежуточной аттестации – экзамен.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Математическое моделирование в электронике» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание Код компетенции компете		Код и наименование индикатора достижения компетенции
Способен строить простейшие физические и математические модели схем и конструкций электронных устройств различного функционального назначения и процессов в них, а также использовать стандартные программные средства их компью-	ПК-1	ПК-1.1. Умеет строить физические и математические модели узлов и блоков приборов ПК-1.2. Осуществляет физико-математическое описание процессов в электронных средствах различного функционального назначения ПК-1.3. Демонстрирует навыки работы с программами компьютерного моделирования электронных устройств ПК-1.4. Использует математическое и компьютерное моделирование для улучшения параметров электронных устройств различного
терного моделирования		функционального назначения

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 5 зачётных единицы, 180 ак. ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим занятиям, текущему контролю, выполнение индивидуального задания, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам 6
Аудиторная работа, в том числе:	72	72
Лекции (Л)	36	36
Практические занятия (ПЗ)	36	36
Лабораторные работы (ЛР)	-	-
Курсовая работа/курсовой проект	-	-
Самостоятельная работа студентов (СРС), в том	108	108
числе:		
Подготовка к лекциям	9	9
Подготовка к лабораторным работам	-	-
Подготовка к практическим занятиям / семинарам	18	18
Выполнение курсовой работы / проекта	-	-
Расчетно-графическая работа (РГР)	-	-
Реферат (индивидуальное задание)	12	12
Домашнее задание (индивидуальное задание)	-	-
Подготовка к контрольной работе	-	-
Подготовка к коллоквиуму	6	6
Аналитический информационный поиск	18	18
Работа в библиотеке	18	18
Подготовка к экзамену	25	25
Промежуточная аттестация – экзамен (Э)	Э (2)	Э (2)
Общая трудоемкость дисциплины		
ак.ч.	180	180
3.e.	5	5

5 Содержание дисциплины

С целью освоения компетенции, приведенной в п.3 дисциплина разбита на 7 тем:

- тема 1 (Основные понятия и определения. Системный подход в математическом моделировании);
- тема 2 (Программные комплексы, применяемые для моделирования электронных и электротехнических объектов);
 - тема 3 (Моделирование электротехнических схем и устройств);
 - тема 4 (Моделирование электромеханических преобразователей);
- тема 5 (Виды анализа и директивы моделирования электронных устройств в программе PSpise программного комплекса OrCad, отображение результатов моделирования);
- тема 6 (Описание аналоговых компонентов в программе Pspice OrCad. Макромодели);
- тема 7 (Математическое описание моделей полупроводниковых приборов в OrCad).

Виды занятий по дисциплине и распределение аудиторных часов для очной, очно-заочной и заочной форм обучения приведены в таблицах 3, 4, 5 соответственно.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	ак.ч.	Содержание практических (семинарских) занятий	ак.ч.	Тема лабораторных занятий	ак.ч.
1	Основные понятия и определения. Системный подход в математическом моделировании	Основные способы моделирования. Математическое моделирование на ЭВМ — один из основных современных способов изучения технических объектов. Виды математических моделей, классификация математических моделей и их параметров, основные характеристики математических моделей, уровни иерархии моделей. Преобразование математических моделей для компьютерного моделирования, фазовые переменные, компонентные и топологические уравнения. Численные методы, применяемые при моделировании.	6	Моделирование электромагнитных процессов в неразветвленных электрических цепях	6		
2	Программные комплексы, применяемые для моделирования электронных и электротехнических объектов	Программный комплекс (ПК) Orcad, основные модули и возможности, графический ввод схем, работа в программном модуле Orcad. Пакет силовой электроники SciPowerLab ПК Scilab, моделирование динамических процессов в основной библиотеке Scilab и пакете SciPowerLab. Применение ПК Comsol Multiphysics для моделирования электромеханических устройств на микроуровне.	6	Исследование процесса моделирования электрических цепей и устройств электроники в программе PSpice CAПР OrCAD	12	_	
3	Моделирование электротехниче- ских схем и	Моделирование динамических процессов в разветвленных электрических цепях. Моделирование полу-	6			_	

