Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Вишневский Дмитрий АПРИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Должность: Ректор (МИНОБРНАУКИ РОССИИ)

Дата подписания: 17.10.2025 15:06:46

Уникальный программный ключ:

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

03474917c4d012283e5ad996a48a5e70bf8d3057A3OBAТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

(ФГБОУ ВО «ДонГТУ»)

Факультет информационных технологий и автоматизации производственных процессов Кафедра электроники и радиофизики

> И.о проректора по учебной работе Д.В. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Электронн	ые и полупроводниковые приборы
-	(наименование дисциплины)
	03.03.03 Радиофизика
	(код, наименование направления)
Инженерно-физ	ические технологии в промышленности
	(профиль подготовки)
Квалификация	бакалавр
	(бакалавр/специалист/магистр)
Форма обучения	очная, очно-заочная
	(очная, очно-заочная, заочная)

1 Цели и задачи изучения дисциплины

Дисциплина «Электронные и полупроводниковые приборы» является основой теоретической подготовки бакалавров, направленной на формирование у студентов основных понятий об методах, компонентах и особенностях работы полупроводниковых приборов.

Цели дисциплины:

обеспечение ясного понимания студентами физических процессов, происходящих в полупроводниках, а также сформировать представление о принципах работы, методах изготовления и возможности применения полупроводниковых приборов и интегральных микросхем.

Задачи дисциплины:

получении студентами теоретических знаний и практических навыков работы с полупроводниковыми приборами.

Дисциплина направлена на формирование профессиональных (ПК-1, ПК-2) компетенций выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины: входит в обязательную часть блока 1 «Дисциплины (модули)» подготовки обучающихся по направлению 03.03.03 Радиофизика (профиль «Инженерно-физические технологии в промышленности»).

Дисциплина реализуется кафедрой электроники и радиофизики.

Основывается на базе дисциплин: «Высшая математика», «Молекулярная физика», «Электричество и магнетизм», «Атомная и ядерная физика».

Является основой для изучения следующих дисциплин: «Твердотельная электроника», «Физическая электроника», «Квантовая электроника. Квантовые приборы».

Дисциплина способствует углубленной подготовке к решению специальных практических профессиональных задач и формированию необходимых компетенций.

Общая трудоемкость освоения дисциплины составляет 3 зачетные единицы, 108 часов. Программой дисциплины предусмотрены лекционные (36 ак. ч.), практические (36 ак. ч.) занятия и самостоятельная работа обучающегося (36 ак. ч.). Дисциплина изучается в 4 семестре.

Для очно-заочной формы обучения программой дисциплины предусмотрены лекционные (14 ак.ч.), практические (12 ак.ч.), занятия и самостоятельная работа студента (82 ак.ч.). Дисциплина изучается в 5 семестре.

Форма промежуточной аттестации – экзамен.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Электронные и полупроводниковые приборы» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание компетенции	Код	Код и наименование индикатора
	компетен-	достижения компетенции
	ции	
Способность к осуществле-	ПК-1	ПК-1.1 Понимает принципы работы основ-
нию исследований физиче-		ного профессионального оборудования, про-
ских явлений радиофизиче-		изводит установку, настройку и анализирует
скими методами		работоспособность специализированного
		оборудования и вычислительных систем, ис-
		пользуемых в профессиональной области
Способен понимать прин-	ПК-2	ПК-2.2 Осваивает и применяет новейшие ме-
ципы работы и методы экс-		тоды проведения теоретических и экспери-
плуатации современной ра-		ментальных исследований в области профес-
диоэлектронной, оптиче-		сиональной деятельности
ской аппаратуры и оборудо-		
вания, и использовать ос-		
новные методы радиофизи-		
ческих измерений		

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 3 зачетные единицы, 108 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим занятиям, текущему контролю, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам 4
Аудиторная работа, в том числе:	72	72
Лекции (Л)	36	36
Практические занятия (ПЗ)	36	36
Лабораторные работы (ЛР)	1	-
Курсовая работа/курсовой проект	1	-
Самостоятельная работа студентов (СРС), в том числе:	36	36
Подготовка к лекциям	9	9
Подготовка к лабораторным работам	ı	-
Подготовка к практическим занятиям / семинарам	9	9
Выполнение курсовой работы / проекта	1	-
Расчетно-графическая работа (РГР)	1	
Реферат (индивидуальное задание)	1	-
Домашнее задание (индивидуальное задание)	I	-
Подготовка к контрольной работе	-	-
Подготовка к коллоквиуму	8	8
Аналитический информационный поиск	1	-
Работа в библиотеке	1	-
Подготовка к экзамену	10	10
Промежуточная аттестация – экзамен	Э	Э
Общая трудоемкость дисциплины		
ак.ч.	108	108
3.e.	3	3

