Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Вишневский Дмитрий Александрович

Должность: Ректор

Дата подписания: 21.10.2025 14:34:26

Уникальный программный кумдуний стерство на УКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ 03474917c4d012283e5ad996a48a5e70bf8da057 (МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет информационных технологий и автоматизации производственных процессов

Кафедра электромеханики им. А. Б. Зеленова

УТВЕРЖДАЮ И. о. проректора по учебной работе Д. В. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

	Электротехника	
<u> </u>	(наименование дисциплины)	
400	21.05.04 Горное дело	

 Квалификация
 горный инженер (специалист)

 (бакалавр/специалист/магистр)

 Форма обучения
 очная, заочная

 (очная, очно-заочная, заочная)

1 Цели и задачи изучения дисциплины

Цель дисциплины: формирование у студентов знаний и навыков в области электротехники и электроники для самостоятельного принятия решений по выбору необходимых электротехнических, электронных, электроизмерительных устройств электрооборудования, умения правильно эксплуатировать электроэнергетические системы.

Задачи изучения дисциплины: изучить основные понятия и законы электрических и магнитных цепей; методы анализа цепей постоянного и переменного токов; методы анализа магнитных цепей; методы анализа линейных цепей несинусоидального тока; методы анализа переходных процессов в линейных электрических сетях; принципы действия электрических машин и электронных приборов; научить выполнять расчеты простейших цепей в стационарном и переходном режимах, решать задачи наиболее распространенных электрических цепей.

Дисциплина направлена на формирование компетенций УК-1 выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины: курс входит в БЛОК 1 «Дисциплины (модули)», обязательную часть блока 1 подготовки студентов по специализации 21.05.04 Горное дело.

Дисциплина основывается на базе дисциплин: «Физика», «Химия», «Математика».

Является основой для изучения следующих дисциплин: «Электроснабжение горных предприятий».

Для изучения дисциплины необходимы компетенции, сформированные у студента для решения профессиональных задач деятельности, связанных с обеспечением жизни, здоровья и работоспособности во время работы и иметь такие основные общекультурные и профессиональные компетенции по охране труда.

Общая трудоемкость освоения дисциплины по очной форме обучения составляет 3 зачетных единицы, 108 ак. ч. Программой дисциплины предусмотрены для очной формы обучения лекционные (32 ак.ч.), лабораторные занятия (16 ак.ч.), практические занятия (16 ак.ч.) и самостоятельная работа студента (44 ак.ч.).

Общая трудоемкость освоения дисциплины по заочной форме обучения составляет 3 зачетных единицы, 108 ак. ч. Программой дисциплины предусмотрены по заочной форме обучения лекционные (4 ак. ч.), лабораторные занятия (2 ак. ч.), практические занятия (4 ак. ч.) и самостоятельная работа студента (98 ак.ч.).

Дисциплина изучается на 3 курсе в 6 семестре для очной формы обучения и на 4 курсе в 7 семестре для заочной формы обучения. Форма промежуточной аттестации – зачет.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Электротехника» направлен на формирование компетенций, представленных в таблице 3.1.

Таблица 3.1 – Компетенции, обязательные к освоению

Содержание компетенции	Код компетенции	Код и наименование индикатора достижения компетенции
УК-1. Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий	УК-1	УК-1.1. Знать методы системного и критического анализа; методики разработки стратегии действий для выявления и решения проблемной ситуации. УК-1.2. Уметь применять методы системного подхода и критического анализа проблемных ситуаций; разрабатывать стратегию действий, принимать конкретные решения для ее реализации. УК-1.3. Владеть методологией системного и критического анализа проблемных ситуаций; методиками постановки цели, определения способов ее достижения, разработки стратегий действий.

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 3 зачётных единицы, 108 ак. ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к лабораторным работам, текущему контролю, самостоятельное изучение материала и подготовку к зачету.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 4.1.