_

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	ак.ч.	Содержание практических (семинарских) занятий	ак.ч.	Тема лабораторных занятий	ак.ч.
	устройств	проводниковых управляемых выпрямителей. Моделирование автономных инверторов напряжения.					
4	Моделирование электромеханических преобразователей	Подход к моделированию электрических машин на основе обобщенной машины. Математические модели электрических машин. Виртуальные модели электрических машин в пакете SciPowerLab ПК Scilab.	6	Моделирование полупроводниковых управляемых выпрямителей в OrCad Моделирование ШИМ сигналов	2		_
5	Виды анализа и директивы моделирования электронных устройств в программе PSpise программного комплекса OrCad, отображение результатов моделирования.	Структура текстового задания на моделирование, предложения входного языка Pspice, основные принципы построения задания, масштабные коэффициенты. Рассчитываемые характеристики электронных цепей и основные директивы моделирования Pspice. Расчет переходных процессов, спектральный анализ. Расчет частотных характеристик и уровня шума. Вариация параметров при расчете режима по постоянному току. Выполнение статистического анализа и расчет наихудшего случая. Многовариантный анализ. Расчет чувствительности режима по постоянному току, вариация температуры.	4	Моделирование выходного сигнала системы «управляемый выпрямитель» - «однофазный автономный инвертор напряжения»	4		
6	Описание аналоговых компонентов в программе Pspice OrCad. Макромо-	Модели аналоговых компонентов в OrCad: пассивные компоненты, идеальные ключи, независимые и зависимые источники сигналов, аналого-	4	Моделирование функциональных преобразователей сигналов на основе операционных усилителей в OrCad	4	_	_

	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	ак.ч.	Содержание практических (семинарских) занятий	ак.ч.	Тема лабораторных занятий	ак.ч.
	дели.	вые функциональные блоки, полупроводниковые приборы. Макромодели.					
7	Математическое описание моделей полупроводниковых приборов в OrCad.	Математическое описание, схемы замещения и параметры моделей диода, биполярного транзистора, полевого транзистора, биполярного статически индуцированного транзистора в ПК OrCad и Scilab, сравнение точности моделей и области применения программных комплексов.	4	Моделирование автономного инвертора напряжения в OrCad	4		_
	Всего	аудиторных часов	36		36	_	

Таблица 4 – Виды занятий по дисциплине и распределение аудиторных часов (очно-заочная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	ак.ч.	Содержание практических (семинарских) занятий	ак.ч.	Тема лабораторных занятий	ак.ч.
1	Основные понятия и определения. Системный подход в математическом моделировании	Основные способы моделирования. Математическое моделирование на ЭВМ — один из основных современных способов изучения технических объектов. Виды математических моделей, классификация математических моделей и их параметров, основные характеристики математических моделей, уровни иерархии моделей. Преобразование математических моделей для компьютерного моделирования, фазовые переменные, компонентные и топологические уравнения. Численные методы, применяемые при моделировании.	2	Моделирование электромагнитных процессов в неразветвленных электрических цепях	1		
2	Программные комплексы, применяемые для моделирования электронных и электротехнических объектов	Программный комплекс (ПК) Orcad, основные модули и возможности, графический ввод схем, работа в программном модуле Orcad. Пакет силовой электроники SciPowerLab ПК Scilab, моделирование динамических процессов в основной библиотеке Scilab и пакете SciPowerLab. Применение ПК Comsol Multiphysics для моделирования электромеханических устройств на микроуровне.	2	Исследование процесса моделирования электрических цепей и устройств электроники в программе PSpice CAПР OrCAD	1	_	_
3	Моделирование электротехнических схем и	Моделирование динамических процессов в разветвленных электрических цепях. Моделирование полупроводниковых управляемых вы-	2			_	

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	ак.ч.	Содержание практических (семинарских) занятий	ак.ч.	Тема лабораторных занятий	ак.ч.
	устройств	прямителей. Моделирование автономных инверторов напряжения.					
4	Моделирование электромеханических преобразователей	Подход к моделированию электрических машин на основе обобщенной машины. Математические модели электрических машин. Виртуальные модели электрических машин в пакете SciPowerLab ПК Scilab.	2	Моделирование полупроводниковых управляемых выпрямителей в OrCad Моделирование ШИМ сигналов	2	_	_
5	Виды анализа и директивы моделирования электронных устройств в программе PSpise программного комплекса OrCad, отображение результатов моделирования.	Структура текстового задания на моделирование, предложения входного языка Pspice, основные принципы построения задания, масштабные коэффициенты. Рассчитываемые характеристики электронных цепей и основные директивы моделирования Pspice. Расчет переходных процессов, спектральный анализ. Расчет частотных характеристик и уровня шума. Вариация параметров при расчете режима по постоянному току. Выполнение статистического анализа и расчет наихудшего случая. Многовариантный анализ. Расчет чувствительности режима по постоянному току, вариация температуры.	2	Моделирование выходного сигнала системы «управляемый выпрямитель» - «однофазный автономный инвертор напряжения»	2		
6	Описание аналоговых компонентов в программе Pspice OrCad. Макромодели.	Модели аналоговых компонентов в OrCad: пассивные компоненты, идеальные ключи, независимые и зависимые источники сигналов, аналоговые функциональные блоки, полу-	2	Моделирование функциональных преобразователей сигналов на основе операционных усилителей в OrCad	2		_

