Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Вишневский Дмитрий Александрович

Должность: Ректор

Дата подписания: 17.10.2025 16:47:32

Уникальный программый книстерство науки и высшего образования российской федерации 03474917c4d012283e5ad996a48a5e70bf8da057 (МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

 Факультет
 информационных технологий и автоматизации производственных процессов

 Кафедра
 автоматизированного управления и инновационных технологий

УТВЕРЖДАЮ И.о. проректора по учебной работе Д.В. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Технологические пр	роцессы автоматизированного производства			
	(наименование дисциплины)			
15.03.04 Автоматизац	ция технологических процессов и производств (код. наименование направления)			
Автоматизированно	е управление технологическими процессами			
	и производствами			
	(профиль подготовки)			
Квалификация	бакалавр			
	(бакалавр/специалист/магистр)			
Форма обучения	очная, заочная			
	(очная, очно-заочная, заочная)			

1 Цели и задачи изучения дисциплины

Цели дисциплины. Целью изучения дисциплины «Технологические автоматизированного производства»является процессы овладение теоретическими основами технологических процессов, общими закономерностями их протекания в аппаратуре технологических производств; освоение обобщенных методов моделирования и расчета процессов; изучение наиболее распространенных конструкций тепловых аппаратов, принципов их работы и методов их инженерного расчета. В процессе изучения дисциплины студент приобретает навыки практической работы с энергетическими, теплои массообменными аппаратами; расчетов и определения основных параметров и количественных характеристик процессов.

Задачей изучения дисциплины является формирование у студентов навыков по изучению: базовых закономерностей тепло- и массообменных процессов и принципов их моделирования; основ расчета аппаратов для осуществления этих процессов; тепловых процессов и аппаратов; умение выбирать рассчитывать параметры И аппаратуру ДЛЯ конкретного технологического процесса. А также формирование у студентов знаний: о структуре энергетического производства; номенклатуры, основных свойств и наиболее распространенных области использования конструкционных материалов; технологических схем и состава средств технологического оснашения.

Дисциплина направлена на формирование профессиональных компетенций (ПК-1 и ПК-2) выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины—курс входит в обязательную часть «БЛОК 1, формируемая участниками образовательных отношений» подготовки студентов по направлению подготовки 15.03.04 Автоматизация технологических процессов и производств.

Дисциплина реализуется кафедрой автоматизированного управления и инновационных технологий. Основывается на базе дисциплин: Физика, Химия, Термодинамика и теплотехника.

Является основой для изучения следующих дисциплин: Оборудование технологических процессов отрасли, Энергоснабжение производства в отрасли.

Для изучения дисциплины необходимы компетенции, сформированные у студента применять математические и естественнонаучные дисциплины, а также дисциплины профессионального цикла, способствующие:

показатели основных и вспомогательных технологических процессов теплоэнергетической и металлургической промышленности.

- умению рассчитывать технико-экономические;
- умению выделять особенности теплоэнергетических и металлургических процессов и оборудования как объектов автоматизации для составления технического задания на АСУТП.
- овладевать методами анализа теплоэнергетических и металлургических процессов и оборудования как объектов управления.
- овладевать навыками расчета технико-экономических показателей основных и вспомогательных технологических процессов.

Дисциплина изучается на 2-ом курсе в 4-м семестре. Форма промежуточной аттестации – экзамен.

Общая трудоемкость освоения дисциплины составляет 4 зачетные единицы, 144 ак.ч. Программой дисциплины предусмотрены лекционные занятия (36 ак.ч.), лабораторные занятия(36 ак.ч.) и самостоятельная работа студента (72 ак.ч.).

На заочной форме обучения дисциплина изучается на 2-ом курсе в 4-м семестре. Форма промежуточной аттестации – экзамен.

На заочной форме обучения общая трудоемкость освоения дисциплины составляет 4 зачетные единицы, 144 ак.ч. Программой дисциплины предусмотрены лекционные занятия (6 ак.ч.), лабораторные занятия (6 ак.ч.) и самостоятельная работа студента (132 ак.ч.).

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Технологические процессы автоматизированного производства» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 — Компетенции, обязательные к освоению

Содержание	Код	Код и наименование индикатора
компетенции	компетенции	достижения компетенции
Способен		ПК-1.2 Знает стандартные приборы и устройства,
собирать и		используемые в локальных промышленных сетях,
накапливать	ПК-1	особенности реализации сетевых технологий в
данные о	111X-1	производственной деятельности
технологическо		
м процессе		
Способен		ПК-2.1. Знает современные способы реализации
собирать и		технологических схем в теплоэнергетике и
подготавливать		металлургии; типы технологических процессов и их
информацию		назначение; требования к сырью и качеству продукции.
для	ПК-2	ПК-2.3. Знает приемы и методы проведения
составления		обследования объекта автоматизации применительно к
технического		металлургии.
задания на		
АСУТП		

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины в семестре составляет 3 зачётные единицы, 144 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к текущему контролю, подготовка к лабораторным занятиям, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы, и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам 4
Аудиторная работа, в том числе:	72	72
Лекции (Л)	36	36
Практические занятия (ПЗ)		
Лабораторные работы (ЛР)	36	36
Курсовая работа/курсовой проект		
Самостоятельная работа студентов (СРС), в том числе:	72	72
Подготовка к лекциям	10	10
Подготовка к лабораторным работам	12	12
Подготовка к практическим занятиям / семинарам	-	-
Выполнение курсовой работы / проекта	-	-
Расчетно-графическая работа (РГР)	-	-
Реферат (индивидуальное задание)	-	-
Домашнее задание	-	-
Подготовка к контрольной работе (тестирование)	12	12
Подготовка к коллоквиуму (защита лабораторных работ)	12	12
Аналитический информационный поиск	8	8
Работа в библиотеке	8	8
Подготовка к экзамену	10	10
Промежуточная аттестация – экзамен	Э	Э
Общая трудоемкость дисципли	ІНЫ	
ак.ч.	144	144
3.e.	4	4

