МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет горно-металлургической промышленности и строительства
Кафедра горных энергомеханических систем

УТВЕРЖДАЮ
Проректор
их учебной работе
Д.В. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

	Теплотехника	
	(наименование дисциплины)	
	21.05.04 Горное дело	
	(код, наименование направления)	
	Горные машины и оборудование	
	(профиль подготовки)	
Квалификация	Горный инженер (специалист)	
	(бакалавр/специалист/магистр)	
Форма обучения	очная, заочная	
	(очная, очно-заочная, заочная)	

1 Цели и задачи изучения дисциплины

Цели дисциплины формирование у студентов базовых знаний в области теплотехники, физической сущности термодинамических процессов горного производства, позволяющих обеспечить творческий подход к решению проблем горного производства при одновременном повышении безопасности и комфортности труда и уменьшении отрицательного воздействия горных работ на окружающую среду.

Задачи изучения дисциплины:

- -изучение термодинамических свойств веществ, методов расчета изменения термических и калорических параметров состояния в основных равновесных процессах и циклах;
- овладение методами расчета основных параметров тепловых процессов;
- формирование представлений о физической сущности процессов, происходящих в горных породах и породных массивах при тепловом воздействии на них.

Дисциплина направлена на формирование общепрофессиональных компетенции (ОПК-18) выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины — курс входит в БЛОК 1 «Дисциплины (модули)», часть, формируемую участниками образовательных отношений подготовки студентов по специальности 21.05.04 Горное дело (специализация «Горные машины и оборудование»).

Дисциплина реализуется кафедрой горных энергомеханических систем (ГЭС). Основывается на дисциплинах: физика, высшая математика, химия и др.

Является основой для изучения следующих дисциплин: технология и безопасность взрывных работ, горные машины и оборудование подземных горных работ, эксплуатация горных машин и оборудования.

Для изучения дисциплины «Теплотехника», приобретения необходимых знаний, умений и компетенций студент должен обладать соответствующими знаниями, умениями и компетенциями, полученными им при изучении дисциплин гуманитарного, социального цикла (философия, иностранный язык), математического и естественнонаучного цикла (математика, физика, химия, геология месторождений полезных ископаемых и информатика), а также ряда дисциплин профессионального цикла (начертательная геометрия, инженерная и компьютерная графика, теоретическая механика, прикладная механика, сопротивление материалов, электротехника, гидромеханика, материаловедение, основы горного дела, обогащение полезных ископаемых).

Общая трудоемкость освоения дисциплины для очной формы обучения составляет 3 зачетных единицы, 108 ак.ч. Программой дисциплины предусмотрены лекционные (32 ак.ч.), лабораторные (16 ак.ч.) занятия и самостоятельная работа студента (60 ак.ч.).

Для заочной формы обучения программой дисциплины предусмотрены лекционные (4 ак.ч.), лабораторные (2 ак.ч.) занятия и самостоятельная работа студента (102 ак.ч.).

Дисциплина изучается на 3 курсе в 6 семестре. Форма промежуточной аттестации – зачет.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Теплотехника» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание	Код	Код и наименование индикатора
компетенции	компетенции	достижения компетенции
Способен участвовать в исследованиях объектов профессиональной деятельности и их структурных элементов	ОПК-18	ОПК-18.1. Знать структуру объектов профессиональной деятельности; методы и средства проведения исследований объектов профессиональной деятельности и их структурных элементов; методологию проведения научных исследований; основы составления отчетов по проведенным исследованиям ОПК-18.2. Уметь выполнять исследования в сфере своей профессиональной деятельности; производить математическую обработку полученных результатов исследования; интерпретировать полученные результаты, составлять и защищать отчеты по проведенному исследованию ОПК-18.3. Владеть методами математической статистики для обработки и анализа результатов эксперимента в сфере своей профессиональной деятельности; навыками обработки результатов исследований, составления и защиты отчетов; приборной базой для проведения исследований в
участвовать в исследованиях объектов профессиональной деятельности и их структурных		ОПК-18.2. Уметь выполнять исследования в сфере своей профессиональной деятельности; производить математическую обработку полученных результатов исследования; интерпретировать полученные результаты, составлять и защищать отчеты по проведенному исследованию ОПК-18.3. Владеть методами математической статистики для обработки и анализа результатов эксперимента в сфере своей профессиональной деятельности; навыками обработки результатов исследований, составления и защиты отчетов;

