МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет	информационных технологий и автоматизации
	производственных процессов
Кафедра	электроники и радиофизики
	УТВЕРЖДАЮ И.о. проректора по учебной работе Д.В. Мулов
P	АБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ
	Радиофизические системы
	(наименование дисциплины)
	03.04.03 Радиофизика
	(код, наименование направления)
Инжег	нерно-физические технологии в промышленности
	(магистерская программа)
Квалификация	магистр
	(бакалавр/специалист/магистр)
Форма обучения	очная, очно-заочная

(очная, очно-заочная, заочная)

1 Цели и задачи изучения дисциплины

Цели дисциплины. Формирование у студентов комплексных знаний и навыков в области радиофизических систем (связь, локация, навигация, оптические системы, системы управления и т. д.) их базовых алгоритмов и типовых структур, включая принципы работы, методы анализа, проектирования и применения в различных областях науки, техники и оборонной промышленности.

Задачи изучения дисциплины:

- Ознакомить студентов с принципами работы радиофизических и оптических систем.
- Научить методам анализа и синтеза радиофизических и оптических систем.
- Рассмотреть современные технологии, включая навигационные, локационные системы, радиоэлектронная борьба (РЭБ) и радиоэлектронная разведка (РЭР).
- Развить навыки практического применения систем в различных областях.

Дисциплина направлена на формирование профессиональной (ПК-1) компетенции выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины — курс входит в формируемую участниками образовательных отношений часть блока 1 подготовки обучающихся по направлению 03.04.03 Радиофизика.

Дисциплина реализуется кафедрой электроники и радиофизики.

Основывается на базе дисциплин: «Высшая математика», «Оптика», «Физическая электроника», «Твердотельная электроника», «Распространение электромагнитных волн», «Физика сплошных сред», «Информационно-измерительные и управляющие системы».

Является основой для изучения следующих дисциплин: «Методы решения научно-технических задач». Освоение данной дисциплины может быть использовано при выборе направления научно-исследовательской работы, а также, приобретенные знания, могут быть использованы при защите выпускной квалификационной работы, включая подготовку к защите и процедуру защиты, производственной, преддипломной практики.

Дисциплина способствует углубленной подготовке к решению специальных практических профессиональных задач и формированию необходимых компетенций.

Общая трудоемкость освоения дисциплины составляет 4 зачетные единицы, 144 часа. Программой дисциплины предусмотрены лекционные (36 ак. ч.), практические (36 ак. ч.) занятия и самостоятельная работа обучающегося (72 ак. ч.). Дисциплина изучается во 2 семестре.

Для очно-заочной формы обучения программой дисциплины предусмотрены лекционные (18 ак.ч.), практические (8 ак.ч.), занятия и самостоятельная работа студента (118 ак.ч.). Дисциплина изучается во 2 семестре.

Форма промежуточной аттестации – экзамен.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Радиофизические системы» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание ком-	Код	Код и наименование индикатора
петенции	компетенции	достижения компетенции
Способен приме-	ПК-1	ПК-1.1. Способен проводить фундаменталь-
нять на практике		ные и прикладные исследования в области ла-
профессиональ-		зерной и плазменной техники и технологий с
ные знания и уме-		применением современного оборудования.
ния в сфере про-		
изводства, внед-		ПК-1.2. Понимает навыки работы с современ-
рения и эксплуа-		ным радиофизическим оборудованием для
тации инженерно-		проведения измерений и диагностики, крити-
физических си-		чески оценивает результаты измерений и
стем различного		предлагать улучшения методов диагностики.
назначения, полу-		
ченные при осво-		
ении профильных		
физических дис-		
циплин.		

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 4 зачетные единицы, 144 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим занятиям, текущему контролю, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам 2
Аудиторная работа, в том числе:	72	72
Лекции (Л)	36	36
Практические занятия (ПЗ)	36	36
Лабораторные работы (ЛР)	-	-
Курсовая работа/курсовой проект	-	-
Самостоятельная работа студентов (СРС), в том числе:	72	72
Подготовка к лекциям	9	9
Подготовка к лабораторным работам	-	-
Подготовка к практическим занятиям / семинарам	36	36
Выполнение курсовой работы / проекта	-	-
Расчетно-графическая работа (РГР)	-	
Реферат (индивидуальное задание)	-	-
13Домашнее задание (индивидуальное задание)	-	-
Подготовка к контрольной работе	-	-
Подготовка к коллоквиуму	6	6
Аналитический информационный поиск	1	-
Работа в библиотеке	-	-
Подготовка к экзамену	21	21
Промежуточная аттестация – экзамен	Э	Э
Общая трудоемкость дисциплины		
ак.ч.	144	144
3.e.	4	4

