Документ подписан простой электронной подписью

Информация о владельце:

ФИО: ВИШНЕВСТИЙННИЙ СТЕРЕТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ Должность: Ректор

Дата подписания: 20.10.2025 11:05:46

Уникальный программный ключ:

03474917c4d012283e5ad996a48a5e70bf8da057

ФЕДЕРАЦИИ (МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

информационных технологий и Факультет автоматизации производственных процессов интеллектуальных систем и информационной безопасности Кафедра

> ТВЕРЖДАЮ Ло проректора то учебиой работе Д.В. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Основы искусственного интеллекта		
(наименование дисциплины)		
10.05.03 Инфо	рмационная безопасность автоматизированных систем	
	(код, наименование специальности)	
Безо	пасность открытых информационных систем	
(специализация)		
Квалификация	специалист по защите информации	
	(бакалавр/специалист/магистр)	
Форма обучения	очная	
	(очная, очно-заочная, заочная)	

1 Цели и задачи изучения дисциплины

Целью Цели дисциплины. изучения дисциплины «Основы искусственного интеллекта» предоставить студентам теоретические знания и практические навыки в области представления и обработки знаний в информационных системах, поиска и принятия решений в системах обработки приобретения информации, также ИМИ навыков разработки интеллектуальных информационных систем.

Задачи изучения дисциплины. Приобретение студентами знаний, умений и практических навыков, необходимых для понимания основных принципов создания интеллектуальных информационных систем в различных предметных областях.

Дисциплина направлена на формирование профессиональной (ПК-2) компетенции выпускника.

2 Место дисциплины в структуре образовательной программы

Логико-структурный анализ дисциплины — курс входит в часть, формируемую участниками образовательных отношений БЛОКА 1 «Дисциплины (модули)» подготовки студентов по специальности 10.05.03 Информационная безопасность автоматизированных систем (10.05.03-05 Безопасность открытых информационных систем).

Дисциплина реализуется кафедрой интеллектуальных систем и информационной безопасности. Основывается на базе дисциплин: «Философия», «Математический анализ», «Методы анализа данных».

Является основой для изучения следующих дисциплин: «Интеллектуальный анализ больших данных», «Интеллектуальные системы информационной безопасности».

Для изучения дисциплины необходимы компетенции, сформированные у студента для решения профессиональных задач деятельности, связанных с применением интеллектуальных вычислительных систем.

Курс является фундаментом для ориентации студентов в сфере разработки интеллектуальных информационных систем.

Общая трудоемкость освоения дисциплины составляет 3 зачетных единицы, 108 ак.ч. Программой дисциплины предусмотрены лекционные (18 ак.ч.), лабораторные (18 ак.ч.) занятия и самостоятельная работа студента (72 ак.ч.).

Дисциплина изучается на 4 курсе в 7 семестре. Форма промежуточной аттестации – экзамен.

3 Перечень результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины «Основы искусственного интеллекта» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание	Код	Код и наименование индикатора
компетенции	компетенции	достижения компетенции
Способен	ПК-2	ПК-2.1 Выполняет анализ и дает оценку
использовать		существующих и перспективных
интеллектуальные		интеллектуальных методов и технологий
методы и		разработки программного обеспечения
технологии при		ПК-2.2 Применяет интеллектуальные методы и
разработке		технологии при разработке программного
программного		обеспечения средств защиты информации
обеспечения средств		автоматизированных систем
защиты информации		
автоматизированных		
систем		

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 3 зачётных единицы, 108 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим занятиям, текущему контролю, выполнение индивидуального задания, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам 7
Аудиторная работа, в том числе:	72	72
Лекции (Л)	18	18
Практические занятия (ПЗ)	-	-
Лабораторные работы (ЛР)	18	18
Курсовая работа/курсовой проект	-	-
Самостоятельная работа студентов (СРС), в том числе:	72	72
Подготовка к лекциям	4	4
Подготовка к лабораторным работам	9	9
Подготовка к практическим занятиям / семинарам	-	-
Выполнение курсовой работы / проекта	-	-
Расчетно-графическая работа (РГР)	-	-
Реферат (индивидуальное задание)	18	18
Домашнее задание	-	-
Подготовка к контрольным работам	-	-
Подготовка к коллоквиуму	-	-
Аналитический информационный поиск	11	11
Работа в библиотеке	11	11
Подготовка к экзамену	19	19
Промежуточная аттестация – экзамен (Э)	Э	Э
Общая трудоемкость дисциплины		
ак.ч.	108	108
3.e.	3	3