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 3 зачётных единицы, 108 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим занятиям, текущему контролю, выполнение индивидуального задания, самостоятельное изучение материала и подготовку к зачету.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам 6
Аудиторная работа, в том числе:	48	48
Лекции (Л)	32	32
Практические занятия (ПЗ)	-	-
Лабораторные работы (ЛР)	16	16
Курсовая работа/курсовой проект	-	-
Самостоятельная работа студентов (СРС), в том числе:	60	60
Подготовка к лекциям	16	16
Подготовка к лабораторным работам	12	12
Подготовка к практическим занятиям / семинарам	-	
Выполнение курсовой работы / проекта	-	-
Расчетно-графическая работа (РГР)	-	-
Реферат (индивидуальное задание)	-	-
Домашнее задание	4	4
Подготовка к контрольной работе	•	-
Подготовка к коллоквиуму	-	-
Аналитический информационный поиск	10	10
Работа в библиотеке	10	10
Подготовка к зачету	8	8
Промежуточная аттестация – зачет (3)	3 (2)	3 (2)
Общая трудоемкость дисциплины		
ак.ч.	108	108
3.e.	3	3

5 Содержание дисциплины

С целью освоения компетенции, приведенной в п.3 дисциплина разбита на 4 темы:

- тема 1 (Термодинамика);
- тема 2 (Тепло- и массоперенос);
- тема 3 (Топливо и основы горения);
- тема 4 (Основы химической термодинамики).

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 3 и 4 соответственно.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1	Термодинамика	Основные понятия термодинамики. Термодинамическая система. Термодинамический процесс. Законы термодинамики. Внутренняя энергия. Теплота. Энтропия. Цикл Карно. Основные термодинамические процессы в газах, парах и их смесях. Термодинамические процессы реальных газов.	10		_		_
2	Тепло-и массоперенос	Способы передачи теплоты. Теплопроводность. Закон Фурье. Коэффициент теплопроводности. Дифференциальное уравнение теплопроводности Фурье. Краевые условия. Передача теплоты теплопроводностью через стенку. Теплопередача через стенку. Теплопроводность при нестационарном режиме. Обобщенные	12	-	_	Определение коэффициента теплопроводности твердого тела. Исследование теплоотдачи при свободном движении теплоносителя.	4
		процессы нестационарной теплопроводности. Нагрев и охлаждение тел при граничных условиях 1 рода. Конвективный теплообмен. Математическое описание конвективного теплообмена. Теплоотдача при свободной конвекции.				Определение коэффициентов теплоотдачи и теплопередачи отопительного прибора.	4

_1

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		Теоретическое уравнение, описывающие процесс естественной конвекции на вертикальной пластине. Экспериментальные уравнения конвективного теплообмена в большом объеме. Теплообмен излучением. Модели массопереноса. Методы расчета процессов массопереноса.					
3	Топливо и основы горения	Виды и характеристика топлива. Состав и основные характеристики твердого топлива. Состав и основные характеристики жидкого топлива. Состав и основные характеристики газообразного топлива. Теплота сгорания топлива. Классификация топлив. Расчеты процессов горения твердого, жидкого и газообразного топлива. Количество воздуха, необходимого для горения. Теплота сгорания воздуха. Объемы и состав продуктов горения. Энтальпия продуктов сгорания. Н, t -диаграмма. Основы теории горения.	4		_	Определение коэффициента излучения и степени черноты материала.	4

 ∞

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
4	Основы химической термодинамики	Термохимия. Закон Гесса. Уравнение Кирхгофа. Химическое равновесие и второй закон термодинамики. Термодинамические потенциалы. Тепловой закон Нернста.	6	_			
	Всего аудиторных за	нятий	32	-	·	16	-

Таблицы 4 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

№ п/п	Наименование раздела дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1	Термодинамика. Тепло-и массоперенос	Основные понятия термодинамики. Термодинамическая система. Термодинамический процесс. Законы термодинамики. Способы передачи теплоты. Теплопроводность. Закон Фурье. Коэффициент теплопроводности. Теплообмен излучением. Модели массопереноса. Методы расчета процессов массопереноса.	2	_	-	Определение коэффициентов теплоотдачи и теплопередачи отопительного прибора.	1
	Топливо и основы горения. Основы химической термодинамики.	Виды и карактеристика топлива. Состав и основные карактеристики твердого топлива. Состав и основные карактеристики жидкого топлива. Состав и основные карактеристики газообразного топлива. Теплота сгорания топлива. Классификация топлив. Термохимия. Закон Гесса. Уравнение Кирхгофа. Химическое равновесие и второй закон термодинамики. Термодинамические потенциалы. Тепловой закон Нернста.	2	_		Определение коэффициента излучения и степени черноты материала.	1
Вс	его аудиторных зан		4	-	-		2

