Документ подписан простой электронной подписью

Информация о владельце:

Уникальный программный ключ:

Дата подписания: 17.10.2025 15:06:46

ФИО: Вишневский Дмитрий Александрович Должность: Ректор ИИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИИО (МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ 03474917c4d012283e5ad996a4835e70bBAТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

информационных технологий и автоматизации Факультет производственных процессов электроники и радиофизики Кафедра **УТВЕРЖДАЮ** И.о. проректора по учебной работе Д.В. Мулов РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Техническая электродинамика (наименование дисциплины) 03.04.03 Радиофизика (код, наименование направления) Инженерно-физические технологии в промышленности (магистерская программа) магистр Квалификация (бакалавр/специалист/магистр) очная, очно-заочная Форма обучения

(очная, очно-заочная, заочная)

1 Цели и задачи изучения дисциплины

Цели дисциплины. Ознакомление студентов с основными математическими методами, применяемыми в современной прикладной электродинамике, а также с проблемами и перспективами развития данной области. Формирование навыков применения законов электродинамики к решению задач антенно-волноводной техники.

Задачи изучения дисциплины:

- ознакомление с основными математическими методами, применяемыми в современной прикладной электродинамике.
- классификация задач, стоящих перед разработчиками современной радиоэлектроники.
- овладение основными методами решения задач в области прикладной электродинамики.
- усвоение основных математических методов, применяемых в современной электродинамике.

Дисциплина направлена на формирование общепрофессиональной (ОПК-1) компетенции выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины — курс входит в формируемую участниками образовательных отношений часть блока 1 подготовки обучающихся по направлению 03.04.03 Радиофизика.

Дисциплина реализуется кафедрой электроники и радиофизики.

Основывается на базе дисциплин: «Электричество и магнетизм», «Теория колебаний».

Является основой для изучения следующих дисциплин: «Квантовые и оптические технологии», «Техника и электроника СВЧ», «Дополнительные главы квантовой и оптической электроники».

Дисциплина способствует углубленной подготовке к решению специальных практических профессиональных задач и формированию необходимых компетенций.

Общая трудоемкость освоения дисциплины составляет 5 зачетных единицы, 180 часов. Программой дисциплины предусмотрены лекционные (36 ак.ч.), практические (36 ак.ч.), лабораторные (18 ак.ч.) занятия и самостоятельная работа обучающегося (90 ак.ч.). Дисциплина изучается во 2 семестре.

Для очно-заочной формы обучения программой дисциплины предусмотрены лекционные (12 ак.ч.), практические (12 ак.ч.), лабораторные (8 ак.ч.) занятия и самостоятельная работа студента (148 ак.ч.). Дисциплина изучается во 2 семестре.

Форма промежуточной аттестации – экзамен.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Техническая электродинамика» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание компетенции	Код	Код и наименование индикатора
	компетен-	достижения компетенции
	ции	
Способен применять фун-	ОПК-1	ОПК-1.1. Формулирует цель и задачи науч-
даментальные знания в об-		ных исследований в соответствии с тенден-
ласти физики и радиофи-		циями и перспективами современной фи-
зики для решения научно-		зики, обоснованно выбирает теоретические
исследовательских задач, в		и экспериментальные методы и средства ре-
том числе в сфере педаго-		шения сформулированных задач, в том
гической деятельности.		числе в сфере педагогической деятельности.
		ОПК-1.2. Применяет специализированные
		знания в области физики и радиофизики при
		решении конкретных задач в области науч-
		ных исследований в соответствии с профи-
		лем подготовки в зависимости от специфики
		объекта исследования.