5 Содержание дисциплины

С целью освоения компетенции, приведенной в п.3 дисциплина разбита на 16 тем:

- тема 1(Технологический процесс, как основа производства)
- тема 2 (Отраслевая структура автоматизированного производства)
- тема 3 (Закономерности функционирования технологических процессов)
- тема 4 (Основы развития технологий по отраслям промышленного производства)
 - тема 5 (Теплообменные аппараты)
 - тема 6 (Выпарные аппараты)
 - тема 7 (Основы теории сушки)
 - тема 8 (Воздухоразделительные установки)
 - тема 9 (Рекуператоры и регенераторы)
- тема 10(Технологические процессы автоматизированных производств и основные агрегаты металлургического производства в производстве чугуна)
- тема 11(Технологические процессы автоматизированных производств и основные агрегаты металлургического производства в производстве стали)
- тема 12(Технологические процессы автоматизированных производств и основные агрегаты прокатного производства)
- тема 13(Технологические процессы автоматизированных производств и основные энергетические объекты)
- тема 14 (Системы автоматизированного управления технологическими процессами на объектах металлургии)
- тема 15 (Автоматизация основных процессов выработки пара и горячей воды в котлоагрегатах).

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 3 и 4 соответственно.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1	Технологически й процесс, как основа производства	Определение и понятие технологического процесса. Виды технологических процессов (техпроцессов). Закономерность развития технологического процесса. Технико-экономические показатели технологических процессов. Структура и уровни технологических систем. Типы технологических процессов	2		_	Лабораторная работа № 1 «Ситовый анализ»	4
2	Отраслевая структура автоматизирован ного производства	Понятие отраслевой структуры производства. Классификация отраслей и их характеристика. Топливно-энергетический комплекс. Сущность и понятие технологического процесса. Производственный процесс. Структура технологического процесса. Основные технико-экономические показатели технологического процесса	2	_	_	_	_

_ .

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
3	Закономерности функционирован ия технологических процессов	Общие принципы классификации технологических процессов. Физические процессы в технологии и подгруппы данных процессов. Химические процессы в технологии и подгруппы. Биологические процессы.	2	_	_	Лабораторная работа № 2 «Эксперимен тальное определение величины температурно й депрессии»	4
4	Основы развития технологий по отраслям промышленного производства	Основы развития технологий в черной металлургии. Структурная технологическая схема металлургического предприятия с полным и неполным циклом передела. Новые технологические процессы и методы в чёрной металлургии	2	_	_	-	_
5	Теплообменные аппараты	Общие сведения. Классификация теплообменных аппаратов. Устройство теплообменников. Принцип работы теплообменника. Виды теплоносителей	2	_	_	Лабораторная работа № 3 «Определени е расхода греющего пара на однокорпусну ю выпарную установку непрерывног о действия»	4

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
6	Выпарные аппараты	Процесс выпаривания. Типы выпарных аппаратов. Классификация выпарных аппаратов. Приборы со свободной циркуляцией. Приборы с естественной циркуляцией. Приборы с принудительной циркуляцией. Выпарные аппараты пленочного типа (к ним же относят оборудование роторного типа). Область применения. Тепловой и материальный балансы выпарных аппаратов	2	_	_	Лабораторная работа № 4 «Упрощенны й тепловой расчет барабанной сушилки»	4
7	Основы теории сушки	Основные понятия и определения. Равновесная, искусственная и естественная сушка. Классификация аппаратов. Понятие сушильного агента и примеры применения. Область применения сушильный агрегатов. Материальный и тепловой балансы	2	_	_	_	_
8	Воздухоразделит ельные установки	Основные понятия. Классификация аппаратов. Область применения. Основы методики расчета установок	2	-	_	Лабораторная работа № 5 «Составление материальног	4

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
						о и теплового баланса сушильной установки»	
9	Рекуператоры и регенераторы	Назначение рекуператоров и регенераторов. Классификация аппаратов. Область применения. Материальный и тепловой балансы рекуператоров и регенераторов	2	_	_	-	_
10	Технологически е процессы автоматизирован ных производств и основные агрегаты металлургическо го производства в производстве чугуна	Технологические объекты, применяемые в качестве нагревательных устройств. Виды топлива. Системы автоматизации и управления технологическими процессами, производствами и предприятиями, этапы разработки и внедрения.	2	_	_	Лабораторная работа № 6 «Составление материальног о и теплового баланса	6
11	Технологически е процессы автоматизирован ных производств и основные агрегаты металлургическо го производства в производстве стали	Общие концепции производства стали. Сущность физико-химических процессов при производстве. Технологические объекты, применяемые для производства, стали. Исходное сырье. Системы автоматизации и управления технологическими процессами, производствами и	2	_	_	_	_

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		предприятиями, этапы разработки и внедрения.					
12	Технологически е процессы автоматизирован ных производств и основные агрегаты прокатного производства	Технологические объекты, применяемые в качестве нагревательных устройств. Виды топлива. Системы автоматизации и управления технологическими процессами, производствами и предприятиями, этапы разработки и внедрения.	2	_	_	Лабораторная работа № 7 «Составлени е материальног о и теплового баланса регенератора »	6
13	Технологически е процессы автоматизирован ных производств и основные энергетические объекты	Технологические объекты, применяемые в качестве нагревательных устройств. Виды топлива. Системы автоматизации и управления технологическими процессами, производствами и предприятиями, этапы разработки и внедрения.	4	-	_	Лабораторная работа № 8 «Измерение удельной поверхности»	4

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
14	Системы автоматизирован ного управления технологически ми процессами на объектах металлургии	Назначение систем автоматизированного управления технологическими процессами. Выбор контролируемых величин. Выбор сигнализируемых величин. Выбор параметров и способов защиты. Выбор параметров управления. Система условных обозначений средств контроля и автоматизации на схемах.	4	_		_	_
15	Автоматизация основных процессов выработки пара и горячей воды	Выбор контролируемых величин, выбор сигнализируемых величин, выбор параметров и способов защиты, выбор параметров управления. Показатели надежности системы управления. Выбор средств автоматизации. Условные обозначения на схемах автоматизации.	4	-	_	-	_
	Всего а	удиторных часов	36	_		•	36

Таблица 4 –Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

No	Наименование	Солержание лекционных	Трудоемкость	Темы	Трудоемкость	Тема	Трудоемкость в
п/п	раздела дисциплины	занятий	в ак.ч.	практических занятий	в ак.ч.	лабораторных занятий	ак.ч.