Таблица 4.1 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.	Ак .ч. по семестрам 4
Аудиторная работа, в том числе:	64	64
Лекции (Л)	32	32
Практические занятия (ПЗ)	16	16
Лабораторные работы (ЛР)	16	16
Курсовая работа/курсовой проект		
Самостоятельная работа студентов (СРС), в том числе:	44	44
Подготовка к лекциям	8	8
Подготовка к лабораторным работам	8	8
Подготовка к практическим занятиям / семинарам	8	8
Выполнение курсовой работы / проекта	0	0
Расчетно-графическая работа (РГР)	0	0
Реферат (индивидуальное задание)	0	0
Домашнее задание	6	6
Подготовка к контрольной работе	0	0
Подготовка к коллоквиумам	0	0
Аналитический информационный поиск	3	3
Работа в библиотеке	3	3
Подготовка к зачету	8	8
Промежуточная аттестация – зачет (3)	3	3
Общая трудоемкость дисциплины		
Ак. ч.	108	108
3. e.	3	3

5 Содержание дисциплины

С целью освоения компетенций, приведенных в п. 3 дисциплина разбита на 8 тем:

- тема 1 (Физические основы электротехники. Основные понятия и законы электрических цепей);
- тема 2 (Линейные электрические цепи постоянного тока. Методы анализа линейных электрических цепей. Основные элементы электрической цепи постоянного тока, их графическое представление, реальные и идеальные источники энергии. Основные термины и понятия, применяемые при расчете цепей. Мощность и баланс мощностей в цепях постоянного тока. Понятие о принципах построения потенциальных диаграмм. Методы расчета электрических цепей: методы законов Кирхгофа, контурных токов);
- тема 3 (Линейные электрические цепи однофазного синусоидального тока. Основные понятия о синусоидальных функциях и их параметрах, расчет средних и действующих значений. Синусоидальный ток в элементах цепи: в активном сопротивлении, в индуктивности катушки и в емкости конденсатора, а также при их последовательном соединении, параллельном соединении и т.д. Применимость методов расчета цепей постоянного тока к расчету цепей синусоидального тока. Топографические векторные диаграммы. Понятия комплексов полного, активного и реактивного сопротивлений. Энергетические процессы в цепи синусоидального тока: понятия мгновенной активной, реактивной, полной мощностей, баланс мощностей, треугольник мощностей, применение комплексных характеристик, улучшения коэффициента мощности установок переменного тока. Резонансные явления в электрических цепях. Символический метод расчета простейших цепей переменного тока. Принципы расчета разветвленных цепей переменного тока. Резонанс напряжений. Резонанс токов. Построение топографических диаграмм);
- тема 4 (Трехфазные цепи и методы их анализа. Общие понятия о трехфазных цепях, принципы работы генератора трехфазной ЭДС (с построением волновой диаграммы). Понятие о способах соединения обмоток генератора и фазах приемника. Основные принципы расчета симметричных трехфазных цепей);
- тема 5 (Нелинейные цепи постоянного и переменного токов. Основные параметры и характеристики нелинейных элементов. Статические и динамические характеристики элементов. Понятие о методах аппроксимации нелинейных характеристик. Магнитные цепи при постоянной ЭДС. Основные свойства ферромагнитных материалов. Основные законы и допущения, принимаемые при расчете магнитных цепей при постоянной МДС. Принципы расчета неразветв-

ленных магнитных цепей при постоянной МДС. Трансформатор с ферромагнитным сердечником: основные уравнения, понятия приведенного трансформатора и условия приведения, векторная диаграмма и схема замещения, определение параметров);

- тема 6 (Асинхронные и синхронные машины. Устройство машины, принцип работы, получение вращающегося магнитного поля, основные характеристики машин (механическая, КПД и т. п.). Изучение конструкции асинхронной и синхронной машины постоянного тока и их элементов: статора, ротора, контактных колец и т.п. Пуск асинхронной машины. Расчет мощности, КПД и других характеристик асинхронных и синхронных машин);
- тема 7 (Машины постоянного тока. Устройство, принцип работы, основные характеристики электрических машин постоянного тока. Двигательный и генераторный режимы машин с различным вариантом соединения якоря и обмотки возбуждения. Расчет мощности, КПД, механических, нагрузочных и других характеристик машин постоянного тока с различными системами самовозбуждения (параллельного и последовательного соединения якоря и обмотки возбуждения). Изучение основных характеристик машин постоянного тока (последовательного возбуждения, параллельного и смешанного возбуждения, независимого возбуждения) в двигательном и генераторном режимах);
- тема 8 (Основы электроники. Классификация полупроводниковых приборов, условные обозначения, характеристики, области применения. Однофазные однополупериодные и двухполупериодные выпрямители: принципы работы, основные соотношения. Биполярные и полевые транзисторы, назначение и принцип работы. Тиристоры и их применение. Элементы логики и их функции. Исследование однопериодного и двухполупериодного выпрямителей (со средней точкой и мостовой схемой соединения). Определение коэффициента и степени пульсации. Изучение элементной базы современной полупроводниковой техники. Принципов выбора основных параметров выпрямителей, устройства и работы логических элементов «И», «ИЛИ», «НЕ» и др.).