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 5 зачетных единиц, 180 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим и лабораторным занятиям, текущему контролю, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам 2	
Аудиторная работа, в том числе:	90	90	
Лекции (Л)	36	36	
Практические занятия (ПЗ)	36	36	
Лабораторные работы (ЛР)	18	18	
Курсовая работа/курсовой проект	-	-	
Самостоятельная работа студентов (СРС), в том числе:	90	90	
Подготовка к лекциям	9	9	
Подготовка к лабораторным работам	18	18	
Подготовка к практическим занятиям / семинарам	36	36	
Выполнение курсовой работы / проекта	-	-	
Расчетно-графическая работа (РГР)	-		
Реферат (индивидуальное задание)	ı	-	
Домашнее задание (индивидуальное задание)	1	-	
Подготовка к контрольной работе	ı	-	
Подготовка к коллоквиуму	8	8	
Аналитический информационный поиск	-	-	
Работа в библиотеке	1	-	
Подготовка к экзамену	19	19	
Промежуточная аттестация – экзамен	Э	Э	
Общая трудоемкость дисциплины			
ак.ч.	180	180	
3.e.	5	5	

5 Содержание дисциплины

С целью освоения компетенций, приведенной в п.3 дисциплина разбита на 10 тем:

- тема 1. Электромагнитные волны в направляющих структурах.
- тема 2. Т-волны в многосвязных направляющих системах.
- тема 3. Волны в металлических волноводах.
- тема 4. Направляющие системы с медленными волноводными волнами.
 - тема 5. Электромагнитные поля в колебательных системах.
 - тема 6. Элементы теории возбуждения волноводов и резонаторов.
 - тема 7. Волновые матрицы. Матрица рассеяния.
 - тема 8. Многополюсники СВЧ.
 - тема 9. Невзаимные устройства СВЧ.
 - тема 10. Численное решение задач электродинамики.

Виды занятий по дисциплине и распределение аудиторных часов приведены в таблицах 3 и 4.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных за- нятий	Трудоемкость в ак.ч.
			2-й семестр				
1	Электромагнитные волны в направляющих структурах.	Понятие направляющей системы, регулярные направляющие системы. Типы направляющих систем: односвязные НС (полые металлические волноводы), многосвязные НС (линии Т-волн), диэлектрические и металлодиэлектрические волноводы, световоды, искусственные замедляющие системы. Физическая и математическая модели граничных задач для направляющих систем. Мембранные уравнения, их решение методом разделения переменных. Собственные функции, собственные волны НС. Классы и моды собственных волн.	4	Погонные параметры линий передачи. Круговая диаграмма	4	Т-волны в длинных ли- ниях	2
2	Т-волны в много- связных направля- ющих системах.	Системы с распределенными параметрами. Квазистационарность поля в поперечном сечении; волны тока и напряжения длинной линии; волновое сопротивление длинной линии. Т-волны коаксиальной линии, поля, напряжения, ток, волновое сопротивление коаксиальной линии; перенос мощности волной линии. Режим в линии, нагруженной на сосредоточенное сопротивление; КБВ, КСВ, коэффициент отражения; линия как трансформатор напряжения, тока, сопротивления; свойства отрезков линии разной длины; четверть волновой трансформатор, изолятор. Построение	4	Одношлейфное согласование линии с нагрузкой	4	Волны в волноводах	2

~1

0	0

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных за- нятий	Трудоемкость в ак.ч.
		круговой диаграммы сопротивлений (проводимостей) длинной линии; связь круговой диаграммы сопротивлений и векторной диаграммы напряжений и токов в линии. Узкополосное согласования линии с нагрузкой. Затухание Т-волн в длинных линиях. Коэффициент затухания волны коаксиальной линии за счет конечной проводимости стенок; условие минимальных					
3	Волны в металлических волноводах.	потерь в линии. Особенности волн в волноводах, «Н» и «Е»-волны. Мембранные уравнения для волновода, прямоугольный волновод; решение мембранного уравнения; собственные функции волновода; критические частоты. Явление волноводной дисперсии; фазовая скорость и длина волны в волноводе. Картины полей и поверхностных токов в волноводе. Перенос мощности по волноводу; нормировка собственной функции основного типа. Распространение радиоимпульса по волноводу; групповая скорость. Учет потерь в стенках волновода.	3	Затухание волн в линиях передачи	3	Согласование линии пере- дачи с нагруз- кой	3
4	Направляющие си- стемы с медлен- ными волновод- ными волнами.	Разновидности конструкций волноводов медленных волн. Особенности граничных задач для открытых направляющих систем. Анализ однородной граничной задачи для плоского диэлектрического волновода (ПДВ). Классы и моды поверхностных волн ПДВ. Решение дисперсионных уравнений. Основные и высшие моды.	3	Резонансы в отрезках линий передач. Прямоугольный и цилиндрический резонаторы	3	Одношлейфное согласование волновода с нагрузкой	3