	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	ак.ч.	Содержание практических (семинарских) занятий	ак.ч.	Тема лабораторных занятий	ак.ч.
		проводниковые приборы. Макромо-					
Математическое описание, схемы замещения и параметры моделей диода, биполярного транзистора, полевого транзистора, биполярного статически индуцированного транзистора в ПК OrCad и Scilab, сравнение точности моделей и области применения программных комплексов.		4	Моделирование автономного инвертора напряжения в OrCad	2			
	Всего аудиторных часов				12	_	

Таблица 5 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

Tuc	пица 5 Виды зап	ятии по дисциплине и распределе	пис ауди	Tophbix racob (sao max popis	la ooy i		1
	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	ак.ч.	Содержание практических (семинарских) занятий	ак.ч.	Тема лабораторных занятий	ак.ч.
1	Основные понятия и определения. Системный подход в математическом моделировании	Основные способы моделирования. Математическое моделирование на ЭВМ — один из основных современных способов изучения технических объектов. Виды математических моделей, классификация математических моделей и их параметров, основные характеристики математических моделей, уровни иерархии моделей. Преобразование математических моделей для компьютерного моделирования, фазовые переменные, компонентные и топологические уравнения. Численные методы, применяемые при моделировании.	1	Моделирование электромагнитных процессов в неразветвленных электрических цепях	0,5		
2	Программные комплексы, применяемые для моделирования электронных и электротехнических объектов	Программный комплекс (ПК) Orcad, основные модули и возможности, графический ввод схем, работа в программном модуле Orcad. Пакет силовой электроники SciPowerLab ПК Scilab, моделирование динамических процессов в основной библиотеке Scilab и пакете SciPowerLab. Применение ПК Comsol Multiphysics для моделирования электромеханических устройств на микроуровне.	1	Исследование процесса моделирования электрических цепей и устройств электроники в программе PSpice CAПР OrCAD	0,5		
3	Моделирование электротехнических схем и устройств	Моделирование динамических процессов в разветвленных электрических цепях. Моделирование полупроводниковых управляемых выпрямителей. Моделирование авто-	1			_	_

2	Моделирование электромеханиче-ских преобразователей	Подход к моделированию электрических машин на основе обобщенной машины. Математические модели электрических машин. Виртуальные модели электрических машин в пакете SciPowerLab ПК Scilab.	1	Моделирование полупроводниковых управляемых выпрямителей в OrCad Моделирование ШИМ сигналов	1	_	
5	программного комплекса OrCad, отображение результатов моделирования.	Структура текстового задания на моделирование, предложения входного языка Рѕрісе, основные принципы построения задания, масштабные коэффициенты. Рассчитываемые характеристики электронных цепей и основные директивы моделирования Рѕрісе. Расчет переходных процессов, спектральный анализ. Расчет частотных характеристик и уровня шума. Вариация параметров при расчете режима по постоянному току. Выполнение статистического анализа и расчет наихудшего случая. Многовариантный анализ. Расчет чувствительности режима по постоянному току, вариация температуры.	1	Моделирование выходного сигнала системы «управляемый выпрямитель» - «однофазный автономный инвертор напряжения»			
	Описание аналого-	Модели аналоговых компонентов в		_			

ак.ч.

Содержание лекционных занятий

OrCad: пассивные компоненты, иде-

альные ключи, независимые и зави-

симые источники сигналов, аналого-

вые функциональные блоки, полу-

проводниковые приборы. Макромо-

номных инверторов напряжения.

Содержание практических

(семинарских) занятий

Моделирование функциональ-

ных преобразователей сигна-

лов на основе операционных

усилителей в OrCad

№ Наименование темы

п/п (раздела) дисциплины

вых компонентов в

программе Pspice

OrCad. Макромо-

дели.