5 Содержание дисциплины

С целью освоения компетенций, приведенной в п.3 дисциплина разбита на 9 тем:

- тема 1. Введение в радиофизические системы.
- тема 2. Основы электродинамики и радиоволн.
- тема 3. Оптические системы.
- тема 4. Радиотехнические системы.
- тема 5. Навигационные и локационные системы.
- тема 6. Радиоэлектронная борьба (РЭБ) и радиоэлектронная разведка (РЭР)
- тема 7. Обработка сигналов.
- тема 8. Применение радиофизических и оптических систем.
- тема 9. Практические аспекты радиофизических и оптических систем.

Виды занятий по дисциплине и распределение аудиторных часов приведены в таблицах 3 и 4.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	темы практических занятии	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
			2-й	семестр			
1	Введение в радиофизические системы.	Основные понятия и определения. История развития радиофизики и оптики. Обзор современных радиофизических и оптических систем. Применение систем в науке, технике и оборонной промышленности.	4	Изучение характеристик антенн и измерение их параметров. Измерение диаграммы направленности антенны. Определение коэффициента усиления антенны. Исследование влияния частоты на параметры антенны.	4	-	-
2	Основы электро- динамики и ра- диоволн.	Уравнения Максвелла. Распространение электромагнитных волн в различных средах. Отражение, преломление и дифракция радиоволн. Антенны и излучение электромагнитных волн.	4	Фильтрация сигналов с использованием цифровых фильтров. Спектральный анализ сигналов с использованием быстрого преобразования Фурье (БПФ).	4	-	-
3	Оптические системы.	Основы геометрической и волновой оптики. Распространение света в различных средах. Оптические приборы (линзы, призмы, интерферометры). Волоконно-оптические системы связи. Лазерные системы и их применение.		Измерение затухания сигнала в оптическом волокне. Исследование влияния изгибов волокна на качество передачи сигнала. Сборка и тестирование простейшей волоконно-оптической линии связи. Используемое оборудование: лазерный источник, оптическое волокно, фотоприемник, измеритель мощности.	4	-	-
4	Радиотехниче- ские системы.	Принципы работы радиопередатчиков и радиоприемников. Модуляция и демодуляция сигналов	4	Генерация сигналов с амплитудной (АМ), частотной (FM) и фазовой (ФМ) модуляцией.	4	-	-

7

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		(АМ, FМ, ФМ, цифровая модуляция). Радиолокационные системы: принципы работы, типы радаров. Системы спутниковой связи и навигации (GPS, ГЛО-НАСС).		Демодуляция сигналов с использованием различных методов. Анализ спектра модулированных сигналов.			
5	Навигационные и локационные си- стемы.	Принципы работы навигационных систем (спутниковые, инерциальные). Методы определения местоположения и навигации. Локационные системы: радары, лидары, сонары. Применение навигационных и локационных систем в гражданской и военной сферах.	4	Изучение принципов работы спутниковых навигационных систем. Определение местоположения с использованием GPS/ГЛОНАСС приемника. Анализ точности навигационных данных. Исследование влияния помех на работу навигационной системы.	4	-	-
6	Радиоэлектронная борьба (РЭБ) и радиоэлектронная разведка (РЭР).	L HUOCUTHAHOR CUCTEME DAHUO-	4	Генерация помех для подавления радиосигнала. Исследование эффективности различных методов подавления. Анализ устойчивости радиосистем к помехам. Обнаружение радиосигналов в заданном диапазоне частот. Определение параметров радиосигналов (частота, мощность, модуляция). Анализ спектра радиосигналов.	4	-	-
7	Обработка сигна- лов.	Аналоговая и цифровая обра- ботка сигналов. Фильтрация и спектральный анализ. Методы ко- дирования и декодирования сиг- налов. Обработка оптических сиг- налов.	4	Освоение методов цифровой обработки сигналов. Фильтрация сигналов с использованием цифровых фильтров. Спектральный анализ сигна-	4	-	-