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных за- нятий	Трудоемкость в ак.ч.
		Картины полей некоторых мод. Особенности поведения полей в близи критической частоты. Коэффициент замедления, эф-					
		фективное сечение волновода. Особенности расчета переносимой мощности и затухания поверхностных волн. Сведения о диэлектрических волноводах других форм поперечного сечения. Области практиче-					
		ского применения волноводов медленных волн. Световоды.					
	Электромагнитные поля в колебательных системах.	Принципы построения СВЧ колебательных систем, типы и разновидности конструкций резонаторов, применение резонаторов в устройствах СВЧ. Свойства шлейфов-отрезков линии, оканчивающихся коротким замыканием или холостым ходом. Распределение тока и напряжения, частотная зависимость входного импеданса. Частотные и временные харак-		Возбуждение волноводов шты- рем и щелью	4	Исследование полоскового С ВЧ резонатора	2

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных за- нятий	Трудоемкость в ак.ч.
6	Элементы теории возбуждения волноводов и резонаторов.	Способы представления сторонних источников. Теоремы разложения вынужденных полей в направляющих системах. Метод собственных функций и его применение к расчету возбуждения волн в направляющих системах и колебаний в резонаторах. Конструкции возбуждающих устройств.	4	Обработка данных измерений: исключение выбросов, построение регрессионной модели	4	Исследование щелевого излу- чателя в прово- дящей плоско- сти	2
7	Волновые матрицы. Матрица рассеяния.	Волновые многополюсники. Волновые матрицы. Нормировка амплитуд волн. Определение матрицы рассеяния, особенности ее нормировки, физический смысл, основные свойства. Матрица рассеяния в цепях с сосредоточенными и распределенными параметрами. Понятие эквивалентных схем.	4	Многополюсники СВЧ. Волновые матрицы	4	Исследование волноводных четырехполюсников с поперечными неодностями	2
8	Многополюсники СВЧ.	Неоднородности в линиях передачи. Стыки линий передачи. Разветвления. Эквивалентные схемы и матричные модели неоднородностей. Фильтры СВЧ. Реализация фильтров в виде волноводных, коаксиальных, полосковых и микрополосковых конструкций. Перестраиваемые фильтры. Направленные ответвители, мосты. Идеальный направленный ответвитель. Виды и реализация направленных ответвителей в виде волноводных, коаксиальных, полосковых и микрополосковых конструкций. Характеристики направленных ответвителей.	3	Неоднородности в линиях передачи	3	Волноводные направленные ответвители и мосты	2

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных за- нятий	Трудоемкость в ак.ч.
9	Невзаимные устройства СВЧ.	Ферритовые устройства СВЧ: волноводные, коаксиальные, полосковые и микрополосковые фазовращатели, вентили, циркуляторы, ограничители и др.	3	Направленные ответвители.	3		
10	Численное решение задач электродинамики.	Методы конечных элементов и конечных разностей. Метод конечных разностей во временной области. Принцип декомпозиции. Модели базовых элементов разных уровней. Составление модели сложного объекта.	4	Ферритовые устройства СВЧ	4		
-	Всего аудиторных	часов за 1-й семестр	36	36		18	
-	Всего аудиторных часов за семестр		36	36		18	

Таблица 4 – Виды занятий по дисциплине и распределение аудиторных часов (очно-заочная форма обучения)