Тема

лабораторных

занятий

ак.ч.

ак.ч.

	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	ак.ч.	Содержание практических (семинарских) занятий	ак.ч.	Тема лабораторных занятий	ак.ч.
		дели.					
7	Математическое описание моделей полупроводниковых приборов в OrCad.	Математическое описание, схемы замещения и параметры моделей диода, биполярного транзистора, полевого транзистора, биполярного статически индуцированного транзистора в ПК OrCad и Scilab, сравнение точности моделей и области применения программных комплексов.	2	Моделирование автономного инвертора напряжения в OrCad	1	_	
Всего аудиторных часов			8		5	_	

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 6

Таблица 6 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование ком- петенции	Способ оцени- вания	Оценочное средство	
ПК-1	Экзамен	Комплект контролирующих материалов для экзамена	

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- тестовый контроль или устный опрос на коллоквиумах (2 работы) всего 40 баллов;
 - практические работы всего 20 баллов;
- за выполнение индивидуального и домашнего задания всего 40 баллов.

Экзамен проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Экзамен по дисциплине проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время зачетной недели студент имеет право повысить итоговую оценку либо в форме устного собеседования по приведенным ниже вопросам (п.п. 6.5), либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 7.

Таблица 7 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале	
учебной деятельности	зачёт/экзамен	
0-59	Не зачтено/неудовлетворительно	
60-73	Зачтено/удовлетворительно	
74-89	Зачтено/хорошо	
90-100	Зачтено/отлично	

6.2 Домашнее задание

В качестве домашнего задания обучающиеся выполняют проработку лекционного материала.

6.3 Темы для рефератов (презентаций) – индивидуальное задание

Примерные темы рефератов.

- 1) Программа для моделирования электромагнитных и тепловых залач Femm.
- 2) Программа для моделирования электромагнитных и тепловых задач Ansys multiphysics.
- 3) Программа для моделирования электромагнитных и тепловых задач MagNet и ThermNet 2D/3D.
- 4) Программа для моделирования электромагнитных и тепловых задач Jmag Designe.
- 5) Программа для моделирования электромагнитных и тепловых задач Elcut.
- 6) Программа для моделирования электромагнитных и тепловых задач Cedrat flux 2D/3D.
- 7) Программа для моделирования электромагнитных и тепловых задач Comsol multiphysics.

6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Варианты тестовых заданий.

- 1. Что представляет собой математическое моделирование в электронике?
 - а) Процесс создания физической модели электронного устройства;
- б) Применение математических методов для описания и анализа поведения электронных систем;
- в) Использование программных средств для проектирования печатных плат;
 - г) Создание графиков для визуализации электрических цепей.
- 2. Какой компонент может использовать макро-модели для учета нелинейных свойств?

- а) Резистор;
- б) Идеальный источник;
- в) Операционный усилитель;
- г) Конденсатор.
- 3. Какой из следующих типов анализа не является областью применения макро-моделей в PSpice?
 - а) АС анализ;
 - б) DC анализ;
 - в) Тепловой анализ;
 - г) Анализ временных переходов.
- 4. Какой файл-формат обычно используется для хранения макромоделей в PSpice?
 - a) .lib;
 - б) .dsn;
 - B) .pdf;
 - г) .txt.
- 5. Какой из следующих компонентов обычно моделируется с использованием макро-моделей в PSpice?
 - а) Резистор;
 - б) Транзистор;
 - в) Конденсатор;
 - г) Диод.
 - 6. Что такое макро-модель в контексте PSpice OrCAD?
 - а) Упрощенное устройство для анализа операций;
- б) Модель, представляющая собой комбинацию различных компонентов;
- в) Модель, расширяющая возможности симуляции элементов за счет дополнительных параметров и поведения;
 - г) Логическая схема, связанная с программным обеспечением.
 - 7. Какую информацию можно включить в макро-модель?
 - а) Входные и выходные характеристики;
 - б) Условия эксплуатации;
 - в) Физические размеры;
 - г) Все перечисленные.
- 8. Как в PSpice OrCAD добавляются макро-модели для использования в симуляциях?
 - а) Через меню "Импортировать";
 - б) Вводом текстового кода в схему;