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
ОПК-18	зачет	Комплект контролирующих материалов для зачета

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- тестовый контроль или устный опрос на коллоквиумах (2 работы) всего 40 баллов;
 - лабораторные работы всего 40 балов;
 - за выполнение домашнего задания всего 20 баллов.

Зачет проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Зачет по дисциплине «Теплотехника» проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время зачетной недели студент имеет право повысить итоговую оценку либо в форме устного собеседования по приведенным ниже вопросам (п.п. 6.5), либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашнее задание

В качестве домашнего задания студенты выполняют:

- работу над составлением конспекта изученного материала;
- проработку лабораторных работ с решением варианта задач.

Пример вариантов задач:

- 1. В сосуде объемом V=30 л содержится идеальный газ при температуре 0°С. После того, как часть газа была выпущена наружу, давление в сосуде понизилось на $\Delta p=0.78$ атм (без изменения температуры). Найти массу выпущенного газа. Плотность данного газа при нормальных условиях $\rho=1.3$ г/л.
- 2. На какой высоте давление воздуха составляет 75 % от давления на уровне моря? Температуру считать постоянной и равной 0^0 C.
- 3. Один конец стержня, заключенного в теплоизолирующую оболочку, поддерживается при температуре T_1 , а другой при температуре T_2 . Сам стержень состоит из двух частей, длины которых ℓ_1 и ℓ_2 и теплопроводность k_1 и k_2 . Найти температуру поверхности соприкосновения этих частей стержня.
- 4. Газ ацетон (C_3H_6O) при температуре 200 °C имеет удельную теплоёмкость при постоянном давлении $c_{pyo} = 1787$ Дж/(кг·К). Определить γ и удельный объем газа, если его давление $\rho = 1.8 \cdot 10^5$ Па.
- 5. Найти КПД цикла Клапейрона, состоящего из двух изотерм $T_1 = const$, $T_2 = const$ ($T_1 > T_2$) и двух изохор $V_1 = const$, $V_2 = const$ ($V_1 > V_2$). Построить график цикла.
- 6. Найти выражение для энтропии моля ван-дер-ваальсовского газа (как функцию от T и V). Сравнить с выражением для энтропии идеального газа.

6.3 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Тема 1 Термодинамика

- 1) Основной задачей технической термодинамики является?
- 2) Физическая, или общая, термодинамика исследует?
- 3) Термодинамическая система это?
- 4) Если система не обменивается с другими системами или с окружающей средой ни энергией, ни веществом, то она называется?
- 5) Система, в которой происходит обмен веществом и энергией с другими системами или с окружающей средой, называется?
 - 6) Что такое фаза?

- 7) Сформулируйте первый закон термодинамики.
- 8) Фазовые переходы бывают?
- 9) Фазовое равновесие это?
- 10) Правило фаз Гиббса.

Тема 2 Тепло- и массоперенос

- 1) Модели массопереноса.
- 2) Основные методы расчета процессов массопереноса.
- 3) Законы излучения абсолютно черного тела.
- 4) Метод сальдо-потоков.
- 5) Массообмен это?
- 6) Перенос вещества внутри фазы или через границу раздела фаз происходит?
 - 7) Граничные условия І рода.
 - 8) Удельная теплота изотермического переноса?
- 9) На каком физическом явлении основан процесс передачи тепла теплопроводностью?
- 10) К какому виду теплообмена можно отнести процесс теплопередачи через твердую стенку?

Тема 3 Топливо и основы горения

- 1) Основы сушки влажных материалов.
- 2) Виды и характеристики топлива. Состав различных видов топлива.
- 3) Процессы горения различных видов топлива.
- 4) Цикл компрессора: характеристики действительного цикла, понятие о многоступенчатом сжатии.
 - 5) Приведите классификацию топлива?
 - 6) Что называют псевдоожиженным слоем?
- 7) Какой воздух называют первичным, а какой вторичным при горении в топочной камере?
 - 8) Назовите особенности сжигания твердого топлива.
 - 9) Назовите особенности сжигания газа.
 - 10) Что такое условное топливо?