1 аолі	ица 4 – Виды зан	иятий по дисциплине и распределени	е аудиторнь	іх часов (очно-зао	чная форма	обучения)	
№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных за- нятий	Трудоемкость в ак.ч.
			2-й семестр				
1	Электромагнитные волны в направляющих структурах.	Понятие направляющей системы, регулярные направляющие системы. Типы направляющих систем: односвязные НС (полые металлические волноводы), многосвязные НС (линии Т-волн), диэлектрические и металлодиэлектрические волноводы, световоды, искусственные замедляющие системы. Физическая и математическая модели граничных задач для направляющих систем. Мембранные уравнения, их решение методом разделения переменных. Собственные функции, собственные волны НС. Классы и моды собственных волн.	1	Погонные пара- метры линий пе- редачи. Круговая диаграмма	1	Т-волны в длинных ли- ниях	2
2	Т-волны в много- связных направля- ющих системах.	Системы с распределенными параметрами. Квазистационарность поля в поперечном сечении; волны тока и напряжения длинной линии; волновое сопротивление длинной линии. Т-волны коаксиальной линии, поля, напряжения, ток, волновое сопротивление коаксиальной линии; перенос мощности волной линии. Режим в линии, нагруженной на сосредоточенное сопротивление; КБВ, КСВ, коэффициент отражения; линия как трансформатор напряжения, тока, сопротивления; свойства отрезков линии разной длины; четверть волновой трансформатор, изолятор. Построение	1	Одношлейфное согласование линии с нагрузкой	1	Волны в волноводах	2

12

		вой диаграммы сопротивлений и векторной диаграммы напряжений и токов в линии. Узкополосное согласования линии с нагрузкой. Затухание Т-волн в длинных линиях. Коэффициент затухания волны коаксиальной линии за счет конечной проводимости стенок; условие минимальных потерь в линии.						
3	Волны в металлических волноводах.	Особенности волн в волноводах, «Н» и «Е»-волны. Мембранные уравнения для волновода, прямоугольный волновод; решение мембранного уравнения; собственные функции волновода; критические частоты. Явление волноводной дисперсии; фазовая скорость и длина волны в волноводе. Картины полей и поверхностных токов в волноводе. Перенос мощности по волноводу; нормировка собственной функции основного типа. Распространение радиоимпульса по волноводу; групповая скорость. Учет потерь в стенках волновода.	2	Затухание волн в линиях передачи	2	Согласование линии передачи с нагрузкой	2	
4	Направляющие си- стемы с медлен- ными волновод- ными волнами.	Разновидности конструкций волноводов медленных волн. Особенности граничных задач для открытых направляющих систем. Анализ однородной граничной задачи для плоского диэлектрического волновода (ПДВ). Классы и моды поверхностных волн ПЛВ. Решение лисперсионных	1	Резонансы в отрезках линий передач. Прямоугольный и цилиндрический резонаторы	1	Исследование щелевого излу- чателя в прово- дящей плоско- сти	2	

в ак.ч.

Наименование

темы (раздела)

дисциплины

Содержание лекционных занятий

круговой диаграммы сопротивлений (проводимостей) длинной линии; связь круго-

ных волн ПДВ. Решение дисперсионных уравнений. Основные и высшие моды.

 $N_{\underline{0}}$

 Π/Π

Тема

нятий

в ак.ч.

Трудоемкость Темы практических Трудоемкость лабораторных за-Трудоемкость

в ак.ч.

занятий

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных за- нятий	Трудоемкость в ак.ч.
		Картины полей некоторых мод. Особенности поведения полей в близи критической частоты. Коэффициент замедления, эффективное сечение волновода. Особенности расчета переносимой мощности и затухания поверхностных волн. Сведения о диэлектрических волноводах других форм поперечного сечения. Области практического применения волноводов медленных волн. Световоды.					
5	Электромагнитные поля в колебательных системах.	Принципы построения СВЧ колебательных систем, типы и разновидности конструкций резонаторов, применение резонаторов в устройствах СВЧ. Свойства шлейфов-отрезков линии, оканчивающихся коротким замыканием или холостым ходом. Распределение тока и напряжения, частотная зависимость входного импеданса. Частотные и временные характеристики резонаторов на отрезках линий. Примеры анализа однородных граничных задач для объемных резонаторов. Собственные функции объемного резонатора, их ортогональность, нормировка и полнота. Классы и моды собственных колебаний. Резонаторы бегущей волны. Проходные резонаторы. Учет реальных потерь в резонаторах, собственная добротность резонатора, комплексная частота свободных колебаний. Нагруженная добротность резонатора.	2	Возбуждение волноводов шты- рем и щелью	2		