- в) Загрузка библиотек с макро-моделями через инструмент "Library Manager";
 - т) Копированием в папку проекта.
- 9. Какая функция макро-модели помогает улучшить точность симуляций в PSpice?
 - а) Оптимизация компонентов;
 - б) Адаптивный анализ;
- в) Моделирование реальных физических эффектов, таких как паритет и температурные зависимости;
 - г) Генерация случайных сигналов.
- 10. Какую роль играют параметры, такие как наклон или пороговое напряжение, в макро-моделях?
 - а) Они определяют старение компонента;
 - б) Они описывают поведение устройства при различных условиях;
 - в) Они являются случайными значениями для улучшения симуляции;
 - г) Они показывают точки соединения одной схемы с другой.
- 11. Как называется инструмент в OrCAD, используемый для симуляции электрических схем?
 - a) OrCAD Capture;
 - б) OrCAD Layout;
 - в) OrCAD PSpice;
 - г) OrCAD PCB Artist.
 - 12. Что позволяет сделать функция "AC Sweep" в OrCAD?
 - а) Проанализировать переходные процессы;
 - ю) Изучить частотные характеристики системы;
 - в) Получить график напряжения во времени;
 - г) Определить максимальную мощность устройства.
 - 13. Как можно добавить новый компонент в библиотеку OrCAD?
 - а) Использовать команду "Импортируй";
 - б) Ручное создание компонента в библиотеке;
 - в) Скачать компонент с внешнего сайта;
 - г) Импортировать компонент из Excel.
- 14. Какой тип анализа, обычно проводимый в OrCAD, применяется для изучения временных переходных процессов в цепях?
 - а) Статический анализ;
 - б) Частотный анализ;
 - в) Переходный анализ;
 - г) Нелинейный анализ.

- 15. Какой инструмент в OrCAD позволяет проектировать печатные платы?
 - a) OrCAD Capture;
 - б) OrCAD PCB Editor;
 - в) OrCAD PSpice;
 - Γ) OrCAD Schematics.
- 16. Какой из этих анализов в PSpice должен быть использован для исследования частотного ответа цепи?
 - a) Transient анализ;
 - б) Load Analysis;
 - в) АС анализ;
 - г) DC анализ.
 - 17. Как отображаются результаты моделирования в PSpice?
 - а) В виде таблицы;
 - б) В виде графиков с использованием графического редактора;
 - в) В виде текстового отчета;
 - г) Все перечисленные.
- 18. Какой анализ позволяет выявить чувствительность схемы к изменениям параметров отдельных компонентов?
 - а) Frequency Response анализ;
 - б) DC Sweep анализ;
 - в) Parametric анализ;
 - г) Transient анализ.
- 19. Какой тип анализа предназначен для оценки влияния шумов в цепях в PSpice?
 - а) АС анализ;
 - б) Noise анализ;
 - в) Sensitivity анализ;
 - г) Parametric анализ.
- 20. Какой анализ в PSpice позволяет изучать временные переходные процессы и реакции схемы на изменения входного сигнала?
 - а) АС анализ;
 - б) DC анализ;
 - в) Transient анализ;
 - г) Monte Carlo анализ.
- 21. Какой из следующих видов анализа используется для проверки статических характеристик схемы в PSpice?

- а) АС анализ;
- б) Transient (переходный) анализ;
- в) DC анализ;
- г) Noise анализ.

6.5 Вопросы для подготовки к экзамену (тестовому коллоквиуму)

- 1) Какие существуют основные способы моделирования? Место и особенности математического моделирования, функциональное и морфологическое описание математической модели.
- 2) Какие существуют основные характеристики математических моделей. Параметры математических моделей?
 - 3) Раскройте понятие иерархии математических моделей.
- 4) Что такое математические модели на макроуровне? Фазовые переменные. Компонентные и топологические уравнения.
- 5) Приведите математическое описание динамических процессов в простейших механических системах.
- 6) Как происходит приближенное решение обыкновенных дифференциальных уравнений при помощи компьютера? Раскройте понятие алгеброизации и дискретизации модели. Дайте графическую интерпретацию метода Эйлера, приведите пример алгоритма расчета тока в электрической цепи, реализованного этим методом.
- 7) В чём заключается принцип работы одношаговых численных методов, используемых при моделировании на макроуровне?
 - 8) Какие существуют методы прогноза и коррекции?
- 9) Что такое прикладные пакеты Scilab и для чего они ны? Текстовый язык и Scilab.
 - 10) Как в Scilab моделируют динамические системы?
- 11) Укажите три основных элемента технических систем. Компонентные уравнения элементов технических систем. Сравнить математическое описание процессов в простейших электрических и механических системах.
- 12) Моделирование механической системы, содержащей инерционный и упругий элемент (например, груз на пружине). Сравнить динамические процессы в данной системе и в R-L-C-цепи.
- 13) Как осуществляется математическое моделирование сигналов заданной формы в основной библиотеке Scilab?
- 14) Как осуществляется анализ процессов в частотной области в Scilab?
- 15) Как осуществляется анализ процессов в частотной области в OrCad?

