Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Вишневский Дмитрий Александрович

Должность: Ректор

Дата подписания: 17.10.2025 15:06:46

Уникальный программный кл**ми**НИСТЕРСТВО НА УКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ 03474917c4d012283e5ad996a48a5e70bf8da057 (МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет

информационных технологий и автоматизации

производственных процессов

Кафедра

электромеханики им. А. Б. Зеленова

УТВЕРЖДАЮ И. о. проректора по учебной работе Д. В. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

	Силовая электроника
	(наименование дисциплины)
13	.03.02 Электроэнергетика и электротехника
-	(код, наименование направления)
Электропривод и	автоматика промышленных установок и технологических
	комплексов
	(профиль подготовки)
Квалификация	бакалавр
1	(бакалавр/специалист/магистр)
A	
Форма обучения	очная, заочная

1 Цели и задачи изучения дисциплины

Цель дисциплины: изучение основных технических характеристик, назначения и классификации вентильных элементов систем электропривода.

Задачи изучения дисциплины: получений знаний и умений читать схемы тиристорных, транзисторных преобразователей с различными способами управления, умения выполнять расчет и выбор вентильных элементов силовой части электропривода, выполнять технико-экономическое сравнение различных систем вентильного электропривода, составлять цифровую модель силовой цепи преобразователя.

Дисциплина направлена на формирование компетенций ПК-1, ПК-4 выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины: курс входит в БЛОК 1 «Дисциплины (модули)», часть блока 1 формируемую участниками образовательных отношений подготовки студентов по направлению 13.03.02 Электроэнергетика и электротехника (профиль «Электропривод и автоматика промышленных установок и технологических комплексов»).

Дисциплина основывается на базе дисциплин: «Теоретические основы электротехники», «Электроника и микропроцессорная техника».

Является основой для изучения следующих дисциплин: «Автоматизированный электропривод типовых производственных механизмов», «Системы управления электроприводами».

Для изучения дисциплины необходимы компетенции, сформированные у студента для решения профессиональных задач деятельности, связанных с применением вычислительной техники и программного обеспечения в различных сферах деятельности.

Курс является фундаментом для формирования навыков и умений по расчетам и проектированию электромеханических систем.

Общая трудоемкость освоения дисциплины составляет 3 зачетных единицы, 108 ак. ч. Программой дисциплины предусмотрены лекционные (36 ак.ч. для групп ЭМС, 4 ак. ч. для группы ЭМС-з), лабораторные работы (18 ак.ч. для групп ЭМС, 4 ак. ч. для группы ЭМС-з) и самостоятельная работа студента (54 ак.ч. для групп ЭМС, 100 ак.ч. для группы ЭМС-з).

Дисциплина изучается на 3 курсе в 6 семестре для группы ЭМС и на 4 курсе в 7 семестре для группы ЭМС-з. Форма промежуточной аттестации – экзамен.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Силовая электроника» направлен на формирование компетенций, представленных в таблице 3.1.

Таблица 3.1 – Компетенции, обязательные к освоению

Содержание компетенции	Код компетенции	Код и наименование индикатора достижения компетенции
Способен участвовать в проектировании объектов профессиональной деятельности	ПК-1	ПК-1.1. Выполняет сбор и анализ данных для проектирования, составляет конкурентноспособные варианты технических решений.
Способен участвовать в эксплуатации технологического оборудования объектов профессиональной деятельности	ПК-4	ПК-4.2. Способен применять методы и технические средства эксплуатации технологического оборудования объектов профессиональной деятельности

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 3 зачётных единицы, 108 ак. ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к лабораторным работам, текущему контролю, самостоятельное изучение материала и подготовку к зачету.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 4.1.