Тема 4 Основы химической термодинамики

- 1) Что является предметом химической термодинамики?
- 2) Реакции, протекающие с выделением тепла это?
- 3) Реакции, протекающие с поглощением тепла это?
- 4) Практическое значение закона Нернста.
- 5) Повышение (или понижение) температуры сдвигает равновесие в сторону?

6.4 Вопросы для подготовки к зачету (тестовому коллоквиуму)

- 1) Расскажите о теории теплорода.
- 2) Когда была предложена единица измерения теплоты калория, и чему она равна?

- 3) Система, в которой не происходит обмен теплотой с другими системами или с окружающей средой, называется?
- 4) Система, внутри которой существуют поверхности раздела, называется?
- 5) Состояние, в которое приходит система, характеризуемое изменчивостью во времени термодинамических параметров, называется?
- 6) Если совокупность прямого и обратного процессов вызывает изменения в окружающей среде, то такой процесс называется?
- 7) Закон Дальтона определяет, что?
- 8) Уравнение состояния -это?
- 9) Что является обязательным условием подвода (или отвода) теплоты?
- 10) Равновесное состояние какого газа описывается уравнением Клапейрона?
- 11) На диаграмме состояний, каковой является диаграмма pv, какой процесс может быть изображен?
- 12) На что расходуется удельная теплота, подведенная извне к рабочему телу?
- 13) Чему равна разность между полученной извне теплотой и отданной внешним телам работой?
- 14) В технической термодинамике теплота процесса $Q_{1,2}$ считается положительной, если энергия?
- 15) В формуле Майера c_p - c_v =R, величины c_p , c_v и R представляют соответственно?
- 16) Убыль внутренней энергии при совершении термодинамическим телом работы всегда имеет место?
- 17) В изобарно-изотермическом неравновесном процессе энергия Гиббса в состоянии термодинамического равновесия?
- 18) Сжатие рабочего тела в цикле Карно осуществляется?
- 19) Что такое дросселирование?
- 20) На каком физическом явлении основан процесс передачи тепла теплопроводностью?
- 21) Массоотдача это?
- 22) Массопередача это?
- 23) Потенциал это?
- 24) Изменение энергии Гиббса ΔG в процессе определяет?
- 25) Как протекает процесс при ΔH <0 и ΔS >0?
- 26) ЬНазовите параметры состояния тела.
- 27) Назовите интенсивные параметры термодинамической системы.
- 28) Назовите экстенсивные параметры системы.
- 29) Какие температурные шкалы относятся к термодинамическим?
- 30) Состояние влажного насыщенного пара определяется его давлением или температурой и степенью сухости х. Какому значению х соответствует состояние воды в момент закипания?
- 31) Что такое термодинамическая система?
- 32) Назовите основные параметры состояния термодинамической системы.
- 33) Охарактеризуйте уравнение состояния идеального газа.
- 34) Расскажите о теплоте и работе как формах передачи энергии.

- 35) Что такое термодинамический процесс? Равновесные и неравновесные процессы. Обратимые и необратимые процессы.
- 36) Сформулируйте понятия о энергии, расходе энергии, удельной энергии, работе, теплоте, рабочем теле.
- 37) Сформулируйте понятие о термодинамической системе, открытая и закрытая, адиабатная, изолированная системы, окружающая среда.
- 38) Назовите термодинамические параметры состояния рабочего тела и их функции. Определение их по таблицам и диаграммам.
- 39) Что такое теплоемкость, массовая, объемная и молярная теплоемкости? Теплоемкость при постоянном давлении и объеме.
- 40) Охарактеризуйте зависимость теплоемкости от температуры и давления. Теплоемкость смеси рабочих тел.
- 41) Сформулируйте первый закон термодинамики. Работа расширения (сжатия), работа проталкивания, располагаемая работа.
- 42) Что такое внутренняя энергия, энтропия, энтальпия? Р-v и Т-s диаграммы.
- 43)Сформулируйте второй закон термодинамики. Круговые термодинамические процессы (циклы) тепловых машин.
- 44) Расскажите о прямом и обратном цикле Карно. КПД цикла.
- 45) Что такое изохорный процесс идеального газа, располагаемая работа, работа расширения (сжатия), теплота процесса?
- 46) Что такое теплопроводность? Назовите основные понятия и определения. Закон Фурье. Коэффициент теплопроводности. Диференциальное уравнение теплопроводности. Условия однозначности.
- 47) Что такое конвективный теплообмен? Назовите основные понятия и определения. Коэффициент теплоотдачи.
- 48) Что такое теплообмен излучением? Какие Вы знаете законы теплового излучения?
- 48) Что такое сложный теплообмен, коэффициент теплопередачи, тепловая изоляция?
- 49) Что такое массообмен? Назовите основные понятия и определения.
- 50) В чем заключается фазовое равновесие. Что такое диффузия?