5 Содержание дисциплины

С целью освоения компетенций, приведенной в п.3 дисциплина разбита на 8 тем:

- Тема 1. Вступление в дисциплину.
- Тема 2. Полупроводниковые материалы.
- Тема 3. Движение электрических зарядов в полупроводниках.
- Тема 4. Электронно-дырочный переход.
- Тема 5. Схемные функции диодов.
- Тема 6. Параметры и характеристики биполярных транзисторов.
- Тема 7. Полевые транзисторы.
- Тема 8. Планарные технологии в электронике.

Виды занятий по дисциплине и распределение аудиторных часов приведены в таблицах 3 и 4.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	пнятии по дисциплине и распределение а Содержание лекционных занятий	Трудоемкость в ак.ч.	· · · · · · · · · · · · · · · · · · ·	Трудоемкость в ак.ч.	Тема	Трудоемкость в ак.ч.
	<u>, </u>	4-	й семестр			,	,
1	Вступление в дисциплину.	Содержание и задачи курса. Основные положения. Современные требования к полупроводниковым приборам.	2	Расчет концентрацииносителей в ПП.	4	-	-
2	Полупроводни- ковые материалы.	Классификация полупроводниковых материалов. Кристаллическая структура полупроводников (ПП). Природа химических связей в элементарных полупроводниках. Зонная структура полупроводников. Носители заряда в полупроводниках - электроны и дырки. Собственная концентрация носителей заряда. Примесные полупроводники. Основные и неосновные носители заряда в ПП. Закон действующих масс.	6	Дрейфовые и диффузионые	10	-	-
3	Движение электрических зарядов в полупроводниках.	Электропроводность полупроводников и ее связь с энергией активации. Влияние примесей на электропроводность. Температурная зависимость электропроводности. Подвижность носителей заряда в ПП. Влияние механизмов рассеяния на подвижность носителей в ЧП. Неравновесие проводимость. Дрейфовый и диффузный токи в ПП. Уравнение непрерывности. Соотношение Эйнштейна.	6	токи в ПП -		-	-
4	Электронно-дырочный переход.	Равновесное состояние перехода. Основные параметры перехода: потенциальный барьер, толщина, напряженность полю. Зонная модель	6	Статистика но- сителей заряда в ПП	6	-	-

 \neg

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практиче- ских занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		ряда через переход. Вольт-амперная характеристика перехода. Тепловой ток.					
5	Схемные функ- ции диодов.	Классификация полупроводниковых диодов. Выпрямительные диоды на основе p-n-переходов и барьеров Шоттки. Зависимость параметров диодов от технологии их изготовления. Особенности конструкции выпрямительных диодов. Коэффициент инжекции. Реальные вольт-амперные характеристики диодов. Пробой p-n-перехода. Вольт-амперные характеристики при пробое. Стабилитроны. Варисторы. Сверхвысокочастотные выпрямительные и преобразовательные диоды. Зависимость критической частоты от конструкции и сопротивления базы диодов. Туннельные диоды, их основные высокочастотные особенности, p-u-n диоды. Особенности работы диодов в схемах.	4	Контакт металл- металл, металл- полупроводник	4	-	-
6	Параметры и характеристики билолярных транзисторов.	Принцип действия биполярных транзисторов. Статические вольт- амперные характеристики. Понятие об эффективности эмиттера, коэффициент переноса неосновных носителей заряда, коэффициент усиления тока. Коэффициент усиления тока в схемах с заземленной базой и заземленным эмиттером. Обратная связь в транзисторах. Понятие о граничной частоте. Частотные зависимости коэффициентов усиления тока в схемах с заземленной базой или эмиттером. Понятие о критической частоте. Методы повышения критической частоты. Дрейфовые транзисторы. СВЧ-транзисторы,	4	Переход в равновесном и неравновесном состоянии	4	-	-