Таблица 4.1 – Распределение бюджета времени на СРС

	1	T T
Вид учебной работы	Всего ак.	Ак .ч. по се- местрам
	ч.	6
Аудиторная работа, в том числе:	54	54
Лекции (Л)	36	36
Практические занятия (ПЗ)	_	_
Лабораторные работы (ЛР)	18	18
Курсовая работа/курсовой проект		
Самостоятельная работа студентов (СРС), в том числе:	54	54
Подготовка к лекциям	18	18
Подготовка к лабораторным работам	9	9
Подготовка к практическим занятиям / семинарам	0	0
Выполнение курсовой работы / проекта	0	0
Расчетно-графическая работа (РГР)	0	0
Реферат (индивидуальное задание)	0	0
Домашнее задание	0	0
Подготовка к контрольной работе	0	0
Подготовка к коллоквиумам	6	6
Аналитический информационный поиск	3	3
Работа в библиотеке	0	0
Подготовка к экзамену	18	18
Промежуточная аттестация – экзамен (Э)	Э	Э
Общая трудоемкость дисциплины		
Ак. ч.	108	108
3. e.	3	3

5 Содержание дисциплины

С целью освоения компетенций, приведенных в п. 3 дисциплина разбита на 5 тем:

- тема 1 (Реверсивные тиристорные преобразователи переменного тока в постоянный . Классификация и главные схемные решения);
 - тема 2 (Способы управления двухкомплектными реверсивными ТП);
 - тема 3 (ТП как элемент системы автоматического регулирования);
- тема 4 (Широтно-импульсные преобразователи (ШИП). Преобразователи для электропривода переменного тока);
- тема 5 (Элементы унифицированных блоков систем регулирования. Датчики электрических и механических величин);

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 5.1 - 5.2 соответственно.

Таблица 5.1 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/ п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
1	Реверсивные тиристорные преобразователи переменного тока в постоянный. Классифика-	Реверсивные тиристорные преобразователи переменного тока в постоянный. Классификация и главные схемные решения Способы реверсирования скорости и мо-	4	_	_	_	_
	ция и главные схемные решения	мента электропривода. Сравнительный анализ схем реверсивных тиристорных электроприводов	4				
2	Способы управления двухкомплектными ре-	Совместный принцип управления и его разновидности, статические и динамические уравнительные токи. Раздельный принцип управления, его преимущества и недостатки.	4			Цифровое моделирова-	9
2	версивными ТП	Переход из выпрямительного режима в инверторный в реверсивном ТП при его работе на якорь электродвигателя и обмотку возбуждения.	4	_	_	ние электропривода постоянного тока с ПЧ	9
3	ТП как элемент системы автоматического регу-	Воздействие дискретности и неполной управляемости на динамические характеристики преобразователя. Свойства ТП как непрерывного звена.	2				
3	лирования	Предельная граница пропускания ТП. Расчёт коэффициента усиления ТП. Передаточная функция ТП. Коэффициент мощности тиристорного выпрямителя.	2	-			

№ п/ п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
4	Широтно-импульсные преобразователи (ШИП). Преобразователи для электропривода переменного тока	Суть широтно-импульсного и частотно- импульсного регулирования. Схемы не- реверсивных и реверсивных ШИП. Связь среднего выходного напряжения со скважностью импульсов. Основные схемы тиристорных ШИП	8	-	_	Цифровое моделирование электропривода постоянного тока с ШИП	9
5	Элементы унифицированных блоков систем регулирования. Датчики электрических и механических величин	Структура и схемы включения операционных усилителей Техническая реализация обычных законов регулирования. Датчики угла и рассогласования следящих электроприводов. Датчики электрических величин.	8	-	_	_	_
	Всего аудиторных часов		36	_	_	_	18

Таблица 5.2 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

№ п/ п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
1	Реверсивные тиристорные преобразователи переменного тока в постоянный.	Реверсивные тиристорные преобразователи переменного тока в постоянный . Классификация и главные схемные решения	4	_	_	Цифровое моделирование электропривода постоянного тока с ПЧ	4
	Всего аудиторных часов		4	_	_	_	4

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала (https://www.dstu.education/images/structure/license_certificate/polog_kred_modult.pdf).

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 6.1.

Таблица 6.1 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
ПК-1, ПК-4	Экзамен	Комплект контролирующих материалов для экзамена

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- тестовый контроль или устный опрос на коллоквиумах (1 коллоквиум) всего 40 баллов;
 - лабораторные работы всего 60 баллов.

Экзамен проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60 % от максимального.

Экзамен по дисциплине «Силовая электроника» проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время сессии студент имеет право повысить итоговую оценку либо в форме устного собеседования по приведенным ниже вопросам (п. 6.4), либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.2.

Таблица 6.2 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашние задания

Для студентов очной формы обучения домашние задания не предусмотрены. Студены заочной формы обучения в каждом семестре выполняют контрольную работу по имеющимся методическим указаниям.