№ п/п	Наименование раздела дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1	Теплообменные аппараты	Общие сведения. Классификация теплообменных аппаратов. Устройство теплообменников. Принцип работы теплообменника. Виды теплоносителей	2	_	_	Лабораторная работа «Составление материального	6
2	Системы автоматизирован ного управления технологически ми процессами	Назначение систем автоматизированного управления технологическими процессами. Выбор контролируемых величин. Выбор сигнализируемых величин.	4	_	_	и теплового баланса регенератора»	
	Всего ау	удиторных часов	6		_	6	

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license-certificate/polog-kred-modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
ПК-1, ПК-2	Экзамен	Комплект контролирующих материалов для экзамена

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- выполнение контрольных работ (в виде тестирования) всего 50 баллов;
 - выполнение и защита лабораторных работ всего 50 баллов.

Экзамен проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

В случае если полученная в семестре сумма баллов не устраивает студента, он имеет право повысить итоговую оценку, ответив на вопросы из билета на экзамене.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале	
учебной деятельности	зачёт/экзамен	
0-59	Не зачтено/неудовлетворительно	
60-73	Зачтено/удовлетворительно	
74-89	Зачтено/хорошо	
90-100	Зачтено/отлично	

6.2 Домашнее задание

Домашнее задание по дисциплине не предусмотрено.

6.3 Индивидуальное задание

Индивидуальное задание по дисциплине не предусмотрено.

6.4 Оценочные средства (тесты) для текущего контроля успеваемости

Для организации текущего контроля полученных студентами знаний по данной дисциплине используются тесты. Каждый тест состоит из нескольких разнотипных вопросов.

- 1. Использование быстрого процесса сушки в сушилках небольшого объёма может привести к ...
 - А. Разрушению твердого продукта за счет слишком быстрого сжатия;
 - В. Качественному подсушиванию материала;
 - С. Увлажнению подсушиваемого материала;
 - D. Выдуванию объекта из зоны подсушки.
 - 2. Скорость сушки равна ...
 - А. Количеству влаги на 1 кг влажного воздуха;
- В. Количеству пара в килограммах, удаляемого с квадратного метра материала за секунду;
 - С. Количеству влаги, удаляемой при перепаде температур на 1 К;
 - D. Поверхности, осущиваемой сухим воздухом в единицу времени.
- 3. В какой из ниже перечисленных сушилок уже диапазон расхода энергии на изменение энтальпии материала и потери?
 - А. Туннельная;

- В. Ротационная;
- С. С пневматическим слоем;
- D. Распылительная.
- 4. В каком смысле применима сорбция к процессу сушки материалов?
- А. Сорбция описывает количество влаги, которое может воспринять на себя твердый объект сушки;
- В. Сорбция характеризует впитывающую способность конвеерной ленты на сушилке;
 - С. Сорбция описывает качество процесса сушки;
 - D. Без сорбционных материалов сушка невозможно.
- 5. Какая связь воды с высушиваемым веществом возможна только в растворах [12]?
 - А. Осмотическая связь;
 - В. Физико-механическая связь;
 - С. Адсорбционная связь;
 - D. Химическая связь.
- 6. Какие материалы после просушки становятся хрупкими и в высушенном состоянии легко превращаются в порошок?
 - А. Коллоидные;
 - В. Капиллярно-пористые;
 - С. Капиллярно-пористые коллоидные.
- 7. В каком случае будет достигнуто состояние равновесной влажности вешества?
- А. Когда давление пара жидкости в материале рм больше, чем давление пара в газовом потоке рп, обдувающем материал;
- В. Когда давление пара жидкости в материале рм меньше, чем давление пара в газовом потоке рп, обдувающем материал;
- С. Когда давление пара жидкости в материале рм равняется давлению пара в газовом потоке рп, обдувающем материал;
 - D. Не зависит от ранее упомянутых в вопросе параметров.
 - 8. Какой из процессов соответствует из нижеперечисленных сушке?
 - A. $P_{\Pi} > p_{M}$;
 - B. $P_{\Pi} < p_{M}$;
 - C. $P_{\pi} = p_{\text{M}}$.

- 9. Как называется область, когда давление паров жидкости в материале не зависит от влажности материала и равно давлению насыщения свободной жидкости при температуре материала?
 - А. Область влажного состояния;
 - В. Область гигроскопического состояния;
 - С. Область несвязанной влаги.
- 10. Как называется явление, которое на кривых сорбции-десорбции характеризуется достижением одного и того же равновесного влагосодержания, при котором относительная влажность газа при увлажнении материала будет больше, чем при сушке?
 - А. Дегидратации;
 - В. Гистерезиса;
 - С. Дефлаграции;
 - D. Десорбции.
- 11. На каком участке диаграммы φ =f(w0) жидкость поглощается без выделения теплоты, и эта жидкость в основном является капиллярной.
 - A. 0-50%;
 - B. 90-100%;
 - C. 10-90%;
 - D. 0-10%. 97
- 12. Что происходит с влажным воздухом в калорифере при повышении его температуры?
 - А. Относительная влажность не изменяется, влагосодержание падает;
 - В. Относительная влажность падает, влагосодержание не изменяется;
 - С. Относительная влажность увеличивается, влагосодержание падает;
- D. Относительная влажность не изменяется, влагосодержание увеличивается;
- 13. Какая часть H-d диаграммы относится к пересыщенному водяным паром влажному воздуху?
 - А. Над линией $\varphi = 100\%$;
 - В. Под линией $\varphi = 100\%$;
 - С. Слева от изоэнтальпии Н=100 кДж/кг;
 - D. Выше изотермы 20°С.