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных за- нятий	Трудоемкость в ак.ч.
6	Элементы теории возбуждения волноводов и резонаторов.	Способы представления сторонних источников. Теоремы разложения вынужденных полей в направляющих системах. Метод собственных функций и его применение к расчету возбуждения волн в направляющих системах и колебаний в резонаторах. Конструкции возбуждающих устройств.	1	Обработка данных измерений: исключение выбросов, построение регрессионной модели	1		
7	Волновые матрицы. Матрица рассеяния.	Волновые многополюсники. Волновые матрицы. Нормировка амплитуд волн. Определение матрицы рассеяния, особенности ее нормировки, физический смысл, основные свойства. Матрица рассеяния в цепях с сосредоточенными и распределенными параметрами. Понятие эквивалентных схем.	1	Многополюс- ники СВЧ. Волно- вые матрицы	1	-	-
8	Многополюсники СВЧ.	Неоднородности в линиях передачи. Стыки линий передачи. Разветвления. Эквивалентные схемы иматричные модели неоднородностей. Фильтры СВЧ. Реализация фильтров в виде волноводных, коаксиальных, полосковых и микрополосковых конструкций. Перестраиваемые фильтры. Направленные ответвители, мосты. Идеальный направленный ответвитель. Виды и реализация направленных ответвителей в виде волноводных, коаксиальных, полосковых и микрополосковых конструкций. Характеристики направленных ответвителей.	1	Неоднородности в линиях передачи	1	-	-

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных за- нятий	Трудоемкость в ак.ч.
9	Невзаимные устройства СВЧ.	Ферритовые устройства СВЧ: волноводные, коаксиальные, полосковые и микрополосковые фазовращатели, вентили, циркуляторы, ограничители и др.	1	Направленные ответвители.	1		
10	Численное решение задач электродинамики.	Методы конечных элементов и конечных разностей. Метод конечных разностей во временной области. Принцип декомпозиции. Модели базовых элементов разных уровней. Составление модели сложного объекта.	1	Ферритовые устройства СВЧ	1		
Всего аудиторных часов за 1-й семестр			12	12		8	
Всего аудиторных часов за семестр			12	12		8	

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценива- ния	Оценочное средство
ОПК-1	Экзамен	Комплект контролирующих материалов для экзамена

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- тестовый контроль или устный опрос на коллоквиумах (2 коллоквиума) всего 40 баллов;
 - за выполнение практических работ всего 30 баллов.
 - за выполнение лабораторных работ всего 30 баллов.

Экзамен проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Экзамен по дисциплине проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время экзамена студент имеет право повысить итоговую оценку. Экзамен по дисциплине проводится в форме устного экзамена по вопросам, представленным ниже, либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале	
учебной деятельности	зачёт/экзамен	
0-59	Не зачтено/неудовлетворительно	
60-73	Зачтено/удовлетворительно	
74-89	Зачтено/хорошо	
90-100	Зачтено/отлично	

6.2 Домашнее задание

В качестве домашнего задания обучающиеся выполняют:

- проработка лекционного материала;
- выполнение практических заданий;
- подготовка к выполнению лабораторных работ.

6.3 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

- 1. Какие уравнения составляют основу электродинамики?
- 2. Что такое уравнения Максвелла и как они связаны с электромагнитными полями?
 - 3. Какие граничные условия используются в электродинамике?
 - 4. Что такое волновое уравнение и как оно выводится из уравнений
 - 5. Какие типы электромагнитных волн существуют?
- 6. Что такое направляющая система и какие типы направляющих систем вы знаете?
 - 7. Какие типы волн могут распространяться в волноводах?
 - 8. Что такое Т-волны и где они применяются?
 - 9. Что такое мембранные уравнения и как они применяются в волно
 - 10. Что такое затухание волн в волноводах и от чего оно зависит?
 - 11. Как решаются внешние задачи электродинамики с помощью
 - 12. Как используется метод эталонных уравнений в электродинамике?
 - 13. Какие основные задачи решаются при синтезе антенн?
 - 14. Какие типы антенн вы знаете и где они применяются?
 - 15. Как рассчитываются параметры многополюсников?
 - 16. Как рассчитываются собственные частоты резонаторов?
 - 17. Что такое добротность резонатора и как она определяется?
 - 18. Какие типы колебательных систем используются в СВЧ-технике?
- 19. Как рассчитываются поля в волноводах при возбуждении сторон ними источниками?