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 5.1 - 5.2 соответственно.

Таблица 5.1 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/ п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в - ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
1	Физические основы электротехники. Основные понятия и законы электрических цепей.	Введение в дисциплину. Цель и задачи дисциплины. Основные законы электротехники. Линейные цепи постоянного тока. Методы решения разветвлённых цепей постоянного тока.	2	_	_	Исследование режимов работы линии передачи постоянного тока.	4
2	Линейные электриче- ские цепи постоянного тока.	Методы анализа линейных электрических цепей. Основные элементы электрической цепи постоянного тока, их графическое представление, реальные и идеальные источники энергии. Основные термины и понятия, применяемые при расчете цепей. Мощность и баланс мощностей в цепях постоянного тока. Понятие о принципах построения потенциальных диаграмм. Методы расчета электрических цепей: методы законов Кирхгофа, контурных токов	4	Изучение методики расчёта разветвлённых цепей постоянного тока (законы Кирхгофа, МК, МУП МЭГ).	4		
3	Линейные электриче- ские цепи однофазного	Мгновенная мощность. Включение R, L, C элементов в цепи синусоидального тока. Тригонометрический метод расчёта цепей синусоидального тока.	2	_	_		
	синусоидального тока	Символический метод расчета простейших цепей переменного тока. Принципы	2				

№ п/ п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
		расчета разветвленных цепей переменного тока					
		Явление самоиндукции и ЭДС взаимо- индукции. Взаимная индуктивность.	2				
	Трехфазные цепи и методы их анализа. Общие	Трёхфазная система ЭДС. Основные схемы соединения трёхфазных цепей. Расчёт трёхфазных цепей. Мощности в трёхфазных цепях. Вращающееся магнитное поле, принципы его получения, применение вращающихся магнитных полей в трехфазных машинах	2	Тригонометриче- ский метод рас- чёта цепей синусо-		Исследование трёхфаз-	
4	понятия о трехфазных цепях, принципы работы генератора трехфазной ЭДС	Исследование режимов работы трехфазной системы, соединенной звездой. Исследование режимов работы трехфазной системы, соединенной в треугольником. Построение векторных диаграмм для различных режимов работы трехфазных цепей.	2	чета цепеи синусо- идального тока. Построение век- торных диаграмм	4	ных цепей соединение потребителей звездой.	4
		Переходные процессы в линейных электрических цепях. Законы коммутации. Классический метод решения переходных процессов.	2				
5	Нелинейные цепи по- стоянного и перемен- ного токов	Основные законы и допущения, принимаемые при расчете магнитных цепей при постоянной МДС. Принципы	2	_	_	_	_

№ п/ п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
		расчета неразветвленных магнитных цепей при постоянной МДС. Катушка с ферромагнитным сердечником: уравнение, векторная диаграмма, схема замещения, опытное определение параметров. Трансформатор с ферромагнитным сердечником: основные уравнения, понятия приведенного трансформатора и условия приведения, векторная диаграмма и схема замещения, определение параметров					
6	Асинхронные и син- хронные машины.	Устройство машины, принцип работы, получение вращающегося магнитного поля, основные характеристики машин (механическая, КПД и т. п.). Условия пуска в работу асинхронных машин. Пуск для различных вариантов ротора (фазный и короткозамкнутый ротор). Включение синхронной машины.	2			Исследование режимов работы асинхронного двигателя с короткозамкнутым ротором.	4
7	Машины постоянного тока	Устройство, принцип работы, основные характеристики электрических машин постоянного тока. Двигательный и генераторный режимы машин	4	Расчет мощности, КПД, механических, нагрузочных и других характеристик машин постоянного тока с различными си-	4		

