МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

 Факультет
 информационных технологий и автоматизации производственных процессов

 Кафедра
 электроники и радиофизики

УТВЕРЖДАЮ

И. о. проректора по учебной работе

Д.В. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Теория колебаний				
03.03.03 Радиофизика				
(код, наименование направления)				
Инженерно-физические технологии в промышленности				
(профиль подготовки)				
Квалификация бакалавр				
	(бакалавр/специалист/магистр)			
Форма обучения	очная, очно-заочная			
	(очная, очно-заочная, заочная)			

1 Цели и задачи изучения дисциплины

Курс теории колебаний в системе подготовки бакалавриата составляет основу теоретической подготовки, обеспечивающую возможность использования физических явлений, законов и принципов в конкретных областях техники при освоении современных технических устройств на производстве, вооружает специалистов необходимыми знаниями для решения научно- технических задач в теоретических и прикладных аспектах.

Цели дисциплины - формирование у студентов современного естественнонаучного мировоззрения, освоение ими современного стиля физического мышления, подготовка студентов к изучению других специальных дисциплин, формирование у студентов фундаментальных базовых знаний по колебательным процессам и явлениям, изложение основных разделов физики колебаний, необходимых для освоения современных методов исследования, применяемых в радиофизике, обобщение необходимых опытных фактов.

Задачи - развитие у студентов умения применять основные законы колебательно-волновых процессов для решения конкретных задач, связанных с выбранной специальностью; овладение методами решения прикладных задач; решать обыкновенные дифференциальные уравнения; свободно владеть методами приближенного описания колебательных явлений; составление физических и математических моделей исследуемых систем; применение физических и математических моделей при решении радиофизических задач; решения прикладных задач с применением изучаемого теоретического материала; расчета и прогнозирования колебательных процессов.

Дисциплина направлена на формирование общепрофессиональной компетенции (ОПК-1) выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины — курс входит в обязательную часть БЛОКА 1 «Дисциплины (модули)» подготовки обучающихся по направлению 03.03.03 Радиофизика (профиль «Инженерно-физические технологии в промышленности»).

Дисциплина реализуется кафедрой электроники и радиофизики.

Основывается на базе дисциплин: «Высшая математика», «Механика», «Электричество и магнетизм», «Оптика».

Является основой для изучения следующих дисциплин: «Уравнения математической физики», «Распространение электромагнитных волн», «Физическая электроника», «Твердотельная электроника».

Общая трудоемкость освоения дисциплины составляет 3 зачетные единицы, 108 ак.ч. Программой дисциплины предусмотрены лекционные (36 ак.ч.), практические (18 ак.ч.) занятия и самостоятельная работа студента (54 ак.ч.). Дисциплина изучается на 3 курсе во 5 семестре.

Для очно-заочной формы обучения программой дисциплины предусмотрены лекционные (10 ак.ч.), практические (6 ак.ч.), занятия и самостоятельная работа студента (92 ак.ч.). Дисциплина изучается на 4 курсе во 7 семестре.

Форма промежуточной аттестации – зачет

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Теория колебаний» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание компетенции	Код	Код и наименование индикатора
	компетенции	достижения компетенции
Способен применять базовые знания в области физики и радиофизики и использовать их в профессиональной деятельности, в том числе в сфере педагогической деятельности	ОПК-1	ОПК-1.1. Понимает и интерпретирует основные методы высшей математики, основные законы в области общей физики, основы теоретической физики и электроники необходимые для решения профессиональных задач, в том числе в сфере педагогической деятельности

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 3 зачётные единицы, 108 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим занятиям, текущему контролю, самостоятельное изучение материала и подготовку к зачету.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам 5
Аудиторная работа, в том числе:	54	54
Лекции (Л)	36	36
Практические занятия (ПЗ)	18	18
Лабораторные работы (ЛР)	1	-
Курсовая работа/курсовой проект	ı	-
Самостоятельная работа студентов (СРС), в том числе:	54	54
Подготовка к лекциям	9	9
Подготовка к лабораторным работам	-	-
Подготовка к практическим занятиям / семинарам	18	18
Выполнение курсовой работы / проекта	-	-
Расчетно-графическая работа (РГР)	-	-
Реферат (индивидуальное задание)	-	-
Домашнее задание (индивидуальное задание)	-	-
Подготовка к контрольной работе	-	-
Подготовка к коллоквиуму	6	6
Аналитический информационный поиск	-	-
Работа в библиотеке	6	6
Подготовка к зачету	15	15
Промежуточная аттестация – зачет	3	3
Общая трудоемкость дисциплины		
ак.ч.	108	108
3.e.	3	3

5 Содержание дисциплины

С целью освоения компетенции, приведенной в п.3 дисциплина разбита на 5 тем:

- Тема 1 (Линейные колебательные системы);
- Тема 2 (Нелинейные колебательные системы);
- Тема 3 (Автоколебательные системы);
- Тема 4 (Параметрические системы);
- Тема 5 (Колебательные системы с двумя степенями свободы).