- 14. Какой теплоносителя чаще всего используют при контактной сушке?
 - А. Насыщенный водяной пар;
 - В. Сухой воздух;
 - С. Горючие газы;
 - D. Адсорбент.
- 15. Какой классификации промышленных сушильных установок по способу подвода теплоты к материалу не существует?
 - А. Конвективные;
 - В. Кондуктивные;
 - С. Электромагнитные;
 - D. Барабанные.
- 16. Какой классификации сушильных установок по направлению движения сушильного агента не существует?
 - А. Прямоточные;
 - В. Противоточные;
 - С. Однозонные;
 - D. Реверсивные.
- 17. Воздух, как сушильный агент в конвективных сушильных установках, применяют когда температура сушильного агента не превышает ... градусов Цельсия.
 - A. 500;
 - B. 600;
 - C. 700;
 - D. 800.
- 18. Каков результат расчета материального баланса сушильной установки?
 - А. Количество влаги, которое ушло из установки;
 - В. Температура на выходе сушильного агента;
 - С. Температура высушенного материала;
 - D. Оценка конечной относительной влажности сушильного агента.
- 19. Что не включает в себя приходная часть теплового баланса в сушильной установке?
 - А. Теплоту, подведенную к сушильному агенту в генераторе теплоты;

- В. Физическую теплоту, вносимую влагой, испаряемой с материала;
- С. Расход теплоты на нагрев транзитной части влаги и сухой массы сушимого материала;
- D. Дополнительные тепловыделения в сушилке (тепловыделения за счет дополнительных экзотермических реакций).
 - 20. Потери теплоты через стенки сушилки не зависят от ...
 - А. Толщины стенки;
 - В. Площади теплопередающей поверхности;
 - С. Влагосодержания сушильного агента;
 - D. Средне логарифмического температурного напора.
- 21. После достижении материалом равновесного влагосодержания скорость сушки равняется ...
 - A. 0;
 - В. Максимально достижимому у скорости значению;
 - С. Критической скорости;
 - D. 1
- 22. От чего не зависит критическое влагосодержание при конвективной сушке?
 - А. От вида материала;
 - В. От размера материала;
 - С. От режимных параметров сушки;
 - D. От толщины, подающей материал, решетки.
- 23. У какой из нижеперечисленных сушилок минимальная производительность по испаренной влаге, кг/ч?
- А. Распылительная сушилка с центробежно-дисковым распылом с нижним подводом сушильного агента и коническим днищем;
- В. Распределительная сушилка с центробежно-дисковым распылом с верхним подводом сушильного агента с коническим днищем;
- С. Распределительная сушилка с центробежно-дисковым распылом с верхним подводом с верхним подводом сушильного агента и плоским днищем;
- D. Распределительная сушилка с форсуночным распылом с верхним подводом сушильного агента и конусным днищем.
 - 24. Что не включат в себя циркуляционный контур замкнутых

периодических конвективных сушилок под давлением?

- А. Сушильный котел;
- В. Печь;
- С. Подогреватель рекуперативного типа;
- D. Сепаратор.
- 25. Интенсивность испарения жидкости со свободной поверхности при стационарном режиме не зависит от
 - А. Количества испаренной жидкости;
 - В. Поверхности испарения;
 - С. Коэффициента Больцмана;
- D. Парциального давления диффундирующего вещества над жидкой (твердой) поверхностью.
- 26. Как называется скорость, которая соответствует началу удаления из материала связанной или гигроскопической влаги?
 - А. Критическая;
 - В. Равновесная;
 - С. Максимальная;
 - D. Переходная.

Блок тестовых заданий к разделу «Воздухоразделительные установки»

- 1. Воздухоразделительные установки работают непременно в условиях
 - А. Низких температур;
 - В. Высоких температур;
 - С. Вакуумного давления.
- 2. При понижении температуры ударная вязкость углеродистых и низколегированных сталей
 - А. Увеличивается;
 - В. Не изменяется;
 - С. Уменьшается.
- 3. Ниже какой температуры не применимо использование низколегированных и углеродистых сталей в виде материала воздухоразделительных установок?
 - A. 273 K;
 - B. 230 K;

- C. 250 K;
- D. 200 K.
- 4. До какого максимального значения воздух подогревается водой, чтобы во время отогрева не нарушалась плотность внутриблочных коммуникаций?
 - A. 173 K;
 - B. 273 K;
 - C. 373 K;
 - D. 473 K.
- 5. К каким установкам можно отнести теплообменники в воздухоразделительных аппаратах?
 - А. Смесительные;
 - В. Регенеративные;
 - С. Рекуперативные.
- 6. С ростом линейной скорости вещества в контактном аппарате коэффициент массоотдачи ...
 - А. Увеличивается;
 - В. Уменьшается;
 - С. Не изменяется.
 - 7. Какой из способов получения кислорода является самым дешевым?
 - А. Газовый баллон;
 - В. Жидкий О2 в «дьюарах»;
 - С. КБА напорного типа;
 - D. Низкотемпературное разделение.
- 8. Как называется массообменный процесс избирательного поглощения компонента газовой фазы жидким поглотителем?
 - А. Адсорбция;
 - В. Абсорбция;
 - С. Десорбция;
 - D. Хемосорбция.
 - 9. От чего не зависит степень поглощения газа жидкостью?
 - А. От физико-химических свойств сорбата и абсорбента;
 - В. От температуры в системе;