№ п/ п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
				стемами самовоз- буждения			
8	Основы электроники.	Классификация полупроводниковых приборов, условные обозначения, характеристики, области применения. Однофазные однополупериодные и двухполупериодные выпрямители: принципы работы, основные соотношения. Биполярные и полевые транзисторы, назначение и принцип работы. Тиристоры и их применение. Элементы логики и их функции. Исследование однопериодного и двухполупериодного выпрямителей (со средней точкой и мостовой схемой соединения). Определение коэффициента и степени пульсации. Изучение элементной базы современной полупроводниковой техники. Принципов выбора основных параметров выпрямителей, устройства и работы логических элементов «И», «ИЛИ», «НЕ» и др	6	Расчет мощности, КПД и других характеристик асинхронных и синхронных машин	4	Исследование режимов работы мультивибра- тора.	4
	Всего	аудиторных часов	32	_	16	_	16

Таблица 5.2 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

№ п/ п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
	Цели и задачи дисциплины, основные разделы. Физические ос-	Цели и задачи дисциплины, основные разделы.	2	Изучение мето- дики расчёта раз- ветвлённых цепей		Исследование режимов работы линии передачи постоянного тока.	
1	новы электротехники. Основные понятия и законы электрических цепей.	Физические основы электротехники. Основные понятия и законы электрических цепей.	2	постоянного тока (законы Кирхгофа, МК, МУП МЭГ).	4		2
	Всего аудиторных часов		4	_	4	_	2

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf).

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 6.1.

Таблица 6.1 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компе- тенции	Способ оценивания	Оценочное средство
УК-1	Зачет	Комплект контролирующих материалов для зачета

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- тестовый контроль или устный опрос на коллоквиумах (2 коллоквиума) – всего 40 баллов;
 - лабораторные работы всего 60 баллов.

Зачет проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60 % от максимального.

Зачет по дисциплине «Электротехника» проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время сессии студент имеет право повысить итоговую оценку либо в форме устного собеседования по приведенным ниже вопросам (п. 6.4), либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.2.

Таблица 6.2 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашние задания

Для студентов очной формы обучения домашние задания не предусмотрены. Студены заочной формы обучения выполняют контрольную работу по имеющимся методическим указаниям.

6.3 Темы рефератов

Написание рефератов при изучении дисциплины не предусмотрено.

6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Тема 1. Физические основы электротехники. Основные понятия и законы электрических цепей

- 1) Что такое электрический ток и какова его единица измерения?
- 2) Какие основные элементы входят в состав электрической цепи?
- 3) Что такое электрическое напряжение и как оно измеряется?
- 4) Сформулируйте закон Ома для участка цепи.
- 5) Что такое сопротивление проводника и от чего оно зависит?
- 6) Какие виды энергии преобразуются в электрических цепях?
- 7) Что такое электрическая мощность и как она рассчитывается?
- 8) Какие законы Кирхгофа применяются для анализа электрических цепей?
- 9) Что такое ЭДС (электродвижущая сила) и как она связана с напряжением?
- 10) Какие существуют типы соединений элементов в электрических цепях?

Тема 2. Линейные электрические цепи постоянного тока. Методы анализа линейных электрических цепей

- 1) Что такое линейная электрическая цепь?
- 2) Какие элементы называются идеальными источниками напряжения и тока?

- 3) Как графически изображаются основные элементы электрической цепи?
 - 4) Что такое баланс мощностей в электрической цепи?
 - 5) Как рассчитывается мощность в цепи постоянного тока?
 - 6) Что такое потенциальная диаграмма и как она строится?
 - 7) В чем заключается метод законов Кирхгофа для расчета цепей?
 - 8) Как применяется метод контурных токов для анализа цепей?
 - 9) Что такое узловое напряжение и как оно используется в расчетах?
 - 10) Какие упрощения применяются при анализе линейных цепей?

Тема 3. Линейные электрические цепи однофазного синусоидального тока

- 1) Что такое синусоидальный ток и каковы его основные параметры?
- 2) Как рассчитываются действующее и среднее значения синусоидального тока?
 - 3) Как ведет себя синусоидальный ток в активном сопротивлении?
- 4) Что происходит с током в индуктивности и емкости при синусоидальном напряжении?
- 5) Как рассчитывается полное сопротивление цепи при последовательном соединении R, L и C?
 - 6) Что такое резонанс напряжений и при каких условиях он возникает?
- 7) Как строятся векторные диаграммы для цепей синусоидального тока?
- 8) Что такое активная, реактивная и полная мощность в цепи переменного тока?
- 9) Как улучшается коэффициент мощности в электрических установ-ках?
- 10) Какие методы расчета цепей постоянного тока применимы для цепей переменного тока?