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практиче- ских занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		высокочастотные транзисторы. Их характеристики, конструкции, геометрия.					
7	Полевые транзисторы.	Полевой транзистор с p-n-переходом. Эффект поля. Распределение потенциала и поля в приборе. Статические вольт-амперные характеристики. Типы и основные параметры транзисторов с p-n- переходом. Полевой транзистор металл-оксид-полупроводник. Принцип работы транзистора. Распределение потенциала и поля в приборе. Расчет статических вольт-амперных характеристик. Типы и основные параметры транзисторов. Высокочастотные свойства. Работа полевых транзисторов в схеме.	4	Расчет простых электронных схем на основе биполярных транзисторов.	4	-	-
8	Планарные технологии в электронике.	Основные принципы планарной технологии. Типичная схема технологического процесса, перспективы развития.	4	Исследование полевых транзи- сторов	4	-	-
	Всего аудиторных	х часов за семестр	36	36	•		

_

Таблица 4 – Виды занятий по дисциплине и распределение аудиторных часов (очно-заочная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практиче- ских занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.	
		5-	й семестр					
1	Вступление в дисциплину.	Содержание и задачи курса. Основные положения. Современные требования к полупроводниковым приборам.	1	Расчет концентрацииносителей в ПП.	1	-	-	
2	Полупроводни- ковые материалы.	Классификация полупроводниковых материалов. Кристаллическая структура полупроводников (ПП). Природа химических связей в элементарных полупроводниках. Зонная структура полупроводников. Носители заряда в полупроводниках - электроны и дырки. Собственная концентрация носителей заряда. Примесные полупроводники. Основные и неосновные носители заряда в ПП. Закон действующих масс.	2	Дрейфовые и диффузионые	3	-	-	
3	Движение электрических зарядов в полупроводниках.	Электропроводность полупроводников и ее связь с энергией активации. Влияние примесей на электропроводность. Температурная зависимость электропроводности. Подвижность носителей заряда в ПП. Влияние механизмов рассеяния на подвижность носителей в ЧП. Неравновесие проводимость. Дрейфовый и диффузный токи в ПП. Уравнение непрерывности. Соотношение Эйнштейна.	2	токи в ПП -	-		-	-
4	Электронно-дырочный переход.	Равновесное состояние перехода. Основные параметры перехода: потенциальный барьер, толщина, напряженность полю. Зонная модель перехода. Контакт между полупроводниками	2	Статистика но- сителей заряда в ПП	2	-	-	

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практиче- ских занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		одного типа проводимости. Диффузная и барьерная емкости перехода. Потоки носителей заряда через переход. Вольт-амперная характеристика перехода. Тепловой ток.					
5	Схемные функ- ции диодов.	Классификация полупроводниковых диодов. Выпрямительные диоды на основе p-n- переходов и барьеров Шоттки. Зависимость параметров диодов от технологии их изготовления. Особенности конструкции выпрямительных диодов. Коэффициент инжекции. Реальные вольт-амперные характеристики диодов. Пробой p-n-перехода. Вольт-амперные характеристики при пробое. Стабилитроны. Варисторы. Сверхвысокочастотные выпрямительные и преобразовательные диоды. Зависимость критической частоты от конструкции и сопротивления базы диодов. Туннельные диоды, их основные высокочастотные особенности, p-и-n диоды. Особенности работы диодов в схемах.	2	Контакт металл- металл, металл- полупроводник	2	-	-
6	Параметры и характеристики билолярных транзисторов.	Принцип действия биполярных транзисторов. Статические вольт- амперные характеристики. Понятие об эффективности эмиттера, коэффициент переноса неосновных носителей заряда, коэффициент усиления тока. Коэффициент усиления тока в схемах с заземленной базой и заземленным эмиттером. Обратная связь в транзисторах. Понятие о граничной частоте. Частотные зависимости коэффициентов усиления тока в схемах с заземленной базой или эмиттером. Понятие о критической частоте. Методы повышения критической частоты. Дрейфовые транзисторы. СВЧ-транзисторы,	2	Переход в равновесном и неравновесном состоянии	2	-	-