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
				лов с использованием быстрого преобразования Фурье (БПФ).			
8	Применение радиофизических и оптических систем.	Радиоастрономия: радиотелескопы и методы наблюдения. Медицинские системы (МРТ, лазерная терапия, оптическая диагностика). Беспроводные технологии связи (Wi-Fi, Bluetooth, 5G). Космические системы связи и наблюдения.	4	Измерение коэффициента преломления материалов. Исследование интерференции и дифракции света. Определение длины волны лазерного излучения с использованием дифракционной решетки.	4	-	-
9	Практические аспекты радиофизических и оптических систем.	Моделирование радиофизических и оптических систем (MATLAB, CST Studio, HFSS, OptiSystem). Проектирование и разработка простейших систем.	4	Моделирование распространения радиоволн в различных средах. Моделирование работы радиолокационной системы.	4	-	-
	Всего аудиторных	х часов за 2-й семестр	36	36		-	
	Всего аудиторных	х часов за семестр	36	36		-	

_

Таблица 4 – Виды занятий по дисциплине и распределение аудиторных часов (очно-заочная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
			2-й сем	естр	1	T	
1	Введение в радиофизические системы.	Основные понятия и определения. История развития радиофизики и оптики. Обзор современных радиофизических и оптических систем. Применение систем в науке, технике и оборонной промышленности.	2	Изучение характеристик антенн и измерение их параметров. Измерение диаграммы направленности антенны. Определение коэффициента усиления антенны. Исследование влияния частоты на параметры антенны.	2	-	-
2	Основы электро- динамики и радио- волн.	Уравнения Максвелла. Распространение электромагнитных волн в различных средах. Отражение, преломление и дифракция радиоволн. Антенны и излучение электромагнитных волн.	2	Фильтрация сигналов с использованием цифровых фильтров. Спектральный анализ сигналов с использованием быстрого преобразования Фурье (БПФ).	2	-	-
3	Оптические системы.	Основы геометрической и волновой оптики. Распространение света в различных средах. Оптические приборы (линзы, призмы, интерферометры). Волоконно-оптические системы связи. Лазерные системы и их применение.	2	Измерение затухания сигнала в оптическом волокне. Исследование влияния изгибов волокна на качество передачи сигнала. Сборка и тестирование простейшей волоконно-оптической линии связи. Используемое оборудование: лазерный источник, оптическое волокно, фотоприемник, измеритель мощности.	2	-	-

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
4	Радиотехнические системы.	Принципы работы радиопередатчиков и радиоприемников. Модуляция и демодуляция сигналов (АМ, FМ, ФМ, цифровая модуляция). Радиолокационные системы: принципы работы, типы радаров. Системы спутниковой связи и навигации (GPS, ГЛОНАСС).	2	Генерация сигналов с амплитудной (АМ), частотной (FM) и фазовой (ФМ) модуляцией. Демодуляция сигналов с использованием различных методов. Анализ спектра модулированных сигналов.	2	-	-
5	Навигационные и локационные системы.	Принципы работы навигационных систем (спутниковые, инерциальные). Методы определения местоположения и навигации. Локационные системы: радары, лидары, сонары. Применение навигационных и локационных систем в гражданской и военной сферах.	2	-	-	-	-
6	Радиоэлектронная борьба (РЭБ) и радиоэлектронная разведка (РЭР).	Основные понятия РЭБ и РЭР. Методы подавления и защиты радиосигналов. Системы радиоэлектронной разведки и их применение. Современные технологии РЭБ и РЭР.	2	-	-	-	-
7	Обработка сигна- лов.	Аналоговая и цифровая обработка сигналов. Фильтрация и спектральный анализ. Методы кодирования и декодирования сигналов. Обработка оптических сигналов.	2	-	-	-	-
8	Применение радиофизических и оптических систем.	Радиоастрономия: радиотелескопы и методы наблюдения. Медицинские системы (МРТ, лазерная терапия, оптическая диагностика). Беспроводные технологии связи (Wi-Fi,	2	-	-	-	-

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		Bluetooth, 5G). Космические системы связи и наблюдения.					
9	Практические аспекты радиофизических и оптических систем.	Моделирование радиофизических и оптических систем (MATLAB, CST Studio, HFSS, OptiSystem). Проектирование и разработка простейших систем.	2	-	-	-	-
Всего аудиторных часов за 2-й семестр		18	8			-	
	Всего аудиторных	часов за семестр	18	8			-

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетен- ции	Способ оценива- ния	Оценочное средство
ПК-1	Экзамен	Комплект контролирующих материалов для экзамена

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- тестовый контроль или устный опрос на коллоквиумах (2 коллоквиума) – всего 60 баллов;
 - за выполнение практических работ всего 40 баллов.