Тема 4. Трехфазные цепи и методы их анализа

- 1) Что такое трехфазная система и каковы ее преимущества?
- 2) Как генерируется трехфазная ЭДС в генераторе?
- 3) Какие существуют способы соединения обмоток генератора и приемника?
- 4) Что такое симметричная трехфазная цепь?
- 5) Как рассчитываются токи и напряжения в симметричной трехфазной пепи?
- 6) Что такое линейное и фазное напряжение в трехфазной системе?
- 7) Как строится векторная диаграмма для трехфазной цепи?
- 8) Какие методы применяются для анализа несимметричных трехфазных

пепей?

- 9) Что такое мощность в трехфазной цепи и как она рассчитывается?
- 10) Какие особенности имеют трехфазные цепи при соединении "звезда" и "треугольник"?

Тема 5. Нелинейные цепи постоянного и переменного токов

- 1) Что такое нелинейный элемент и каковы его характеристики?
- 2) Какие методы аппроксимации используются для нелинейных характеристик?
- 3) Что такое статическое и динамическое сопротивление нелинейного элемента?
 - 4) Как рассчитываются магнитные цепи при постоянной МДС?
 - 5) Какие свойства характерны для ферромагнитных материалов?
 - 6) Что такое магнитная цепь и как она рассчитывается?
 - 7) Как работает трансформатор с ферромагнитным сердечником?
 - 8) Что такое схема замещения трансформатора и как она строится?
 - 9) Как определяются параметры приведенного трансформатора?
 - 10) Какие энергетические процессы происходят в нелинейных цепях? Тема 6. Асинхронные и синхронные машины
 - 1) Как устроена асинхронная машина и каков принцип ее работы?
 - 2) Что такое вращающееся магнитное поле и как оно создается?
 - 3) Какие основные характеристики имеют асинхронные машины?
 - 4) Как пускается асинхронный двигатель?
- 5) Что такое скольжение асинхронной машины и как оно рассчитывается?
 - 6) Как устроена синхронная машина и каков принцип ее работы?
 - 7) Какие режимы работы характерны для синхронных машин?
- 8) Как рассчитываются мощность и КПД асинхронных и синхронных машин?
 - 9) Что такое механическая характеристика асинхронного двигателя?
 - 10) Какие элементы входят в конструкцию синхронной машины?

Тема 7. Машины постоянного тока

- 1) Как устроена машина постоянного тока и каков принцип ее работы?
- 2) Какие режимы работы характерны для машин постоянного тока?
- 3) Что такое генераторный и двигательный режимы работы?
- 4) Как рассчитываются мощность и КПД машин постоянного тока?
- 5) Какие системы возбуждения применяются в машинах постоянного тока?
 - 6) Что такое механическая характеристика двигателя постоянного тока?

- 7) Как строятся нагрузочные характеристики генераторов постоянного тока?
 - 8) Какие особенности имеют машины с независимым возбуждением?
- 9) Как работает машина постоянного тока с последовательным возбуждением?
 - 10) Что такое самовозбуждение в машинах постоянного тока?

Тема 8. Основы электроники

- 1) Какие существуют типы полупроводниковых приборов?
- 2) Как работает однополупериодный выпрямитель?
- 3) Что такое двухполупериодный выпрямитель и каковы его преимущества?
 - 4) Как рассчитывается коэффициент пульсации выпрямителя?
 - 5) Каков принцип работы биполярного транзистора?
 - 6) Что такое тиристор и где он применяется?
 - 7) Какие функции выполняют логические элементы "И", "ИЛИ", "НЕ"?
- 8) Как работает полевой транзистор и чем он отличается от биполярного?
 - 9) Какие параметры учитываются при выборе выпрямителей?
- 10) Какие современные элементы входят в состав полупроводниковой техники?

6.5 Вопросы для подготовки к зачету

- 1) Что такое электрический ток и какова его единица измерения?
- 2) Какие основные элементы входят в состав электрической цепи?
- 3) Что такое электрическое напряжение и как оно измеряется?
- 4) Сформулируйте закон Ома для участка цепи.
- 5) Что такое сопротивление проводника и от чего оно зависит?
- 6) Какие виды энергии преобразуются в электрических цепях?
- 7) Что такое электрическая мощность и как она рассчитывается?
- 8) Какие законы Кирхгофа применяются для анализа электрических цепей?
- 9) Что такое ЭДС (электродвижущая сила) и как она связана с напряжением?
- 10) Какие существуют типы соединений элементов в электрических цепях?
 - 11) Что такое линейная электрическая цепь?
- 12) Какие элементы называются идеальными источниками напряжения и тока?