- 16) Сравнить спектральный анализ сигналов в Scilab и OrCad.
- 17) Как осуществляется математическое описание электрических цепей с полупроводниковыми вентилями, варианты математических моделей диода и тиристора, допущения, принятые при составлении математического описания?
- 18) Как осуществляется математическое описание динамических процессов и модель в основной библиотеке Scilab однофазного однополупериодного управляемого выпрямителя, угол управления. Ожидаемая форма напряжения на активной и активно-индуктивной нагрузке?
- 19) Как осуществляется математическое описание динамических процессов и модель в основной библиотеке Scilab однофазного двухполупериодного управляемого выпрямителя с нулевой точкой. Угол управления. Ожидаемая форма напряжения на активной нагрузке?
- 20) Что такое топологические уравнения? Математическое описание динамических процессов и модель в основной библиотеке Scilab однофазного однополупериодного управляемого выпрямителя с емкостным фильтром. Ожидаемая форма напряжения на активной нагрузке.
- 21) Как осуществляется моделирование в Scilab трехфазного управляемого выпрямителя с нулевой точкой?
- 22) Поясните математическое описание выходного напряжения однофазных инверторов с однократной коммутацией. Как осуществляется моделирование в Scilab источников прямоугольного напряжения с регулируемой амплитудой и частотой?
- 23) Поясните математическое описание и моделирование в Scilab выходного сигнала однофазного инвертора с широтно-импульсной модуляцией (ШИМ) ДРМ2.
- 24) Как осуществляется моделирование трехфазных мостовых инверторов с ШИМ ДРМ2 в Scilab. SciPowerLab?
- 25) Как осуществляется моделирование трехфазных мостовых инверторов с однократной коммутацией по 180° закону в Scilab. SciPowerLab.
- 26) Как осуществляется сглаживание пульсаций тока при последовательном включении в электрическую цепь индуктивности? Приведите математическое описание и компьютерное моделирование цепей, содержащих дроссели с насыщением.
- 27) Как осуществляется моделирование электромеханических преобразователей на основе обобщенной электрической машины?
- 28) Как осуществляется моделирование математическое описание динамических процессов и модель в Scilab двигателя постоянного тока незави-

симого возбуждения? Ожидаемые результаты прямого пуска двигателя. Пояснить на основе математического описания работу двигателя как электромеханической системы.

- 29) Поясните математическое описание динамических процессов и модель в Scilab реостатного пуска двигателя постоянного тока.
- 30) Поясните математическое описание динамических процессов и модель в Scilab пуска двигателя постоянного тока независимого возбуждения путем плавного повышения напряжения на якоре пропорционально скорости ротора.
- 31) Как осуществляется моделирование цепей с нелинейными элементами: индуктивные фильтры, полупроводниковые элементы. Варианты математических моделей диода и тиристора, использование подсистем при моделировании?
- 32) Как осуществляется моделирование моделирование динамических процессов в асинхронном двигателе? Системы координат, используемые при моделировании.
- 33) Как осуществляется анализ электронных устройств в OrCad во временной области (при графическом вводе схем, привести пример)?
- 34) Как осуществляется моделирование электронных устройств в OrCad в режиме по постоянному току (при графическом вводе схем, привести пример)?
- 35) Как осуществляется моделирование моделирование электронных устройств в OrCad в частотной области (при графическом и текстовом вводе схем, привести примеры)?
- 36) Как осуществляется параметрическое моделирование в OrCad (при графическом вводе схем, привести пример)?
- 37) Как осуществляется моделирование статистическое моделирование в OrCad (при графическом вводе схем)?
- 38) Как осуществляется моделирование переходных процессов в OrCad (при текстовом вводе схем, привести пример)?
- 39) Как осуществляется моделирование на текстовом языке Scilab (программный код для решения дифференциальных уравнений, описывающих динамические процессы в моделируемых системах, привести пример).
- 40) Как осуществляется моделирование электромеханических преобразователей в OrCad?