Виды занятий по дисциплине и распределение аудиторных часов для очной и очно-заочной формы приведены в таблицах 3 и 4 соответственно.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/п	Наименование темы дисци- плины	Содержание лекционных занятий	Тру- доем- кость в ак.ч.	Темы практических занятий	Тру- доем- кость в ак.ч.
1	Линейные коле- бательные си- стемы.	Гармонический осциллятор. Фазовая плоскость. Изображение колебаний гармонического осциллятора на фазовой плоскости. Линейный осциллятор при наличии трения. Изображение затухающего осцилляторного процесса на фазовой плоскости. Затухающий апериодический процесс. Осциллятор с малой массой. Условие скачка. Линейный осциллятор с отрицательным трением. Картина на фазовой плоскости. Линейная система с отталкивающей силой. Устойчивость состояния равновесия. Классификация особых точек уравнения интегральных кривых. Вынужденные колебания в системе, обладающей затуханием под действием синусоидальной силы. Резонанс. Энергетические превращения при вынужденных колебаниях. Установление колебаний.	8	Собственно колебания с поглощением. Уравнение затухающих колебаний. Декремент затухания. Погарифмический декремент затухания.	4
2	Нелинейные ко- лебательные си- стемы.	Колебания нелинейной консервативной системы. Исследование фазовой плоскости вблизи состояний равновесия. Сепаратрисы. Зависимость поведения простейшей консервативной системы от параметра. Бифуркационная диаграмма. Диссипативные системы. Осциллятор с кулоновским трением. Картина на фазовой плоскости.	8	Нелинейные колебательные системы.	4
3	Автоколебательные системы	Основные физические определения и классификация колебательных систем. Качественный анализ уравнений Ван-дер-Поля. Колебательные системы с нелинейным трением. Метод энергетического баланса в задачах определения стационарного режима автоколебательных систем	6	Система с одной степенью свободы. Физические примеры. Метод Ван-дер-Поля. Связанные автогенераторы.	4
4	Параметриче- ские колебания.	Параметрические колебания. Уравнение Матье. Области параметрического резонанса. Диаграмма Айнса-Стретта.	6	Параметрические колебания	4

7

№ п/п	Наименование темы дисци- плины	Содержание лекционных занятий	Тру- доем- кость в ак.ч.	Темы практических занятий	Тру- доем- кость в ак.ч.
5	Собственные ко- лебания в си- стеме с двумя степенями сво- боды без трения.	Нормальные координаты. Влияние сил сопротивления на свободные колебания систем с двумя степенями свободы. Вынужденные колебания систем с двумя степенями свободы.	8	Влияние сил сопротивления на свободные колебания систем с двумя степенями свободы.	4
	Всего аудиторных часов				18

Таблица 4— Виды занятий по дисциплине и распределение аудиторных часов (очно-заочная форма обучения)

No॒	Наименование	Содержание лекционных занятий	Тру-	Темы практических занятий	Тру-
Π/Π	темы		доем-		доем-
	дисциплины		кость		кость
			В		В
			ак.ч.		ак.ч.
1	Линейные колебательные системы.	Гармонический осциллятор. Фазовая плоскость. Изображение колебаний гармонического осциллятора на фазовой плоскости. Линейный осциллятор при наличии трения. Изображение затухающего осцилляторного процесса на фазовой плоскости. Затухающий апериодический процесс. Осциллятор с малой массой. Условие скачка. Линейный осциллятор с отрицательным трением. Картина на фазовой плоскости. Линейная система с отталкивающей силой. Устойчивость состояния равновесия. Классификация особых точек уравнения интегральных кривых. Вынужденные колебания в системе, обладающей затуханием под действием синусоидальной силы. Резонанс. Энергетические превращения при вынужденных колебаниях. Установление колебаний.	4	Собственно колебания с поглощением. Уравнение затухающих колебаний. Декремент затухания. Логарифмический декремент затухания.	2
2	Нелинейные колеба- тельные системы.		2	Нелинейные колебательные системы.	2
3	Автоколебатель- ные системы	Основные физические определения и классификация коле-бательных систем. Качественный анализ уравнений Ван-дер-Поля. Колебательные системы с нелинейным трением. Метод энергетического баланса в задачах определения стационарного режима автоколебательных систем	2	Система с одной степенью свободы. Физические примеры. Метод Ван-дер-Поля. Связанные автогенераторы.	1
4	Параметрические колебания.	Параметрические колебания. Уравнение Матье. Области параметрического резонанса. Диаграмма Айнса-Стретта.	2	Параметрические колебания	1
		Всего аудиторных часов	10		6