- 13) Как графически изображаются основные элементы электрической цепи?
 - 14) Что такое баланс мощностей в электрической цепи?
 - 15) Как рассчитывается мощность в цепи постоянного тока?
 - 16) Что такое потенциальная диаграмма и как она строится?
 - 17) В чем заключается метод законов Кирхгофа для расчета цепей?
 - 18) Как применяется метод контурных токов для анализа цепей?
 - 19) Что такое узловое напряжение и как оно используется в расчетах?
 - 20) Какие упрощения применяются при анализе линейных цепей?
 - 21) Что такое синусоидальный ток и каковы его основные параметры?
- 22) Как рассчитываются действующее и среднее значения синусоидального тока?
 - 23) Как ведет себя синусоидальный ток в активном сопротивлении?
- 24) Что происходит с током в индуктивности и емкости при синусоидальном напряжении?
- 25) Как рассчитывается полное сопротивление цепи при последовательном соединении R, L и C?
 - 26) Что такое резонанс напряжений и при каких условиях он возникает?
- 27) Как строятся векторные диаграммы для цепей синусоидального тока?
- 28) Что такое активная, реактивная и полная мощность в цепи переменного тока?
- 29) Как улучшается коэффициент мощности в электрических установ-ках?
- 30) Какие методы расчета цепей постоянного тока применимы для цепей переменного тока?
 - 31) Что такое трехфазная система и каковы ее преимущества?
 - 32) Как генерируется трехфазная ЭДС в генераторе?
- 33) Какие существуют способы соединения обмоток генератора и приемника?
 - 34) Что такое симметричная трехфазная цепь?
- 35) Как рассчитываются токи и напряжения в симметричной трехфазной цепи?
 - 36) Что такое линейное и фазное напряжение в трехфазной системе?
 - 37) Как строится векторная диаграмма для трехфазной цепи?
- 38) Какие методы применяются для анализа несимметричных трехфазных цепей?
 - 39) Что такое мощность в трехфазной цепи и как она рассчитывается?

- 40) Какие особенности имеют трехфазные цепи при соединении "звезда" и "треугольник"?
 - 41) Что такое нелинейный элемент и каковы его характеристики?
- 42) Какие методы аппроксимации используются для нелинейных характеристик?
- 43) Что такое статическое и динамическое сопротивление нелинейного элемента?
 - 44) Как рассчитываются магнитные цепи при постоянной МДС?
 - 45) Какие свойства характерны для ферромагнитных материалов?
 - 46) Что такое магнитная цепь и как она рассчитывается?
 - 47) Как работает трансформатор с ферромагнитным сердечником?
 - 48) Что такое схема замещения трансформатора и как она строится?
 - 49) Как определяются параметры приведенного трансформатора?
 - 50) Какие энергетические процессы происходят в нелинейных цепях?
 - 51) Как устроена асинхронная машина и каков принцип ее работы?
 - 52) Что такое вращающееся магнитное поле и как оно создается?
 - 53) Какие основные характеристики имеют асинхронные машины?
 - 54) Как пускается асинхронный двигатель?
- 55) Что такое скольжение асинхронной машины и как оно рассчитывается?
 - 56) Как устроена синхронная машина и каков принцип ее работы?
 - 57) Какие режимы работы характерны для синхронных машин?
- 58) Как рассчитываются мощность и КПД асинхронных и синхронных машин?
 - 59) Что такое механическая характеристика асинхронного двигателя?
 - 60) Какие элементы входят в конструкцию синхронной машины?
 - 61) Как устроена машина постоянного тока и каков принцип ее работы?
 - 62) Какие режимы работы характерны для машин постоянного тока?
 - 63) Что такое генераторный и двигательный режимы работы?
 - 64) Как рассчитываются мощность и КПД машин постоянного тока?
- 65) Какие системы возбуждения применяются в машинах постоянного тока?
- 66) Что такое механическая характеристика двигателя постоянного тока?
- 67) Как строятся нагрузочные характеристики генераторов постоянного тока?
 - 68) Какие особенности имеют машины с независимым возбуждением?