6.6 Примерная тематика курсовых работ

Курсовые работы не предусмотрены учебным планом.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Королев, А.Л. Компьютерное моделирование объектов, процессов и систем: учебное пособие / А.Л. Королев, Н.Б. Паршукова. Челябинск: Издво Южно-Урал. гос. гуманитар.-пед. ун-та, 2020. 329 с. URL: https://djvu.online/file/XWDNtz4DahziX (дата обращения: 30.08.2024).
- 2. Затонский, А.В. Информационные технологии: учеб. пособие для студ. вузов, обучающихся по направлению "Информатика и вычислительная техника" / А.В. Затонский. М.: РИОР, 2023. 344 с.: ил. (8 экз.)

Дополнительная литература

- 1. Ибрагимов, Н.Х. Практический курс дифференциальных уравнений и математического моделирования. Классические и новые методы. Нелинейные математические методы. Симметрия и принципы инвариантности / Перевод с англ. И.С. Емельяновой. Нижний Новгород: Издательство Нижегородсткого госуниверситета, 2007. 421 с. URL: https://djvu.online/file/yg7CPPLGvDqTW (дата обращения: 30.08.2024).
- 2. Тарасик, В.П. Математическое моделирование технических систем: Учебник для вузов. Мн.: ДизайнПРО, 2004. 640 с. URL: https://djvu.online/file/v8X4ui3aayQmz (дата обращения: 30.08.2024).
- 3. Андриевский, Б.Р. Элементы математического моделирования в программ-ных средах MATLAB 5 и Scilab / Б.Р. Андриевский, А.Л. Фрадков. СПб.: Наука, 2001. 286 с. URL: https://djvu.online/file/bVyoMabNRRTUq (дата обращения: 30.08.2024).
- 4. Смит, Джон М. Математическое и цифровое моделирование для инженеров и исследователей / Пер. с англ. Н.П. Ильиной; Под ред. О.А. Чембровского. М.: Машиностроение, 1980. 271 с. URL: https://djvu.online/file/28zFaaHF5yfRz (дата обращения: 30.08.2024).

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт. Алчевск. URL: library.dstu.education. Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст : электронный.
- 3. Консультант студента : электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст : электронный.
- 4. Университетская библиотека онлайн : электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст : электронный.
- 5. IPR BOOKS : электронно-библиотечная система. Красногорск. URL: http://www.iprbookshop.ru/. Текст : электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 9.

Таблица 9 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местополо- жение) учебных
	кабинетов
Специальные помещения:	
Мультимедийная лекционная аудитория (48 посадочных мест)	ауд. <u>206</u> корп. <u>3</u>
Проектор EPSON EMP-X5 (1 шт.); Домашний кинотеатр HT-475	
(1 шт.); персональный компьютер, локальная сеть с выходом в	
Internet	
Компьютерный класс (11 посадочных мест) для групповых и ин-	ауд. <u>207</u> корп. <u>3</u>
дивидуальных консультаций, организации самостоятельной рабо-	
ты, оборудованный учебной мебелью, компьютерами с неограни-	
ченным доступом к сети Интернет, включая доступ к ЭБС, доской	
маркерной магнитной	

Лист согласования РПД

Разработали:		
Доцент кафедры электроники и радиофизики (должность)	(подпись	А.М. Афанасьев Ф.И.О.)
Ст.преп. кафедры электроники и радиофизики (должность)	(подпись	А.В. Еремина Ф.И.О.)
И.о. заведующего кафедрой электроники и радиофизики	(подпись	А.М. Афанасьев Ф.И.О.)
Протокол № 1 заседания кафедры электроники и радиофизики		от <u>30.08.2024 г.</u>
И.о. декана факультета информационных технологий и автоматизации производственных процессов	(подпись	В.В. Дьячкова Ф.и.о.)
Согласовано		
Председатель методической комиссии по направлению подготовки 11.03.03 Конструирование и технология электронных средств (профиль подготовки «Информационные технологии проектирования электронных устройств»)	(подпись	А.М. Афанасьев Ф.И.О.)

Начальник учебно-методического центра

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения				
изменений				
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:			
Основание:				
Подпись лица, ответственного за внесение изменений				