9

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетен- ции	Способ оценивания	Оценочное средство
ОПК-1	Зачет	Комплект контролирующих материалов для зачета

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- тестовый контроль или устный опрос на коллоквиумах (2 работы) всего 60 баллов;
 - практические работы всего 40 баллов;

Зачет проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Зачет по дисциплине проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время зачетной недели студент имеет право повысить итоговую оценку либо в форме устного собеседования, либо в результате тестирования. Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

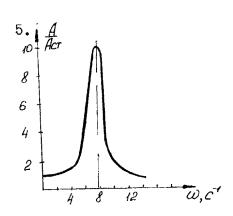
Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	экзамен
0-59	Неудовлетворительно
60-73	Удовлетворительно
74-89	Хорошо
90-100	Отлично

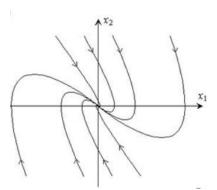
6.2 Домашнее задание

В качестве домашнего задания обучающиеся выполняют:

- проработка лекционного материала;
- подготовка к практическим занятиям.


6.3 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

- 1. Гармонические колебания это ...
- а) периодические процессы, при которых физическая величина в зависимости от времени изменяется по закону косинуса (или синуса);
- б) движения, которые точно или приблизительно повторяются через определенные интервалы времени;
 - в) изменение состояния тел (или системы тел).
 - 2. При свободных колебаниях тело получает энергии, ...
- а) от источника постоянной силы, причем колеблющееся тело при помощи устройства обратной связи само регулирует поступление энергии;
 - б) только один раз, когда оно выводится из положения равновесия;
 - в) за счет работы периодической внешней силы.
- 3. Точка совершает гармонические колебания. Максимальная скорость точки 10 м/c, максимальное ускорение 40 м/c^2 . Чему равна круговая частота колебаний?
 - а) 4 рад/с;
- б) 0,25 рад/с;
- в) 40 рад/с.
- 4. Уравнение колебаний материальной точки задано в виде $x = A \sin(\omega t + \phi) \, \mathit{м}$. Укажите выражение для потенциальной энергии колеблющейся точки.
 - a) $\frac{mA^2\omega^2}{2}\cos^2(\omega t + \varphi)$ Дж;
 - б) $\frac{kA^2}{2}\sin^2(\omega t + \varphi)$ Дж;
 - B) A $\omega^2 \sin(\omega t + \varphi)$.
- 5. Во сколько раз изменится период малых колебаний маятника при опускании лифта с ускорением, a = 0.5 g?
 - a) 1,41;
- б) 2,84;
- в) 1,64.


тора, если масса груза уменьшилась в 9 раз?

6. Как изменится период колебаний линейного гармонического осцилля-

а) уменьшито	я в 3 раза;			
б) увеличится	я в 3 раза;			
в) уменьшито	ся в 9 раз.			
7. Свободны	е электрические і	солебания все	егда является затуха	ющими
колебаниями. Это с	объясняется			
а) превращен	пием электрическо	ой энергии, за	апасенной в поле мет	жду об-
кладками конденса	атора, в энергию	магнитного г	поля, локализованно	го в ка-
тушке, и наоборот;				
б) переходом	и электромагнитн	юй энергии	колебаний во внутр	еннюю
энергию проводов	и окружающей ср	еды.		
сложения двух оди		ных колебани	ь колебания, получен ий, заданных уравнен м	
а) 7 м;	б) 6,4 м	ι;	в) 5 м.	
ными амплитудами б) $11 \pi/3$; в) $14 \pi/3$, мальную амплитуд	и и частотами, но р отобрать пары та у.	различными н ких, которые	равленных колебаний начальными фазами: при сложении дадут	a) $2 \pi/3$;
а) а и б ;	б) бив	;	в) а и в .	
-	колебаниях, амг π/2?	•	наствующее в двух в астоты которых один	наковы,
_	о силы и частотой анс колебаний (с у	собственных		<u>-</u>

- 12. Используя рисунок найти как изменится амплитуда маятника, если его масса уменьшится в n раз?
 - а) увеличится в \sqrt{n} раз;
 - б) уменьшится в \sqrt{n} ' раз;
 - в) увеличится в n раз;
 - Γ) уменьшится в n раз.
- 13. Геометрическое место изображающих точек для заданного движения называется:
 - а) фазовой точкой;
 - б) фазовой плоскостью;
 - в) фазовой траекторией;
 - г) фазовым портретом.
 - 14. Особые точки это:
 - а) точка через которую проходит одна фазовая траектория;
- б) точка через которую проходит больше чем одна фазовая траектория или не проходит ни одной;
 - в) точка через которую не проходят фазовые траектории;
- г) точка через которую проходит большое количество фазовых траекторий.
 - 15. Какой особой точке соответствует фазовый портрет

- а) устойчивый фокус;
- б) неустойчивый фокус;
- в) неустойчивый узел;
- г) устойчивый узел.