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практиче- ских занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		высокочастотные транзисторы. Их характеристики, конструкции, геометрия.					
7	Полевые транзисторы.	Полевой транзистор с p-n-переходом. Эффект поля. Распределение потенциала и поля в приборе. Статические вольт-амперные характеристики. Типы и основные параметры транзисторов с p-n- переходом. Полевой транзистор металл-оксид-полупроводник. Принцип работы транзистора. Распределение потенциала и поля в приборе. Расчет статических вольт-амперных характеристик. Типы и основные параметры транзисторов. Высокочастотные свойства. Работа полевых транзисторов в схеме.	2	Расчет простых электронных схем на основе биполярных транзисторов.	1	-	-
8	Планарные технологии в электронике.	Основные принципы планарной технологии. Типичная схема технологического процесса, перспективы развития.	1	Исследование полевых транзи- сторов	1	-	-
	Всего аудиторных часов за 5-й семестр		14	12		-	
	Всего аудиторных	х часов за семестр	14	12		-	

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетен- ции	Способ оценива- ния	Оценочное средство
ПК-1, ПК-2	Экзамен	Комплект контролирующих материалов для экзамена

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- тестовый контроль или устный опрос на коллоквиумах (2 коллоквиума) – всего 60 баллов;
 - за выполнение практических работ всего 40 баллов.

Экзамен проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Экзамен по дисциплине проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время экзамена студент имеет право повысить итоговую оценку. Экзамен по дисциплине проводится в форме устного экзамена по вопросам, представленным ниже, либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашнее задание

В качестве домашнего задания обучающиеся выполняют:

- проработка лекционного материала;
- Подготовка к практическим занятиям.

6.3 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

- 1. Что такое полупроводниковый диод, и как он работает?
- 2. Каковы основные характеристики вольт-амперной характеристики диода?
 - 3. Что такое p-n-переход, и как он образуется?
 - 4. Каковы основные параметры p-n-перехода?
 - 5. Что такое барьерная ёмкость p-n-перехода?
 - 6. Как работает стабилитрон, и где он применяется?
 - 7. Что такое варикап, и как он используется?
 - 8. Как работает светодиод (LED)?
 - 9. Что такое фотодиод, и как он работает?
 - 10. Как работает солнечный элемент на основе p-n-перехода?
 - 11. Что такое биполярный транзистор (БТ), и как он устроен?
 - 12. Каковы основные режимы работы биполярного транзистора?
 - 13. Что такое коэффициент усиления биполярного транзистора?
 - 14. Как работает полевой транзистор (ПТ)?

6.4 Вопросы для подготовки к экзамену

- 15. Каковы основные различия между полевыми и биполярными транзисторами?
 - 16. Что такое MOSFET, и как он работает?
 - 17. Что такое JFET, и каковы его особенности?
 - 18. Как работает тиристор, и где он применяется?
 - 19. Что такое симистор, и как он работает?

- 20. Как работает оптоэлектронный прибор (оптопара)?
- 21. Что такое лазерный диод, и как он работает?
- 22. Как работает фотодиод в режиме фотоприёмника?
- 23. Что такое транзисторная структура IGBT, и где она применяется?
- 24. Как работает полевой транзистор с изолированным затвором (IGBT)?
 - 25. Что такое туннельный диод, и как он работает?
 - 26. Как работает диод Шоттки, и каковы его преимущества?
 - 27. Что такое PIN-диод, и где он применяется?
 - 28. Как работает лавинный диод, и каковы его особенности?
 - 29. Что такое терморезистор, и как он работает?
 - 30. Как работает вакуумный диод, и где он применяется?
 - 31. Что такое электронная лампа, и как она работает?
 - 32. Как работает магнетрон, и где он применяется?
 - 33. Что такое клистрон, и как он работает?
 - 34. Как работает лампа бегущей волны (ЛБВ)?
 - 35. Что такое полупроводниковый датчик Холла, и как он работает?
 - 36. Как работает термопара, и где она применяется?
- 37. Что такое пьезоэлектрический эффект, и как он используется в приборах?
 - 38. Как работает пьезоэлектрический излучатель?
 - 39. Что такое сегнетоэлектрики, и где они применяются?
 - 40. Как работают жидкокристаллические дисплеи (LCD)?
 - 41. Что такое органические светодиоды (OLED), и как они работают?
 - 42. Как работает полупроводниковый лазер?
 - 43. Что такое квантовые точки, и как они используются в приборах?
 - 44. Как работает полевой транзистор на основе графена?
 - 45. Что такое полупроводниковый диод, и как он работает?
- 46. Каковы основные характеристики вольт-амперной характеристики диода?
 - 47. Что такое p-n-переход, и как он образуется?
 - 48. Каковы основные параметры р-п-перехода?
 - 49. Что такое барьерная ёмкость р-п-перехода?
 - 50. Как работает стабилитрон, и где он применяется?
 - 51. Что такое варикап, и как он используется?
 - 52. Как работает светодиод (LED)?
 - 53. Что такое фотодиод, и как он работает?
 - 54. Как работает солнечный элемент на основе p-n-перехода?
 - 55. Что такое биполярный транзистор (БТ), и как он устроен?