5 Содержание дисциплины

С целью освоения компетенций, приведенных в п.3 дисциплина разбита на 3 темы:

- тема 1 (Нейронные сети);
- тема 2 (Генетические алгоритмы и алгоритмы роевого интеллекта);
- тема 3 (Нечеткая логика).

Виды занятий по дисциплине и распределение аудиторных часов для очной формы приведены в таблице 3.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1	2	3	4	5	6	7	8
		Нейронные сети и их обучение. Нейрон: определение, структура, характеристики, функция				Изучение свойств линейного нейрона и линейной нейронной сети.	4
1	Нейронные сети	активации. Правило Хебба. Перцептроны. Двуслойные и многослойные нейронные сети. Обучение нейронной сети. Сети обратного и встречного распространения. Различные архитектуры нейронных сетей: рекуррентные сети, сети с запаздыванием по времени и т.п. Классификация с помощью нейронных сетей.	6			Изучение многослойного нелинейного перцептрона и алгоритма обратного распространен ия ошибки Изучение радиальных базисных, вероятностных нейронных сетей, сетей регрессии.	2

7

Завершение таблицы 3

1	2	3	4	5	6	7	8
2	Генетические алгоритмы и алгоритмы роевого интеллекта	Генетические алгоритмы: основные понятия. Схема выполнения генетического алгоритма. Генетические операторы: скрещивание, мутация. Мультиагентные системы и эволюционное программирование. Алгоритмы роевого интеллекта.	6			Генетические алгоритмы.	4
3	Нечеткая логика	Логические модели и нечеткие множества. Классификация логических формализмов. Определение нечеткого множества. Операции над нечеткими множествами. Нечёткие и лингвистические переменные. Нечёткие отношения. Методы построения функций принадлежности. Композиционное правило выбора. Правило ModusPonens для нечетких множеств. Фаззификация и дефаззификация и дефаззификация. Определение операции импликации в различных системах многозначных логик и их применение при формализации нечётких условных предложений.	6	_	_	Исследование способов формирования нечетких множеств и операции над ними Моделирование нечеткой системы средствами инструментария нечеткой логики. Исследование алгоритма нечеткой кластеризации.	2 2
Bcer	го аудиторных часов	18		-		18	

 ∞

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации студентов по дисциплине

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 4.

Таблица 4 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
ПК-2	Экзамен	Комплект контролирующих материалов для экзамена

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- реферат всего 20 баллов;
- лабораторные работы всего 80 баллов.

Оценка по экзамену проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Экзамен по дисциплине «Основы искусственного интеллекта» проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время сессии студент имеет право повысить итоговую оценку в форме устного собеседования по приведенным ниже вопросам.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 5.

Таблица 5 – Шкала оценивания знаний

Сумма баллов за все виды учебной	Оценка по национальной шкале	
деятельности	зачёт/экзамен	
0-59	Не зачтено/неудовлетворительно	
60-73	Зачтено/удовлетворительно	
74-89	Зачтено/хорошо	
90-100	Зачтено/отлично	

6.2 Домашнее задание

Домашнее задание не предусмотрено.