6.4 Вопросы для подготовки к зачету

- 1. Гармонический осциллятор. Фазовая плоскость. Изображение колебаний гармонического осциллятора на фазовой плоскости.
- 2. Линейный осциллятор при наличии трения. Изображение затухающего осцилляторного процесса на фазовой плоскости. Затухающий апериодический процесс.
- 3. Линейный осциллятор с отрицательным трением. Картина на фазовой плоскости. Линейная система с отталкивающей силой. Устойчивость состояния равновесия.
- 4. Классификация особых точек уравнения интегральных кривых. Вынужденные колебания в системе, обладающей затуханием под действием синусоидальной силы. Резонанс. Энергетические превращения при вынужденных колебаниях. Установление колебаний.
- 5. Колебания нелинейной консервативной системы. Исследование фазовой плоскости вблизи состояний равновесия.
- 6. Бифуркационная диаграмма. Диссипативные системы. Осциллятор с кулоновским трением. Картина на фазовой плоскости.
- 7. Основные физические определения и классификация колебательных систем. Качественный анализ уравнений Ван-дер-Поля.
- 8. Колебательные системы с нелинейным трением. Метод энергетического баланса в задачах определения стационарного режима автоколебательных систем
- 9. Параметрические колебания. Уравнение Матье. Области параметрического резонанса. Диаграмма Айнса-Стретта.
- 10. Собственные колебания в системе с двумя степенями свободы без трения. Нормальные координаты. Влияние сил сопротивления на свободные колебания систем с двумя степенями свободы.
 - 11. Вынужденные колебания систем с двумя степенями свободы.

6.5 Примерная тематика курсовых работ

Курсовые работы не предусмотрены.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

- 1. Лопарев А.В., Соколов А.Ю. Методы теории колебаний— СПб: Университет ИТМО, 2019. 81 с. https://books.ifmo.ru/file/pdf/2524.pdf (дата обращения: 21.06.2024).
- 2. Рейман, А. М. Лекции о колебаниях: учебно-методическое пособие / А. М. Рейман; Федеральный исследовательский центр Институт прикладной физики РАН. Нижний Новгород: ИПФ РАН, 2021. 108 с https://www.ipfran.ru/api/elibrary/11573/186.pdf (дата обращения: 21.06.2024).
- 3. Канн К.Б. Курс общей физики: учебное пособие / К.Б. Канн. Москва: КУРС: ИНФРА М, 2022. 268 с. https://znanium.ru/catalog/document?id=393848 (дата обращения: 21.06.2024).

Дополнительная литература.

- 1. Тарасов, О.М., Физика : учебное пособие / О.М. Тарасов. М.: ФО-РУМ: ИНФРА-М, 2019. 432с. (Профессиональное образование). https://znanium.com/catalog/document?id=363555
- 3. Савельев, И. В. Сборник вопросов и задач по общей физике: учеб. пособие для студ. вузов / И.В. Савельев . М. : Астрель ; АСТ, 2001 . 320 с. 2 экз.

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт. Алчевск. URL: library.dstu.education. Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст : электронный.
- 3. Консультант студента: электронно-библиотечная система. Mockва. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст : электронный.
- 4. Университетская библиотека онлайн : электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст : электронный.
- 5. IPR BOOKS : электронно-библиотечная система. Красногорск. URL: http://www.iprbookshop.ru/. Текст: электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местоположение) учебных кабине- тов
Специальные помещения: Аудитория для проведения лекционных и практических занятий (20 посадочных мест), оборудованная специализированной (учебной) мебелью, доска аудиторная, локальная компьютерная сеть с выходом в Internet; мультимедийная доска — 1 шт.	ауд.436 корп. <u>главный</u>

Лист согласования РПД

Разработал:

Старший преподаватель кафедры электроники и радиофизики (должность)

И.о. заведующего кафедрой электроники и радиофизики

Протокол № <u>1</u> заседания кафедры электроники и радиофизики от <u>30.08. доду</u>

И.о. декана факультета информационных технологий и автоматизации производственных процессов

Согласовано:

Председатель методической комиссии по направлению подготовки 03.03.03 Радиофизика (профиль «Инженерно-физические технологии в промышленности»)

Начальник учебно-методического центра

<u>Е.В. Мурга</u> (Ф.Й.О.)

<u>А.М.Афанасьев</u> (Ф.И.О.)

<u>В.В. Дьячкова</u> (Ф.И.О.)

А.М.Афанасьев

О.А. Коваленко (Ф.И.О.)

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения изменений			
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:		
Основание:			
Подпись лица, ответственного за внесение изменений			