6.6 Примерная тематика курсовых работ

Курсовая работа не предусмотрена.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Буланов Н.В. Теплотехника: курс лекций / Буланов Н.В. Екатеринбург: Уральский государственный университет путей сообщения, 2021. 162 с. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/122261.html (дата обращения: 18.10.2024). Режим доступа: для авторизир. пользователей
- 2. Овчинников, В. В. Теплотехника: учебник / В. В. Овчинников, М. А. Гуреева. Москва, Вологда: Инфра-Инженерия, 2024. 196 с. Текст: электронный //Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/143633.html (дата обращения: 23.09.2024). Режим доступа: для авторизир. пользователей
- 3. Гажур, А. А. Теплотехника. Теплопередача и термодинамика: учебник / А. А. Гажур. Москва, Вологда: Инфра-Инженерия, 2023. 312 с. -Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/132884.html (дата обращения: 14.09.2024). Режим доступа: для авторизир. пользователей
- 4. Аксёнов, А. К. Теплотехника, термодинамика и теплопередача: учебнометодическое пособие / А. К. Аксёнов, С. В. Бирюков. Москва: МИСИ-МГСУ, ЭБС АСВ, 2022. 50 с. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/131597.html (дата обращения: 05.11.2024). Режим доступа: для авторизир. пользователей

Дополнительная литература

- 1. Белов, Г. В. Термодинамика в 2 ч. Часть 1: учебник и практикум для академического бакалавриата / Г. В. Белов. 2-е изд., испр. и доп. М.: Издательство Юрайт, 2016. 264 с. U R L: https://www.biblio-online.ru/book/82DC73D6-8033-49E9-AFB5-70DE4E9C7AC8 (ЭБС ЮРАЙТ).
- 2. Белов, Г. В. Термодинамика в 2 ч. Часть 2: учебник и практикум для академического бакалавриата / Г. В. Белов. 2-е изд., испр. и доп. М.: Издательство Юрайт, 2016. 248 с. URL: https://www.biblio-online.ru/book/113837CE-BDDD-4E79-A4FA-B30D63956946 (ЭБС ЮРАЙТ).
- 3. Ерофеев, В. Л. Теплотехника в 2 т. Том 1. Термодинамика и теория теплообмена: учебник для бакалавриата и магистратуры / В. Л. Ерофеев, А. С. Пряхин, П. Д. Семенов; под ред. В. Л. Ерофеева, А. С. Пряхина. М.: Издательство Юрайт, 2016. 308 с. URL: https://www.biblio-online.ru/book/0F27B612-D9AB-42AB-9FF5-F7A51E849C7A (ЭБС ЮРАЙТ).

- 4. Ерофеев, В. Л. Теплотехника в 2 т. Том 2. Энергетическое использование теплоты: учебник для бакалавриата и магистратуры / В. Л. Ерофеев, А. С. Пряхин, П. Д. Семенов; под ред. В. Л. Ерофеева, А. С. Пряхина. М.: Издательство Юрайт, 2016. 198 с. URL: https://www.biblio-online.ru/book/6A593465-8021-4362-9D54-19662A1CBF75(ЭБС ЮРАЙТ).
- 5. Термодинамика: учебное пособие для студентов, обучающихся по специальности «Горное дело» / В. В. Дырдин [и др.]; ГОУ ВПО "Кузбас. гос. техн. ун-т". 2-е изд, перераб. и доп. —К е м е р о в о: К у з Γ Т У, 2 0 0 9. 1 7 6 с. U R L:

http://library.kuzstu.ru/meto.php?n=90911&type=utchposob:common. – Текст: непосредственный +электронный.