Экзамен проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Экзамен по дисциплине проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время экзамена студент имеет право повысить итоговую оценку. Экзамен по дисциплине проводится в форме устного экзамена по вопросам, представленным ниже, либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашнее задание

В качестве домашнего задания обучающиеся выполняют:

- проработка лекционного материала;
- выполнение практических заданий.

6.3 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

- 1. Назовите основные области применения радиофизических систем.
- 2. Запишите уравнения Максвелла и объясните их физический смысл.
- 3. Как определяется коэффициент усиления антенны?
- 4. Что такое интерференция света? Приведите примеры.
- 5. Какие типы радаров вы знаете? В чем их различия?
- 6. Что такое лидар? Где он применяется?
- 7. Какие типы помех используются в РЭБ?
- 8. Какие методы используются для обнаружения радиосигналов в РЭР?
- 9. Что такое МРТ? Как в ней используются радиоволны?
- 10. Как работают космические системы связи?
- 11. Как провести измерение затухания сигнала в оптическом волокне?
- 12. Как смоделировать радиолокационную систему в МАТLAВ?
- 13. Как собрать простейший радиопередатчик?

6.4 Вопросы для подготовки к экзамену

- 1. Что такое радиофизические системы? Приведите примеры.
- 2. Какие основные этапы развития радиофизики вы знаете?
- 3. Назовите основные области применения радиофизических систем.
- 4. Что такое оптические системы? Приведите примеры их использования.
- 5. Какие электромагнитные волны используются в радиофизике и оптике?
 - 6. Запишите уравнения Максвелла и объясните их физический смысл.
 - 7. Как распространяются электромагнитные волны в вакууме и в среде?

- 8. Что такое коэффициент отражения и преломления волн?
- 9. Объясните явление дифракции радиоволн.
- 10. Какие типы антенн вы знаете? В чем их особенности?
- 11. Как определяется коэффициент усиления антенны?
- 12. В чем разница между геометрической и волновой оптикой?
- 13. Как работает линза? Объясните принцип фокусировки света.
- 14. Что такое интерференция света? Приведите примеры.
- 15. Как работает волоконно-оптическая система связи?
- 16. Какие типы лазеров вы знаете? Где они применяются?
- 17. Как измеряется мощность лазерного излучения?
- 18. Как работает радиопередатчик? Опишите его основные компоненты.
- 19. Что такое амплитудная модуляция (АМ)? Приведите примеры.
- 20. Как работает частотная модуляция (FM)? В чем ее преимущества?
- 21. Опишите принцип работы радиолокационной системы.
- 22. Какие типы радаров вы знаете? В чем их различия?
- 23. Как работает спутниковая система связи?
- 24. Как работает GPS? Опишите основные принципы.
- 25. Какие методы используются для определения местоположения в навигационных системах?
 - 26. Что такое лидар? Где он применяется?
 - 27. Как работает сонар? В чем его отличие от радара?
 - 28. Какие факторы влияют на точность навигационных систем?
 - 29. Что такое РЭБ? Какие методы подавления сигналов вы знаете?
 - 30. Как работает система радиоэлектронной разведки (РЭР)?
 - 31. Какие типы помех используются в РЭБ?
 - 32. Как защитить радиосистему от помех?
 - 33. Какие методы используются для обнаружения радиосигналов в РЭР?
 - 34. Что такое аналоговая обработка сигналов? Приведите примеры.
 - 35. Как работает цифровой фильтр? Какие типы фильтров вы знаете?
- 36. Что такое быстрое преобразование Фурье (БПФ)? Где оно применяется?
 - 37. Как кодируются и декодируются радиосигналы?
 - 38. Какие методы используются для спектрального анализа сигналов?
 - 39. Как работают радиотелескопы? Какие задачи они решают?
 - 40. Что такое МРТ? Как в ней используются радиоволны?
 - 41. Как работают беспроводные технологии связи (Wi-Fi, Bluetooth)?
 - 42. Какие оптические системы используются в медицине?
 - 43. Как работают космические системы связи?
 - 44. Как измерить диаграмму направленности антенны?