- 69) Как работает машина постоянного тока с последовательным возбуждением?
 - 70) Что такое самовозбуждение в машинах постоянного тока?
 - 71) Какие существуют типы полупроводниковых приборов?
 - 72) Как работает однополупериодный выпрямитель?
- 73) Что такое двухполупериодный выпрямитель и каковы его преимущества?
 - 74) Как рассчитывается коэффициент пульсации выпрямителя?
 - 75) Каков принцип работы биполярного транзистора?
 - 76) Что такое тиристор и где он применяется?
- 77) Какие функции выполняют логические элементы "И", "ИЛИ", "НЕ"?
- 78) Как работает полевой транзистор и чем он отличается от биполярного?
 - 79) Какие параметры учитываются при выборе выпрямителей?
- 80) Какие современные элементы входят в состав полупроводниковой техники?

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. *Новожилов*, О. П. Электротехника и электроника : учебник для вузов / О. П. Новожилов. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2024. 653 с. (Высшее образование). ISBN 978-5-9916-2941-6. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/559884 (дата обращения: 20.08.2024).
- 2. Лыгин, М. М. Электротехника и основы электроники : учебное пособие / М. М. Лыгин, Г. П. Корнилов. Москва ; Вологда : Инфра-Инженерия, 2024. 236 с. ISBN 978-5-9729-1735-8. Текст : электронный. URL: https://znanium.ru/catalog/product/2173603 (дата обращения: 20.08.2024).

Дополнительная литература

- 1. Скурятин, Ю.В. Электротехника и основы электроники: учебное пособие / Ю.В. Скурятин, Н.В. Андреева; Каф. Електронних систем. Алчевськ: ДонГТУ, 2012. 185 с.
- 2. Борисов, Ю.М. Электротехника: учеб. пособие для студ. неэлектротехн. спец. вузов / Ю.М. Борисов, Д.Н. Липатов, Ю.Н. Зорин. 2-е изд., перераб. и доп. М.: Энергоатомиздат, 1985. 552 с.: ил.
- 3. Алиев, И. И. Электротехника и электрооборудование : справочник. Учебное пособие для вузов / И. И. Алиев. Саратов : Вузовское образование, 2014. 1199 с. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/9654.html (дата обращения: 20.08.2024).

Учебно-методическое обеспечение

1. Методические указания к выполнению лабораторных работ по электротехнике : для студентов неэлектротехнических специальностей / Уклад. Ю.П. Самчелеев, В.В. Комарский ; Каф. Теоретичної та загальної електротехніки. Алчевск : ДГМИ, 2000. 30с.

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт. Алчевск. URL: library.dstu.education. Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст : электронный.

- 3. Консультант студента: электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст: электронный.
- 4. Университетская библиотека онлайн : электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст : электронный.
- 5. IPR BOOKS : электронно-библиотечная система. Красногорск. URL: http://www.iprbookshop.ru/. Текст : электронный.
- 6. Федеральная служба по экологическому, технологическому и атомному надзору (Ростехнадзор) : официальный сайт. Москва. https://www.gosnadzor.ru/. Текст : электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 8.

Таблица 8.1 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местополо- жение) учебных кабинетов
Специальные помещения: Лаборатория общей электротехники каф. ЭМ - Стенды лабораторные — 12 шт	ауд 107, корп. чет- вертый

Лист согласования РПД

Разработал	
доц. кафедры электромеханики им. А. Б. Зеленова (должность)	починсь) И.А. Карпук (Ф.И.О.)
(должность)	(подпись) (Ф.И.О.)
(должность)	(подпись) (Ф.И.О.)
Заведующий кафедрой	Д. И. Морозов (подпись) (Ф.И.О.)
Протокол № 1 заседания кафедры электромеханики им. А.Б. Зеленова	от 22.08.2024г.
Декан факультета	<u> В. В. Дьячкова</u> (Ф.И.О.)
Согласовано	
Председатель методической комиссии по специализации 21.05.04 Горное дело	<u>О.В. Князьков</u> (подпись) (Ф.И.О.)

Начальник учебно-методического центра

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения	
изменений	
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:
Основание:	
Подпись лица, ответственного за внесение изменений	
подпись лица, ответственного за внесение изменении	