- 56. Каковы основные режимы работы биполярного транзистора?
- 57. Что такое коэффициент усиления биполярного транзистора?
- 58. Как работает полевой транзистор (ПТ)?

6.6 Примерная тематика курсовых работ

Курсовые работы не предусмотрены.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Прохоров, В. А. Полупроводниковые преобразователи электрической энергии: учебное пособие / В.А. Прохоров. Москва: ИНФРА-М, 2023. 315 с. (Высшее образование: Бакалавриат). DOI 10.12737/1019082. ISBN 978-5-16-015168-7. Текст: электронный. URL: https://znanium.com/catalog/product/1877102 (дата обращения: 20.03.2024).
- 2. Астапенко, Э. С. Полупроводниковые приборы и их применение: учебное пособие / Э. С. Астапенко, А. Н. Деренок. Томск: Изд-во Том. гос. архит.-строит. ун-та, 2021. 64 с. ISBN 978-5-93057-976-5. Текст: электронный. URL: https://znanium.ru/catalog/product/2157976 (дата обращения: 20.03.2024).

Дополнительная литература

- 1. Панюшкин, Н.Н. Физика полупроводников и полупроводниковые приборы: Учебное пособие / Панюшкин Н.Н. Воронеж: ВГЛТУ им. Г.Ф. Морозова, 2016. 131 с. Текст: электронный. URL: https://znanium.ru/catalog/product/858616 (дата обращения: 20.03.2024).
- 2. Орлов, Г. В. Полупроводниковые элементы электронных устройств: учебное пособие по курсам «Электронные устройства роботов», «Электронные устройства в мехатронике» / Г. В. Орлов, А. К. Токарев; под. ред. Г. В. Орлова. Москва: Изд-во МГТУ им. Баумана, 2009. 92 с. Текст: электронный. URL: https://znanium.ru/catalog/product/2161625 (дата обращения: 20.03.2024).

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт. Алчевск. URL: https://library.dontu.ru. Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова: официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст: электронный.
- 3. Консультант студента: электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст: электронный.
- 4. Университетская библиотека онлайн: электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст: электронный.
- 5. IPR BOOKS: электронно-библиотечная система. Красногорск. URL: http://www.iprbookshop.ru/. —Текст: электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям $\Phi\Gamma$ OC BO.

Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местополо- жение) учебных кабинетов
Аудитории для проведения лекционных и практических занятий, для самостоятельной работы: Компьютерный класс Персональные компьютеры, локальная сеть с выходом в Internet, проектор Epson, мультимедийный экран, тематические стенды.	ауд. <u>434, 413, 422</u> корп. <u>главный</u>

Лист согласования РПД

Разработал:		
Доцент кафедры электроники и радиофизики (должность)	(подпись)	<u>Р.Р. Пепенин</u> (Ф.И.О.)
Старший преподаватель кафедры электроники и радиофизики (должность)	(подпись)	<u>Р.В. Эссельбах</u> (Ф.И.О.)
И.о. заведующего кафедрой электроники и радиофизики	(подпись)	<u>А.М.Афанасьев</u> (Ф.И.О.)
Протокол № <u>/</u> заседания кафедры электроники и радиофизики от	30.08 202h	,

И.о. декана факультета информационных технологий и автоматизации производственных процессов

іись)

З.В. <u>Дьячкова</u> (Ф.И.О.)

Согласовано:

Председатель методической комиссии по направлению подготовки 03.03.03 Радиофизика (профиль «Инженерно-физические технологии в промышленности»)

(подпись)

А.М.Афанасьев (Ф.И.О.)

Начальник учебно-методического центра

(подпись)

О.А. Коваленко (Ф.И.О.)

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения		
изменений		
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	
Основание:		
П	v	
Подпись лица, ответственного за внесение изменений		