- С. От давления в системе;
- D. От теплового излучения и конвекции в системе
- 10. Что является движущей силой процесса адсорбции?
- А. Разность парциальных давлений поглощаемого газа в газовой смеси и его равновесной концентрации на поверхности адсорбента;
- В. Разность темлоемкостей поглощаемого газа в газовой смеси и его равновесной концентрации на поверхности адсорбента;
- С. Разность парциальных давлений поглощаемого газа в газовой смеси и его равновесной концентрации на поверхности абсорбента.
- 11. Какой из перечисленных ниже циклов является более экономичный в энергетическом соотношении?
 - А. Регенеративный цикл при дросселировании газа двух давлений;
 - В. Простой регенеративный цикл высокого давления;
 - С. Цикл каскадной холодильной установки;
 - D. Цикл двухступенчатого сжатия.
 - 12. Какой вид потока организуется в ректификационной колонне?
 - А. Прямоток;
 - В. Противоток;
 - С. Перекрестный ток.

Блок тестовых заданий ко всему курсу дисциплины раздел «Выпарные установки»

- 1. При испарении паров, концентрация выпариваемого раствора ...
- А. Уменьшается;
- В. Увеличивается:
- С. Не изменяется.
- 2. В качестве теплоносителя в выпарных аппаратах используют ...
- А. Насыщенный водяной пар;
- В. Горючие газы;
- С. Влажный воздух;
- D. Сухой воздух
- 3. Что отсутствует в конструкции выпарного аппарата?
- А. Греющая камера (кипятильник);
- В. Сепаратор;
- С. Брызгоуловители;
- D. Фильтр.

- 4. Что является недостатком выпаривания под вакуумом?
- А. Снижение температуры кипения раствора;
- В. Повышение полезной разности температур;
- С. Снижение поверхности теплопередачи;
- D. Наличие дополнительного оборудования для создания необходимых условий массообмена.
- 5. Как называется пар, отбираемый из выпарной установки для других нужд? (возможно несколько вариантов ответа)
 - А. Экстра-пар;
 - В. Вторичный;
 - С. Первичный;
 - D. Соковый.
- 6. Найдите синоним «температурной депрессии» из нижеперечисленных.
 - А. Температурные потери;
 - В. Температурные подводы;
 - С. Температурный гистерезис.
 - 7. От чего не зависит температурная депрессия?
 - А. Температура кипения чистого растворителя;
 - В. Теплота испарения чистого растворителя при данном давлении;
 - С. Поверхности теплообменного аппарата.
 - 8. Чем плохи прямоточные многокорпусные выпарные установки?
 - А. Нет насосов для перекачки кипящих растворов;
 - В. Давление в каждом последующем корпусе ниже, чем в предыдущем;
- С. Теплота, которая выделяется при охлаждении раствора до температуры кипени в последующем корпусе идет на доп. испарение растворителя из этого же раствора;
 - D. Понижение температуры кипения от корпуса к корпусу.
- 9. Какое оборудование используют для перемещения греющего пара, если температурная депрессия составляет 10-15°С и у аппарата невысокая полезная разность температур?
 - А. Пароструйное оборудование;
 - В. Компрессор;
 - C. Hacoc;

- D. Эжектор.
- 10. Какими по принципу движения теплоносителей выполняют пленочные выпарные аппараты?
 - А. Противоточные;
 - В. Прямоточные;
 - С. Реверсивные;
 - D. Перекрестный ток.
- 11. Какой вид тепломассообмена реализуется в барботажном выпарном аппарате?
 - А. Контактный;
 - В. Поверхностный;
 - С. Регенерация.
 - 12. Чем меньше концентрация раствора, тем депрессия ...
 - А. Больше;
 - В. Меньше;
 - С. Стремится к 0;
 - D. Стремится к бесконечности.
- 13. С повышением концентрации раствора, его теплоемкость ..., теплопроводность ..., плотность ...
- А. Теплоемкость и теплопроводность уменьшаются, плотность увеличивается;
- В. Плотность уменьшается, теплоемкость и теплопроводность увеличиваются;
- С. Теплоемкость уменьшается, плотность и теплопроводность увеличиваются;
- D. Теплопроводность уменьшается, плотность и теплоемкость увеличиваются.
- 14. Каких групп выпарных аппаратов с паровым обогревом не существует?
 - А. С естественной циркуляцией раствора;
 - В. С принудительной циркуляцией раствора;
 - С. Пленочные аппараты;
 - D. Выпарные аппараты вакуумного типа.

- 15. от чего не зависит кратность циркуляции раствора?
- А. От количества раствора;
- В. От паропроизводительности выпарного аппарата;
- С. От диаметра выпарных труб;
- D. От площади кипятильных труб.
- 16. Какие скорости рекомендуется иметь в аппаратах с принудительно циркуляцией раствора, чтобы при упаривании раствора происходило кристаллообразование?
 - A. He menee 2.5 m/c;
 - B. He menee 3.5 m/c;
 - С. Менее 2,5 м/с;
 - D. более 5 м/с.
- 17. Какой металл применяли для выпарных аппаратов для сильно корродирующих веществ с серной кислотой?
 - А. Медь;
 - В. Нержавеющая сталь;
 - С. Свинец;
 - D. Керамика и фарфор.
- 18. Какой металл применяли для выпарных аппаратов для сильно корродирующих веществ с азотной кислотой?
 - А. Медь;
 - В. Нержавеющая сталь;
 - С. Свинец;
 - D. Керамика и фарфор.
- 19. Какой материал применяют сейчас при работе с сильно корродирующими веществами?
 - А. Медь;
 - В. Нержавеющая сталь;

Свинец;

- D. Керамика и фарфор;
- Е. Графит.
- 20. Какой фактор не применяется в процессе работы сепарирующих устройств?
 - А. Действие силы тяжести;

- В. Электромагнетизм;
- Сила контактного взаимодействия;
- D. Центробежный эффект.
- 21. Сколько корпусные выпарные аппараты имеют большее распространение?
 - A. 5;
 - B. 6;
 - С. 1 и 2;
 - D. 3 и 4.
 - 22. Многократное выпаривание может производиться только ...
 - А. Периодическим методом;
 - В. Непрерывным методом;
 - С. Горячими газами;
 - D. Водяным паром с растворенными в нем газами.
 - 23. Что не надо учитывать при проектировании выпарной установки?
 - А. Схему переохлаждения раствора;
 - В. Схему питания аппаратов раствором;
 - С. Оптимальное число ступеней установки;
 - D. Рациональную систему использования вторичной теплоты.