6.3 Темы для рефератов (презентаций) – индивидуальное задание

- 1. Теоретические основы ИИ
- 1. История развития искусственного интеллекта.
- 2. Основные направления ИИ: машинное обучение, нейронные сети, экспертные системы.
 - 3. Сравнение сильного и слабого ИИ.
 - 4. Проблема создания искусственного сознания.
 - 5. Тест Тьюринга: история, критика и современное состояние.
 - 6. Китайская комната: аргумент против сильного ИИ.
- 7. Логика и искусственный интеллект: применение формальных систем.
 - 8. Роль математики в развитии ИИ.
 - 9. Теория игр и ее применение в ИИ.
 - 10. Эволюционные алгоритмы: принципы и применение.
 - 2. Машинное обучение
- 11. Основные типы задач машинного обучения: классификация, регрессия, кластеризация.
 - 12. Метод k-ближайших соседей (k-NN): принципы и применение.
 - 13. Линейная регрессия: основы и примеры использования.
 - 14. Логистическая регрессия: применение в классификации.
 - 15. Деревья решений и случайные леса.
 - 16. Метод опорных векторов (SVM): теория и практика.
 - 17. Ансамбли моделей: бустинг и бэггинг.
 - 18. Обучение с подкреплением: основные концепции.
 - 19. Применение машинного обучения в медицине.
 - 20. Проблемы переобучения и недообучения в машинном обучении.

- 3. Нейронные сети и глубокое обучение
- 21. История развития нейронных сетей.
- 22. Перцептрон: основы и ограничения.
- 23. Обратное распространение ошибки: принципы и реализация.
- 24. Сверточные нейронные сети (CNN): архитектура и применение.
- 25. Рекуррентные нейронные сети (RNN): обработка временных рядов.
 - 26. Генеративные состязательные сети (GAN): принципы и примеры.
 - 27. Трансформеры: революция в обработке естественного языка.
 - 28. Применение нейронных сетей в компьютерном зрении.
- 29. Обучение с переносом (Transfer Learning): преимущества и примеры.
 - 30. Этические проблемы глубокого обучения.
 - 4. Обработка естественного языка (NLP)
 - 31. Основные задачи NLP: токенизация, лемматизация, стемминг.
 - 32. Векторизация текста: Bag of Words, TF-IDF, word2vec.
 - 33. Языковые модели: от n-грамм до GPT.
 - 34. Машинный перевод: история и современные подходы.
 - 35. Анализ тональности текста: методы и применение.
 - 36. Генерация текста с использованием нейронных сетей.
 - 37. Применение NLP в чат-ботах.
 - 38. Распознавание именованных сущностей (NER).
 - 39. Вопросно-ответные системы: принципы и примеры.
 - 40. Этические проблемы в NLP.
 - 5. Компьютерное зрение
- 41. Основные задачи компьютерного зрения: классификация, детекция, сегментация.
 - 42. Распознавание лиц: методы и применение.
 - 43. Обработка изображений: фильтры и преобразования.
 - 44. Применение компьютерного зрения в медицине.
 - 45. Автономные автомобили: роль компьютерного зрения.
 - 46. Детекция объектов: YOLO и другие методы.
 - 47. Сегментация изображений: U-Net и другие подходы.
 - 48. Генерация изображений с использованием GAN.
 - 49. Этические проблемы в компьютерном зрении.
 - 50. Применение компьютерного зрения в робототехнике.
 - 6. Генетические алгоритмы и эволюционные методы
 - 51. Основные принципы генетических алгоритмов.

- 52. Оптимизация функций с использованием генетических алгоритмов.
 - 53. Применение генетических алгоритмов в робототехнике.
 - 54. Эволюционные стратегии: принципы и примеры.
- 55. Генетическое программирование: создание программ с помощью эволюции.
 - 56. Применение генетических алгоритмов в проектировании.
 - 57. Сравнение генетических алгоритмов и градиентных методов.
 - 58. Мультиагентные системы: принципы и применение.
- 59. Алгоритмы роевого интеллекта: муравьиные колонии и рои частиц.
 - 60. Применение эволюционных методов в искусственном интеллекте.
 - 7. Нечеткая логика
 - 61. Основные понятия нечеткой логики.
 - 62. Нечеткие множества: определение и операции.
 - 63. Нечеткие системы управления: принципы и примеры.
 - 64. Применение нечеткой логики в робототехнике.
 - 65. Нечеткие отношения и их применение.
 - 66. Фаззификация и дефаззификация: методы и примеры.
 - 67. Нечеткие выводы: правило Modus Ponens.
 - 68. Применение нечеткой логики в медицине.
 - 69. Сравнение нечеткой логики и классической логики.
 - 70. Нечеткая логика в системах принятия решений.
 - 8. Этические и социальные аспекты ИИ
 - 71. Этические проблемы искусственного интеллекта.
 - 72. ИИ и приватность данных.
 - 73. Проблема предвзятости в алгоритмах ИИ.
 - 74. ИИ и рынок труда: угрозы и возможности.
 - 75. Регулирование ИИ: правовые аспекты.
 - 76. ИИ и военные технологии: этические дилеммы.
 - 77. ИИ в образовании: возможности и риски.
 - 78. Проблема ответственности за решения ИИ.
 - 79. ИИ и искусство: творчество или имитация?
 - 80. Будущее ИИ: прогнозы и сценарии.
 - 9. Применение ИИ в различных областях
 - 81. ИИ в медицине: диагностика и лечение.
 - 82. ИИ в финансах: прогнозирование и анализ рисков.
 - 83. ИИ в сельском хозяйстве: умные фермы.
 - 84. ИИ в логистике: оптимизация маршрутов.