6.3 Темы рефератов

Написание рефератов при изучении дисциплины не предусмотрено.

6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Тема 1 Реверсивные тиристорные преобразователи переменного тока в постоянный. Классификация и главные схемные решения

- 1) Как работает тиристорный выпрямитель в инверторном режиме? Каковы особенности однофазного зависимого инвертора тока?
- 2) Что представляет собой внешняя характеристика инвертора? Что понимается под пределом коммутации?
- 3) Какие существуют способы реверсирования скорости и момента в электроприводе?
- 4) Как провести сравнительный анализ схем реверсивных тиристорных электроприводов?
- 5) В чем заключается природа уравнительных токов в схемах реверсивных тиристорных электроприводов?

Тема 2 Способы управления двухкомплектными реверсивными ТП

- 1) Каковы преимущества и недостатки совместного согласованного управления группами вентилей реверсивного тиристорного электропривода?
- 2)Как осуществляется переход из выпрямительного режима работы в инверторный в реверсивном тиристорном электроприводе (РТП)?
- 3) Каковы особенности работы РТП на обмотку возбуждения электрической машины?

- 4) Как работает раздельное управление группами вентилей реверсивного тиристорного электропривода?
- 5) В чем заключается назначение и принцип работы логического переключающего устройства?
 - 6) Что такое коэффициент мощности тиристорного выпрямителя?

Тема 3 ТП как элемент системы автоматического регулирования

- 1) Как тиристорный преобразователь функционирует как элемент замкнутой системы автоматического регулирования (CAP)?
- 2) Что представляет собой передаточная функция тиристорного преобразователя?
- 3) Как дискретность управления влияет на динамические свойства тиристорного преобразователя?

Тема 4 Широтно-импульсные преобразователи (ШИП). Преобразователи для электропривода переменного тока

- 1) В чем заключается сущность широтно-импульсного и частотно-импульсного регулирования?
- 2) Каковы схемы нереверсивных и реверсивных ШИП? Как связаны среднее выходное напряжение и скважность импульсов?
- 3) Каковы основные схемы тиристорных ШИП? В чем заключается назначение и принцип работы узла принудительной коммутации?
- 4) Как классифицируются статические преобразователи частоты (СПЧ)? Что представляют собой СПЧ с промежуточным звеном постоянного тока?
- 5) Как классифицируются автономные инверторы? Как провести сравнительный анализ автономных инверторов тока и напряжения?
- 6) Как работает трехфазный мостовой инвертор с междуфазной коммутацией? Каковы его схема и принцип работы?
- 7) Как функционирует мостовой инвертор напряжения с пофазной коммутацией?

Тема 5 Элементы унифицированных блоков систем регулирования. Датчики электрических и механических величин

- 1) Каковы элементы унифицированных блоков систем регулирования?
- 2) Какова структура и схемы включения операционных усилителей?

6.5 Вопросы для подготовки к экзамену

- 1) Как работает тиристорный выпрямитель в инверторном режиме? Каковы особенности однофазного зависимого инвертора тока?
- 2) Что представляет собой внешняя характеристика инвертора? Что понимается под пределом коммутации?
 - 3) Какие существуют способы реверсирования скорости и момента в

электроприводе?

- 4) Как провести сравнительный анализ схем реверсивных тиристорных электроприводов?
- 5) В чем заключается природа уравнительных токов в схемах реверсивных тиристорных электроприводов?
- 6) Каковы преимущества и недостатки совместного согласованного управления группами вентилей реверсивного тиристорного электропривода?
- 7) Как осуществляется переход из выпрямительного режима работы в инверторный в реверсивном тиристорном электроприводе (РТП)? Каковы особенности работы РТП на обмотку возбуждения электрической машины?
- 8) Как работает раздельное управление группами вентилей реверсивного тиристорного электропривода? В чем заключается назначение и принцип работы логического переключающего устройства?
 - 9) Что такое коэффициент мощности тиристорного выпрямителя?
- 10) Как тиристорный преобразователь функционирует как элемент замкнутой системы автоматического регулирования (САР)?
- 11) Что представляет собой передаточная функция тиристорного преобразователя? Как дискретность управления влияет на динамические свойства тиристорного преобразователя?
- 12) В чем заключается сущность широтно-импульсного и частотно-импульсного регулирования?
- 13) Каковы схемы нереверсивных и реверсивных ШИП? Как связаны среднее выходное напряжение и скважность импульсов?
- 14) Каковы основные схемы тиристорных ШИП? В чем заключается назначение и принцип работы узла принудительной коммутации?
- 15) Как классифицируются статические преобразователи частоты (СПЧ)? Что представляют собой СПЧ с промежуточным звеном постоянного тока?
- 16) Как классифицируются автономные инверторы? Как провести сравнительный анализ автономных инверторов тока и напряжения?
- 17) Как работает трехфазный мостовой инвертор с междуфазной коммутацией? Каковы его схема и принцип работы?
- 18) Как функционирует мостовой инвертор напряжения с пофазной коммутацией?
- 19) Каковы элементы унифицированных блоков систем регулирования? Какова структура и схемы включения операционных усилителей?