6.5 Задания для подготовки к коллоквиуму (защита лабораторных работ)

ВОПРОСЫ ДЛЯ ЗАЩИТЫ ПО ТЕМЕ «СУШИЛЬНЫЕ УСТАНОВКИ»

- 1. В чем состоит сущность конвективной, контактной, радиационной, сублимационной и диэлектрической сушки? В каких случаях целесообразно применять тот или иной вид сушки?
- 2. В чем состоит различие между абсолютной и относительной влажностью воздуха? Поясните понятие о влагосодержании и энтальпии влажного воздуха.
 - 3. Перечислите и охарактеризуйте виды связи влаги с материалом.
- 4. Раскройте принципы построения диаграммы H-х состояния влажного воздуха. Как определяются параметры влажного воздуха с помощью этой диаграммы?
- 5. В чем особенности материального баланса конвективной сушки? Как определяют расход воздуха (общий и удельный) на сушку?

- 6. Дайте схему расчета тепловых балансов конвективной и контактной сушки. На чем основано определение удельного расхода теплоты и расхода греющего пара на конвективную сушку?
- 7. Как строится процесс теоретической и реальной сушки на диаграмме H-x?
- 8. Поясните принципы построения кривых и их использования для расчета скорости и времени сушки.
 - 9. Покажите способы выражения движущей силы процесса сушки.
- 10. На чем основано определение коэффициентов массоотдачи для условий внешней и внутренней диффузии?
- 11. Как определяются области, лимитирующие общий процесс массопереноса при сушке?
- 12. На чем основано определение поверхности тепло- и масоообмена для первого и второго периодов сушки?
- 13. На чем основано определение размеров сушилок с псевдоожиженным слоем?
- 14. В чем особенности расчета сушилок с лимитирующим сопротивлением процессу внутренней фазы?
 - 15. Перечислите виды классификаций сушилок.
- 16. Опишите устройство, раскройте принцип действия камерных и туннельных сушилок. Дайте их сравнительную характеристику.
- 17. Опишите устройство, раскройте принцип действия барабанных сушилок. Перечислите области их применения. Опишите устройство различных внутренних насадок барабанных сушилок.
- 18. Опишите устройство, раскройте принцип действия ленточных и петлевых сушилок. Дайте их сравнительную характеристику.
- 19. Опишите устройство, раскройте принцип действия сушилок с псевдоожиженным слоем, распылительных и пневматических сушилок. Дайте их сравнительную характеристику.
 - 20. Опишите устройство контактных сушилок.
- 21. Охарактеризуйте специальные виды сушки-радиационную, диэлектрическую, сублимационную. Перечислите области их применения.
 - 22. Назовите методы интенсификации процессов сушки.
 - 23. Какие виды обезвоживания материалов наиболее распространены?
- 24. Напишите формулы для определения количества высушенного материала и испаренной влаги при известных начальной и конечной влажности материала на общую и сухую массу и производительности сушилки по исходному материалу.
 - 25. Может ли влажность материала на общую массу быть больше

100%?

- 26. Интенсивность каких процессов влияет на скорость сушки влажного материала?
- 27. Какая влага (связанная химически, физико-химически, физико-механически) может быть удалена механическим путем?
- 28. Объясните принцип действия аппаратов для механического обезвоживания материалов.
- 29. Какие существуют движущие силы внутреннего переноса влаги в материале?
- 30. Какие периоды сушки влажного материала можно назвать? В чем их отличие?
- 31. Что такое обобщенная кривая сушки? Каким образом ее используют для расчета кинетики сушки?
- 32. Назовите теплотехнологические преимущества перегретого пара как сушильного агента по сравнению с воздухом.

ВОПРОСЫ ДЛЯ ЗАЩИТЫ ПО ТЕМЕ «ВОЗДУХОРАЗДЕЛИТЕЛЬНЫЕ УСТАНОВКИ»

- 1. Перечислите основные продукты разделения воздуха, используемые в промышленности.
- 2. Назовите области применения в промышленности кислорода, жидкого и газообразного азота, инертных газов.
- 3. Что из себя представляют в общем виде продукты разделения воздуха?
- 4. Назовите два основных метода низкотемпературного разделения воздуха..
- 5. Каково назначение системы криообеспечения при ректификации воздуха?
- 6. На каком физическом явлении основаны адсорбционно-десорбционные методы разделения воздуха?
- 7. Дайте характеристику основных адсорбентов, применяемых а промышленности.
- 8. Приведите примеры использования в промышленности адсорбционно-десорбционных методов разделения воздуха.
 - 9. Назовите и опишите ступени структуры ожижителей газов.
 - 10. Опишите принцип действия ожижителя Линде.
- 11. Изобразите процессы, происходящие в ожижители Линде, на T ,s диаграмме.