- 85. ИИ в играх: от шахмат до Dota 2.
- 86. ИИ в музыке: генерация и анализ.
- 87. ИИ в киноиндустрии: создание спецэффектов.
- 88. ИИ в маркетинге: персонализация и прогнозирование.
- 89. ИИ в экологии: мониторинг и прогнозирование.
- 90. ИИ в спорте: анализ данных и стратегии.
- 10. Современные тренды и будущее ИИ
- 91. Большие языковые модели (GPT, BERT): возможности и ограничения.
 - 92. Мультимодальные модели: текст, изображения, звук.
 - 93. ИИ и квантовые вычисления.
 - 94. ИИ в космосе: автономные системы для исследования.
 - 95. ИИ и интернет вещей (ІоТ).
 - 96. ИИ и блокчейн: возможности интеграции.
 - 97. ИИ и кибербезопасность: защита и атаки.
 - 98. ИИ и климатические изменения: прогнозирование и управление.
 - 99. ИИ и нейротехнологии: взаимодействие с мозгом.
 - 100. Будущее ИИ: сингулярность и сверхразум.

6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

*Тема 1 (*Нейронные сети)

Базовые тесты (10 вопросов, 4 варианта ответа)

- 1. Что такое нейрон в нейронной сети?
- а) Математическая функция
- b) Элемент, который принимает входные данные, обрабатывает их и передает выход
- с) Тип алгоритма оптимизации
- d) Графическое представление данных

Ответ: b

- 2. Какая функция активации чаще всего используется в скрытых слоях нейронных сетей?
 - а) Сигмоида
 - b) ReLU
 - с) Тангенс
 - d) Линейная

Ответ: b

- 3. Что такое обратное распространение ошибки?
- а) Метод оптимизации весов нейронной сети

- b) Метод генерации данных
- с) Метод визуализации данных
- d) Метод кластеризации

Ответ: а

- 4. Что такое сверточная нейронная сеть (CNN)?
- а) Сеть для обработки текста
- b) Сеть для обработки изображений
- с) Сеть для оптимизации функций
- d) Сеть для работы с временными рядами