- 45. Как определить коэффициент усиления антенны?
- 46. Как провести измерение затухания сигнала в оптическом волокне?
- 47. Как измерить мощность лазерного излучения?
- 48. Как определить местоположение с помощью GPS?
- 49. Как смоделировать радиолокационную систему в МАТLAВ?
- 50. Как провести анализ спектра радиосигнала?
- 51. Как влияет ионосфера на распространение радиоволн?
- 52. Какие методы используются для повышения точности навигационных систем?
 - 53. Как работают квантовые генераторы и усилители?
 - 54. Какие современные технологии используются в РЭБ и РЭР?
 - 55. Как оптические системы используются в квантовой криптографии?
 - 56. Как собрать простейший радиопередатчик?
 - 57. Как провести измерение коэффициента преломления материала?
 - 58. Как настроить цифровой фильтр для обработки сигнала?
 - 59. Как провести эксперимент по интерференции света?
- 60. Как смоделировать распространение радиоволн в городских условиях?
- 61. Как провести измерение скорости объекта с помощью радиолокатора?
 - 62. Как разработать простейшую систему РЭБ для подавления сигнала?

6.6 Примерная тематика курсовых работ

Курсовые работы не предусмотрены.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Седельников, Ю. Е. Электродинамика и распространение радиоволн: учебное пособие / Ю.Е. Седельников, Т.Р. Шагвалиев; под ред. Ю.Е. Седельникова. Москва: ИНФРА-М, 2022. 140 с. (Высшее образование: Бакалавриат). ISBN 978-5-16-018256-8. Текст: электронный. URL: https://znanium.com/catalog/product/1944356 (дата обращения: 21.05.2024)
- 2. Особенности радиофизических методов исследования поглощающих свойств электрически активных материалов: учебное пособие / П.А. Астафьев, Я.А. Рейзенкинд, А.М. Лерер, Ю.М. Нойкин; Южный федеральный университет. Ростов-на-Дону; Таганрог: Издательство Южного федерального университета, 2022. 95 с. ISBN 978-5-9275-4297-0. Текст: электронный. URL: https://znanium.com/catalog/product/2132266 (дата обращения: 21.05.2024)

Дополнительная литература

- 1. Федосов, В.П. Радиотехнические цепи и сигналы: учебное пособие / В.П. Федосов. Ростов-на-Дону: Южный федеральный университет, 2017. 282 с. ISBN 978-5-9275-2481-5.1020585. Текст: электронный. URL: https://znanium.com/catalog/product/1021551 (дата обращения: 21.05.2024).
- 2. Баскаков, Святослав Иванович. Электродинамика и распространение радиоволн [Учеб. пособие для радиотехн. спец. вузов] / С. И. Баскаков. Москва: Высш. шк., 1992. 416 с.: ил. : 21 см.; ISBN 5-06-002037-1 (В пер.).

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт. Алчевск. URL: https://library.dontu.ru. Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова: официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст: электронный.
- 3. Консультант студента: электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст: электронный.
- 4. Университетская библиотека онлайн: электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст: электронный.
- 5. IPR BOOKS: электронно-библиотечная система. Красногорск. URL: http://www.iprbookshop.ru/. —Текст: электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местополо- жение) учебных кабинетов
Аудитории для проведения лекционных и практических занятий, для самостоятельной работы:	
Компьютерный класс Персональные компьютеры, локальная сеть с выходом в Internet, проектор Epson, мультимедийный экран	ауд. <u>434</u> корп. <u>главный</u>
Лаборатории физических измерений Электронный осциллограф, тематические стенды	ауд. <u>413, 422</u> корп. <u>главный</u>

Лист согласования РПД

Разработал старший преподаватель кафедры электроники и радиофизики (должность)

(подпись)

Р.В. Эссельбах

И.о. заведующего кафедрой электроники и радиофизики

(подпись)

<u>А.М.Афанасьев</u>

И.о. декана факультета информационных технологий и автоматизации производственных процессов

(подпись)

В.В. Дьячкова

Согласовано

Председатель методической комиссии по направлению подготовки 03.04.03 Радиофизика (магистерская программа «Инженерно-физические технологии в промышленности»)

(TOTAL)

А.М.Афанасьев

Начальник учебно-методического центра

(полимсь)

О.А. Коваленко

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения изменений	
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:
Ao Bille Ein Bi iloivi Ein Ein III.	
Основание:	
Подпись лица, ответственного за внесение изменений	