6.4 Вопросы для подготовки к экзамену

- 1. Какие уравнения составляют основу электродинамики?
- 2. Что такое уравнения Максвелла и как они связаны с электромагнитными полями?
 - 3. Какие граничные условия используются в электродинамике?
- 4. Что такое волновое уравнение и как оно выводится из уравнений Максвелла?
 - 5. Какие типы электромагнитных волн существуют?
- 6. Что такое направляющая система и какие типы направляющих систем вы знаете?
 - 7. Какие типы волн могут распространяться в волноводах?
 - 8. Что такое Т-волны и где они применяются?
- 9. Какие особенности распространения волн в металлических волноводах?
 - 10. Что такое критические частоты в волноводах?
 - 11. Как определяется фазовая и групповая скорость волн в волноводе?
- 12. Что такое мембранные уравнения и как они применяются в волноводах?
 - 13. Какие моды волн существуют в прямоугольном волноводе?
 - 14. Как происходит перенос мощности в волноводе?
 - 15. Что такое затухание волн в волноводах и от чего оно зависит?
- 16. Что такое метод собственных функций и как он применяется в электродинамике?
- 17. Какие интегральные преобразования используются для решения задач электродинамики?
- 18. Что такое вариационные методы и как они применяются в электродинамике?
- 19. Как решаются внешние задачи электродинамики с помощью асимптотических методов?
 - 20. Что такое лучевые методы и их обобщения?
 - 21. Как применяются волновые методы в квазиоптической области?
 - 22. Что такое метод фазовых интегралов?
 - 23. Как используется метод эталонных уравнений в электродинамике?
 - 24. Какие основные задачи решаются при синтезе антенн?
 - 25. Что такое диаграмма направленности антенны?
 - 26. Какие методы используются для синтеза антенн?
 - 27. Как рассчитывается коэффициент усиления антенны?
 - 28. Что такое импеданс антенны и как он влияет на её работу?
 - 29. Какие типы антенн вы знаете и где они применяются?
 - 30. Как рассчитывается эффективная площадь антенны?
- 31. Что такое волновая матрица и как она используется в электродинамике?
 - 32. Как определяется матрица рассеяния и каков её физический смысл?

- 33. Какие свойства матрицы рассеяния вы знаете?
- 34. Как применяются многополюсники в СВЧ-технике?
- 35. Что такое эквивалентные схемы и как они используются в электродинамике?
 - 36. Как рассчитываются параметры многополюсников?
 - 37. Что такое резонатор и какие типы резонаторов вы знаете?
 - 38. Как рассчитываются собственные частоты резонаторов?
 - 39. Что такое добротность резонатора и как она определяется?
 - 40. Как учитываются потери в резонаторах?
 - 41. Какие типы колебательных систем используются в СВЧ-технике?
- 42. Как рассчитываются характеристики резонаторов на отрезках линий?
 - 43. Что такое резонаторы бегущей волны и где они применяются?
 - 44. Какие методы используются для возбуждения волноводов?
- 45. Как рассчитываются поля в волноводах при возбуждении сторонними источниками?
 - 46. Какие конструкции возбуждающих устройств вы знаете?
- 47. Как применяется метод собственных функций для возбуждения резонаторов?
 - 48. Как рассчитываются вынужденные колебания в резонаторах?
 - 49. Какие типы неоднородностей встречаются в линиях передачи?
 - 50. Как рассчитываются параметры стыков линий передачи?
 - 51. Что такое разветвления в линиях передачи и как они моделируются?
 - 52. Как рассчитываются эквивалентные схемы неоднородностей?
 - 53. Какие типы фильтров СВЧ вы знаете и как они реализуются?
 - 54. Что такое направленные ответвители и как они работают?
 - 55. Как рассчитываются характеристики направленных ответвителей?
 - 56. Какие невзаимные устройства СВЧ вы знаете?
 - 57. Как работают ферритовые устройства СВЧ?
 - 58. Что такое фазовращатели и как они применяются в СВЧ-технике?
 - 59. Как работают циркуляторы и ограничители СВЧ?
- 60. Какие особенности работы невзаимных устройств в волноводных и полосковых конструкциях?
- 61. Какие численные методы используются для решения задач электродинамики?
- 62. Что такое метод конечных элементов и как он применяется в электродинамике?
 - 63. Как работает метод конечных разностей во временной области?
 - 64. Что такое принцип декомпозиции в численных методах?
- 65. Как составляются модели сложных объектов в электродинамике с использованием численных методов?