ВОПРОСЫ ДЛЯ ЗАЩИТЫ ПО ТЕМЕ «ВЫПАРНЫЕ УСТАНОВКИ»

- 1. Каковы основные положения теории выпаривания? Что такое температурные напоры и депрессии?
 - 2. Каково назначение процессов выпаривания?
- 3. Перечислите виды температурной депрессии раствора. Какова зависимость ее величины от параметров и концентрации раствора?
 - 4. Приведите схемы выпарных установок и их классификацию.
- 5. Каково распределение температурного напора по корпусам выпарной установки?
- 6. Опишите материальный баланс на примере двухкорпусной выпарной установки.
- 7. Какие преимущества имеет применение вакуума в выпарных установках?
- 8. Опишите тепловой баланс выпарной установки. Приведите основные расчетные формулы.
- 9. Как определяются тепловая мощность выпарной установки и необходимый расход пара?
- 10. Расскажите об определении поверхности теплообмена выпарной установки и конструкции аппарата.

6.6 Задания для подготовки к экзамену

- 1. Три способа переноса теплоты. Физические основы теплопередачи, основные понятия и определения. Тепловые балансы.
- 2. Передача теплоты теплопроводностью. Закон Фурье. Коэффициент теплопроводности, его физический смысл, размерность.
- 3. Дифференциальное уравнение теплопроводности. Коэффициент температуропроводности, его физический смысл, размерность.
 - 4. Уравнения теплопроводности плоской и цилиндрической стенок.
- 5. Уравнения теплопроводности плоской многослойной и цилиндрической многослойной стенок.
- 6. Тепловое излучение. Закон Стефана-Больцмана, закон Кирхгофа. Определение количества теплоты при взаимном излучении двух твердых тел.
- 7. Конвективный теплообмен. Закон теплоотдачи Ньютона. Коэффициент теплоотдачи, его физический смысл, размерность. От каких факторов зависит коэффициент теплоотдачи.
 - 8. Дифференциальное уравнение конвективного теплообмена.
- 9. Тепловое подобие. Основные критерии подобия и их физический смысл. Обобщенное критериальное уравнение.
 - 10. Теплоотдача при конденсации паров и кипении жидкостей.
 - 11. Теплопередача как сложный вид теплообмена. Уравнение

теплопередачи. Коэффициент теплопередачи, его физический смысл, размерность и расчет.

- 12. Взаимные направления движения теплоносителей. Определение средней движущей силы процесса теплопередачи при различных взаимных направлениях теплоносителей.
- 13. Классификация теплообменных аппаратов. Кожухотрубчатые теплообменники. Разновидности конструкций, области применения.
- 14. Классификация теплообменных аппаратов. Спиральные, пластинчатые, оросительные теплообменники. Области применения.
 - 15. Нагревающие агенты и способы нагревания.
 - 16. Охлаждающие агенты, способы охлаждения и конденсации.
 - 17. Физические основы выпаривания. Способы выпаривания.
 - 18. Однокорпусное выпаривание. Тепловой и материальный балансы.
- 19. Температурные потери и полезная разность температур. Расчет температуры кипения раствора.
- 20. Физическая сущность многокорпусного выпаривания. Определение оптимального числа корпусов выпарной установки.
 - 21. Материальный и тепловой балансы многокорпусных установок.
- 22. Классификация массообменных процессов. Основные понятия и определения. Способы выражения составов фаз.
- 23. Равновесие между фазами. Линия равновесия. Правило фаз. ЗаконГенри. Закон Рауля.
- 24. Материальный баланс массообменного аппарата (на примере противоточного абсорбера). Уравнение рабочей линии. Направление массопередачи

и движущая сила массообменного процесса.

- 25. Молекулярная диффузия. Первый и второй законы Фика. Коэффициент молекулярной диффузии, его физический смысл и от каких факторов он зависит.
 - 26. Массоотдача. Уравнение массоотдачи. Коэффициент массоотдачи.
- 27. Уравнение массопередачи. Коэффициент массопередачи. Понятие фазовых сопротивлений.
- 28. Уравнение массопередачи при переменной движущей силе процесса. Расчет среднего значения движущей силы процесса массопередачи. Число единиц переноса.
- 29. Подобие диффузионных процессов. Критерии диффузионного подобия. Обобщенное критериальное уравнение конвективного массообмена.
- 30. Абсорбция: физическая сущность и разновидности процесса. Закон равновесия при абсорбции. Тепловой эффект абсорбции. Материальный баланс противоточного абсорбера.
- 31. Уравнение рабочей линии противоточного абсорбера. Влияние удельного расхода абсорбента на габариты аппарата.
- 32. Классификация абсорбционных аппаратов. Конструкции поверхностных и насадочных абсорберов.
 - 33. Классификация абсорбционных аппаратов. Конструкции

насадочных и барботажных абсорберов. Типы тарелок.

- 34. Дистилляция и ректификация: назначение и физическая сущность процессов. Иллюстрация принципа осуществления этих процессов на диаграмме температура-состав.
- 35. Простая дистилляция. Варианты осуществления и области применения процесса. Схема установки. Материальный баланс процесса.
- 36. Физические основы непрерывной ректификации. Схема установки и ее принцип работы. Общий материальный баланс.
- 37. Схема ректификационной установки непрерывного действия и ее принцип работы. Материальный баланс верхней части колонны, уравнение линии рабочих концентраций для этой части.
- 38. Схема ректификационной установки непрерывного действия и ее принцип работы. Материальный баланс нижней части колонны, уравнение линии рабочих концентраций для этой части.
- 39. Изображение процесса непрерывной ректификации на У-Х диаграмме. Построение рабочих линий, определение теоретического и действительного числа тарелок.
- 40. Сушка. Физическая сущность процесса. Способы тепловой сушки. Формы связи влаги с материалом.
- 41. Основные параметры влажного воздуха. І-х диаграмма влажного воздуха.
- 42. І-х диаграмма влажного воздуха. Изображение теоретического процесса сушки на І-х диаграмме. Определение температуры мокрого термометра и точки росы.
- 43. Способы количественной оценки влагосодержания материала. Материальный баланс процесса сушки.
- 44. Тепловой баланс воздушной калориферной сушилки. Изображение действительного процесса сушки на I-х диаграмме. Определение расхода воздуха и теплоты на сушку.
- 45. Изображение вариантов сушильного процесса I-х диаграмме: сушка с промежуточным подогревом воздуха по зонам, сушка с частичной рециркуляцией отработанного воздуха. Определение расхода воздуха и теплоты.
- 46. Кинетические закономерности процесса сушки. Скорость сушки. Кривые сушки и скорости сушки, температурная кривая. Их анализ. Периоды процесса сушки.
 - 47. Конструкции туннельной и барабанной сушилок.
 - 48. Конструкции ленточной и вальцевой сушилок.
 - 49. Конструкции сушилок кипящего слоя и распылительной.