- 6. Теплопередача. [В 2 ч.]: [учебное пособие для вузов/ В. С. Чередниченко, В. А. Синицын, А. И. Алиферов [и др.]; В. С. Чередниченко и др.]; под ред. В. С. Чередниченко; Новосиб. гос. техн. ун-т. –Ч. 1: Ч. 1.- Изд. 2-е, перераб. и доп. Новосибирск: изд-во НГТУ, 2008. 231 с. (Учебники НГТУ). –URL: http://library.kuzstu.ru/meto.php?n=149181&type=nstu:common (дата обращения: 12.09.2024). –Текст: электронный.
- 7. Теплопередача. [В 2 ч.]: [учебное пособие для вузов/ В. С. Чередниченко, В. А. Синицын, А. И. Алиферов [и др.]; В. С. Чередниченко и др.]; под общ. ред. В. С. Чередниченко и А. И. Алиферова; Новосиб. гос. техн. ун-т. Ч. 2: Ч. 2.- Изд. 2-е, перераб. и доп. Новосибирск: Изд-во НГТУ, 2010. –378с.—(УчебникиНГТУ).-

URL: http://library.kuzstu.ru/meto.php?n=141190&type=nstu:common (дата обращения: 10.09.2024). — Текст: электронный.

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт. Алчевск. URL: <u>library.dstu.education</u>. Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст : электронный.
- 3. Консультант студента: электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст: электронный.
- 4. Университетская библиотека онлайн : электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст : электронный.
- 5. IPR BOOKS : электронно-библиотечная система. Красногорск. URL: http://www.iprbookshop.ru/. Текст : электронный.
- 6. Федеральная служба по экологическому, технологическому и атомному надзору (Ростехнадзор) : официальный сайт. Москва. https://www.gosnadzor.ru/. Текст : электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местоположение) учебных кабинетов
Специальные помещения:	
Компьютерный класс (25 посадочных мест), оборудованный учебной мебелью, компьютерами с неограниченным доступом к сети Интернет, включая доступ к ЭБС: ПТК Intel (Core) Qard, 2,5, DVD-RW, 500 ГБ, ОЗУ 3,25 ГБ, видеокарта NVIDIA GeForce 9500GT, LG Flatron W2443ISE, USD2, принтер HP laserit MP1005 MFP; - ПТК СЕLERON 2,5, DVD-RW, ЖД 400 ГБ, ОЗУ 2 ГБ, видеокарта NVIDIA GeForce 9500GT, LG Flatron W1943SE, принтер Canon Pixma MP150; - ПТК СЕLERON 1,1, 2,5, CD-R, ЖД 40 ГБ, ОЗУ 128 МБ, USB, видеокарта Radeon 64 МБ, LG Flatron F150; - ПТК СЕLERON 2,7, DVD-RW, ЖД 40 ГБ, ОЗУ 256 МБ, USB, видеокарта Radeon 64 МБ, LG Flatron F720B.	ауд. <u>216</u> корп. <u>лабораторный</u>
2.1,202.	
Аудитории для проведения лекционных занятий, для самостоятельной работы: 35 посадочных мест; технические средства обучения - проектор EPSON EMP-X5; домашний кинотеатр HT-475; C/6 AMD Sempron 140 2.71.	ауд. <u>205</u> корп. <u>лабораторный</u>
Аудитории для проведения лабораторных занятий: Лабораторный стенд №1; лабораторный стенд №2; лабораторный стенд №4 для выполнения лабораторных работ по курсу «Теплотехника»	ауд. 113 корп. 3

Лист согласования РПД

Разработал

доц. кафедры горных		
энергомеханических систем	de	Доброногова В.Ю
(должность)	(подпись)	(Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
И.о.заведующего кафедрой горных энергомеханических систем	(подпись)	<u>Доброногова В.Ю.</u>
Протокол № 2 заседания кафедры горных энергомеханических систем	от 1	7.09.2024г.
И.о. декана факультета ГМПС	(подпись)	
Согласовано		
Председатель методической комиссии по направлению подготовки 21.05.04 Горное дело (горные машины и оборудование)	ОН У (подпись)	<u>Князьков О.В.</u> (Ф.И.О.)
Начальник учебно-методического центра	(подпись)	О.А. Коваленко (Ф.И.О.)

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения изменений				
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:			
Основание:				
Подпись лица, ответственного за внесение изменений				