6.6 Примерная тематика курсовых работ

Курсовые работы не предусмотрены.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Седельников, Ю. Е. Электродинамика и распространение радиоволн: учебное пособие / Ю.Е. Седельников, Т.Р. Шагвалиев; под ред. Ю.Е. Седельникова. Москва: ИНФРА-М, 2022. 140 с. (Высшее образование: Бакалавриат). ISBN 978-5-16-018256-8. Текст: электронный. URL: https://znanium.com/catalog/product/1944356 (дата обращения: 19.05.2024)
- 2. Будагян, И. Ф. Электродинамика: учебное пособие / И.Ф. Будагян, В.Ф. Дубровин, А.С. Сигов. М.: Альфа-М: ИНФРА-М, 2019. 304 с. (Магистратура). ISBN 978-5-98281-329-9. Текст: электронный. URL: https://znanium.com/catalog/product/1010105 (дата обращения: 19.05.2024).

Дополнительная литература

- 1. Техническая электродинамика: Учеб. пособие для студентов / Под ред. С. И. Баскакова; М-во высш. и сред. спец. образования СССР. Моск. энерг. инт. Москва: [б. и.], 1976. 80 с. Текст: электронный. URL: https://studfile.net/preview/19412360/ (дата обращения: 19.05.2024).
- 2. Вольман В. И., Пименов Ю. В. Техническая электродинамика: Учебник. М., «Связь», 2000. 487 с. Текст: электронный. URL: https://tusimvmtusi.ru/173 (дата обращения: 19.05.2024).

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт. Алчевск. URL: https://library.dontu.ru. Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова: официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст: электронный.
- 3. Консультант студента: электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст: электронный.
- 4. Университетская библиотека онлайн: электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст: электронный.
- 5. IPR BOOKS: электронно-библиотечная система. Красногорск. URL: http://www.iprbookshop.ru/. —Текст: электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям $\Phi\Gamma$ OC BO.

Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местополо- жение) учебных кабинетов
Аудитории для проведения лекционных и практических занятий, для самостоятельной работы:	
Компьютерный класс Персональные компьютеры, локальная сеть с выходом в Internet, проектор Epson, мультимедийный экран	ауд. <u>434</u> корп. <u>главный</u>
Лаборатории физических измерений Электронный осциллограф, тематические стенды	ауд. <u>413, 422</u> корп. <u>главный</u>

Лист согласования РПД

Разработал старший преподаватель кафедры электроники и радиофизики (должность)

(подпись)

<u> Р.В. Эссельбах</u> (Ф.И.О.)

И.о. заведующего кафедрой электроники и радиофизики

(подпись)

А.М. Афанасьев

Протокол № $\underline{\mathcal{I}}$ заседания кафедры электроники и радиофизики от $\underline{\mathcal{SO}}$. $\underline{\mathcal{OF}}$. $\underline{\mathcal{AOA}}$

И.о. декана факультета информационных технологий и автоматизации производственных процессов

(подпись)

В<u>.В. Дьячкова</u> (Ф.И.О.)

Согласовано

Председатель методической комиссии по направлению подготовки 03.04.03 Радиофизика (магистерская программа «Инженерно-физические технологии в промышленности»)

(подпись)

А.М. Афанасьев (Ф.И.О.)

Начальник учебно-методического центра

(подпись)

O.A. Коваленко (Ф.И.О.)

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения					
изменений					
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:				
Основание:					
Подпись лица, ответственного за внесение изменений					