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Щуров Н. И., Мятеж С. В.. Синтез и анализ многофазных вентильных преобразователей [Электронный ресурс]:монография. Новосибирск: Новосибирский государственный технический университет, 2020. 202 с. Режим доступа: http://www.iprbookshop.ru/98816.html (дата обращения: 20.08.2024).
- 2. Родыгин А.В. Силовая электроника: учебное пособие / Родыгин А.В.. Новосибирск: Новосибирский государственный технический университет, 2019. 72 с. ISBN 978-5-7782-3289-1. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/91420.html (дата обращения: 20.08.2024).

Дополнительная литература

- 1. Белоус А.И. Полупроводниковая силовая электроника / Белоус А.И., Ефименко С.А., Турцевич А.С.. Москва : Техносфера, 2013. 228 с. ISBN 978-5-94836-367-7. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/31876.html (дата обращения: 20.08.2024)
- 2. Терехов В.М. Элементы автоматизированного электропривода.- М.: Энергоатомиздат, 1987.- 224 с.
- 3. Пилецкий В.Т. Выбор элементов реверсивных тиристорных преобразователей электроприводов постоянного тока. К.: ИСДО, 1994. 148 с

Учебно-методическое обеспечение

1. Пахомова Ю.В. Введение в проектную деятельность: практикум / Пахомова Ю.В., Наролина Т.С.. — Воронеж: Воронежский государственный технический университет, ЭБС АСВ, 2021. — 69 с. — ISBN 978-5-7731-0921-1. — Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. — URL: https://www.iprbookshop.ru/111496.html (дата обращения: 20.08.2024)

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт. Алчевск. URL: <u>library.dstu.education</u>. Текст: электронный.
 - 2. Научно-техническая библиотека БГТУ им. Шухова : официальный

- сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст : электронный.
- 3. Консультант студента: электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст: электронный.
- 4. Университетская библиотека онлайн : электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст : электронный.
- 5. IPR BOOKS : электронно-библиотечная система. Красногорск. URL: http://www.iprbookshop.ru/. Текст : электронный.
- 6. Федеральная служба по экологическому, технологическому и атомному надзору (Ростехнадзор) : официальный сайт. Москва. https://www.gosnadzor.ru/. Текст : электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 8.

Таблица 8.1 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местополо- жение) учебных кабинетов
Специальные помещения:	ауд 319, корп. глав-
Компьютерный класс кафедры АЭМС - Персональный компьютер — 17 шт - Принтер HP1100 - Сканер	ный

Лист согласования РПД

Разработал доц. кафедры электромеханики	
им. А. Б. Зеленова (должность)	(Ф.И.О.) <u>И.А. Карпук</u> (Ф.И.О.)
(должность)	(подпись) (Ф.И.О.)
(должность)	(подпись) (Ф.И.О.)
Заведующий кафедрой	Д. И. Морозов (подпись) (Ф.И.О.)
Протокол № <u>1</u> заседания кафедры электромеханики им. А.Б. Зеленова	от 22.08.2024г.
Декан факультета	В. В. Дьячкова (Ф.И.О.)
Согласовано	
Председатель методической комиссии по направлению подготовки 13.03.02 Электроэнергетика и электротехника	(подпись) Л.Н. Комаревцева (Ф.И.О.)
Начальник учебно-методического центра	О.А. Коваленко (Ф.И.О.)

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения изменений		
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	
Осно	вание:	
Подпись лица, ответственного за внесение изменений		