6.8 Примерная тематика курсовых работ

Курсовая работа не предусмотрена.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Бородин, И. Ф. Автоматизация технологических процессов и системы автоматического управления : учебник для вузов / И. Ф. Бородин, С. А. Андреев. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2023. 386 с. (Высшее образование). ISBN 978-5-534-07895-4. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/513977.
- 2. Авдюнин, Е.Г. Моделирование и оптимизация промышленных теплоэнергетических установок : учебник / Е. Г. Авдюнин. Москва : Вологда : Инфра-Инженерия, 2019. 184 с. : ил., табл. ISBN 978-5-9729-0297-2. Текст: электронный. URL: file:///C:/Users/%D0%B4%D0%BE%D0%BC/Downloads/Avdiunin E. Modeliro vanie i optimizatsiia promyshlennykh teploenergeticheskikh ustanovok.Fragme nt.pdf.
- 3. Зубарев, Ю. М. Технология автоматизированного производства / Ю. М. Зубарев, А. В. Приемышев. Санкт-Петербург : Лань, 2023. 216 с. ISBN 978-5-507-46188-2. Текст : электронный // Лань : электроннобиблиотечная система. URL: https://e.lanbook.com/book/327350 (дата обращения: 19.03.2025). Режим доступа: для авториз. пользователей.

Дополнительная литература:

- 1. Петров, Г. В. Технологические процессы автоматизированных производств в металлургии учебное пособие / Г. В. Петров, А. Я. Бодуэн, С. Б. Фокина. Санкт-Петербург: Лема, 2020. 135 с. ил.; 20. ISBN 978-5-00105-563-1. URL: https://pl.spb.ru/oegallery/item.php?ID=46891&ysclid=m8g9h2t1sg542909519. Текст: электронный.
- 2. Хомякова, М. В. Практикум по ТПАП: учеб.-методич. пособие по изучению дисциплины для студ. бакалавриата по напр. подгот. 15.03.04 Автоматизация технологических процессов и производств / М. В. Хомякова. Калининград: Изд-во ФГБОУ ВО «КГТУ», 2022. 44 с. URL: https://klgtu.ru/vikon/sveden/files/15.03.04 UMPID Praktikum TPAP (15.03.04) <a href="https://klgtu.ru/vikon/sveden/files
 - 3. Мостовенко Л.В., Белоглазов В.П. Основы промышленной

теплоэнергетики : учебное пособие 32 3. Мостовенко, В.П. Белоглазов. — Нижневартовск: изд-во НВГУ, 2021 . — 124 с. — ISBN 978-5-00047-661-1. — URL:

Учебно-методическое обеспечение

1. Технологические процессы автоматизированных производств в металлургии [Текст] : учебное пособие / Г. В. Петров, А. Я. Бодуэн, С. Б. Фокина. — Санкт-Петербург : ЛЕМА, 2020. — 135 с. : ил. - Библиогр.: с. 133 (10 назв.). — **ISBN** 978-5-00105-563-1. — URL: https://lib.dm-centre.ru/lib/document/gpntb/ESVODT/bda74f88c8eb273e647cdd022ba1ac35/. — Текст : электронный.

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт.— Алчевск. URL: <u>library.dstu.education</u>.— Текст: электронный.
- 2. Научно-техническая библиотека БГТУим. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст : электронный.
- 3. Консультант студента :электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст : электронный.
- 4. Университетская библиотека онлайн : электронно-библиотечная система.— URL: http://biblioclub.ru/index.php?page=main_ub_red.— Текст : электронный.

8. Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО. Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

	Адрес
Наименование оборудованных учебных кабинетов	(местоположение)
	учебных кабинетов
Специальные помещения:	
Мультимедийная аудитория. (60 посадочных мест),	ауд. <u>220</u> корп. <u>1</u>
компьютер IntelCeleron E-3300;	
- мультимедийный проектор BENG M-5111;	
- демонстрационный экран;	
- посадочные места по количеству обучающихся;	
- рабочее место преподавателя.	
Аудитории для проведения лабораторных работ:	
Оборудование компьютерного класса каф. АУИТ:	ауд. <u>206</u> корп. <u>1</u>
- персональные компьютеры Sepron 3200, IntelCeleron 420 в	
количестве 10шт., локальная сеть с выходом в Internet;	
- принтер LBP2900;	
- лабораторная мебель: столы, стулья для студентов (по	
количеству обучающихся);	
-рабочее место преподавателя.	

Лист согласования РПД

Разработал

управления и инновационных технологи (должность)	(подпись)	(Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
И.о. заведующего кафедрой автоматизированного управления и инновационных технологий	(подпись)	<u>Е.В. Мова</u> (Ф.И.О.)
Протокол № <u>1</u> заседания кафедры автоматизированного управления и инновационных технологий	(от <u>09. 07</u> . 20 <u>24</u> г.
Согласовано		
Председатель методической комиссии по направлению подгото 15.03.04 Автоматизация технологически процессов и производств	V MINAI	<u>Е.В. Мова</u> (Ф.И.О.)
Начальник учебно-методического центр	a Make	О.А. Коваленка

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения изменений			
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:		
Основание:			
Подпись лица, ответственного за внесение изменений			