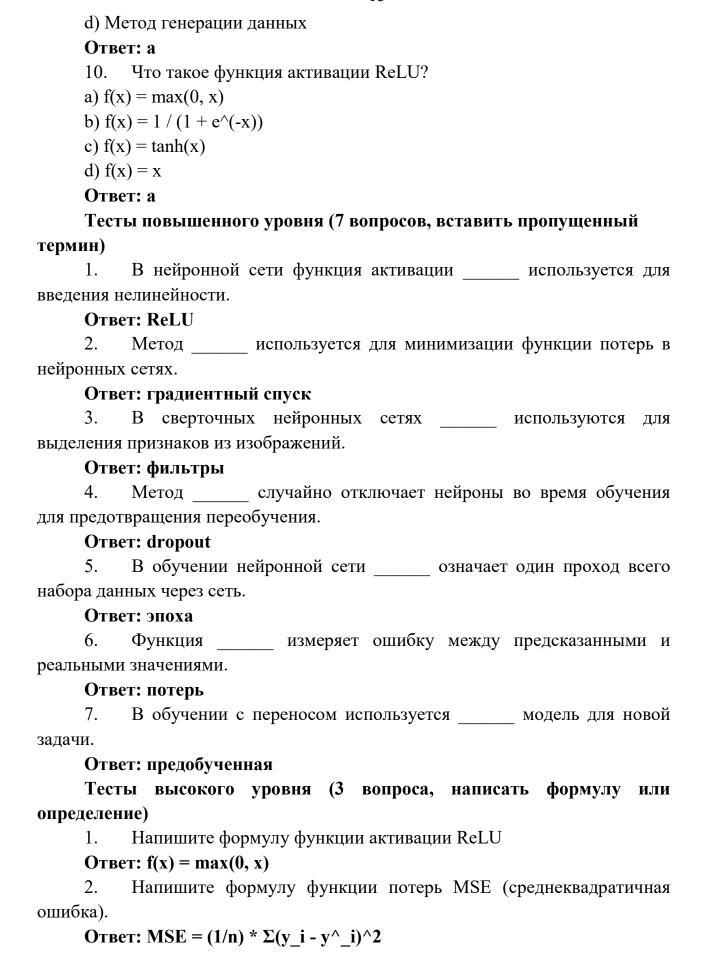
Ответ: b

- 5. Что такое функция потерь (loss function)?
- а) Функция, которая измеряет ошибку предсказания
- b) Функция, которая оптимизирует данные
- с) Функция, которая визуализирует данные
- d) Функция, которая генерирует данные

Ответ: а

- 6. Что такое эпоха (epoch) в обучении нейронной сети?
- а) Один проход всего набора данных через сеть
- b) Один шаг оптимизации
- с) Один слой нейронной сети
- d) Один нейрон в сети

Ответ: а


- 7. Что такое dropout в нейронных сетях?
- а) Метод регуляризации, который случайно отключает нейроны
- b) Метод оптимизации весов
- с) Метод визуализации данных
- d) Метод генерации данных

Ответ: а

- 8. Что такое градиентный спуск?
- а) Метод оптимизации, который минимизирует функцию потерь
- b) Метод генерации данных
- с) Метод визуализации данных
- d) Метод кластеризации

Ответ: а

- 9. Что такое обучение с переносом (Transfer Learning)?
- а) Использование предобученной модели для новой задачи
- b) Обучение модели с нуля
- с) Метод визуализации данных

3. Дайте определение обратного распространения ошибки. Ответ: Метод, который вычисляет градиент функции потерь по весам сети для их обновления.

*Тема 2 (*Генетические алгоритмы и алгоритмы роевого интеллекта)

Базовые тесты (10 вопросов, 4 варианта ответа)

- 1. Что такое генетический алгоритм?
- а) Метод оптимизации, основанный на принципах естественного отбора
- b) Метод кластеризации данных
- с) Метод визуализации данных
- d) Метод генерации данных

Ответ: а

- 2. Что такое хромосома в генетическом алгоритме?
- а) Набор параметров, представляющих решение
- b) Тип функции активации
- с) Метод оптимизации
- d) Метод визуализации данных

Ответ: а

- 3. Что такое фитнес-функция?
- а) Функция, которая оценивает качество решения
- b) Функция, которая генерирует данные
- с) Функция, которая визуализирует данные
- d) Функция, которая оптимизирует данные

Ответ: а

- 4. Что такое мутация в генетическом алгоритме?
- а) Случайное изменение параметров хромосомы
- b) Метод оптимизации
- с) Метод визуализации данных
- d) Метод генерации данных

Ответ: а

- 5. Что такое скрещивание (кроссовер)?
- а) Обмен частями хромосом между двумя родителями
- b) Метод оптимизации
- с) Метод визуализации данных
- d) Метод генерации данных

Ответ: а

- 6. Что такое селекция в генетическом алгоритме?
- а) Выбор лучших хромосом для следующего поколения
- b) Метод оптимизации
- с) Метод визуализации данных

	а) метод генерации данных
	Ответ: а
	7. Что такое популяция в генетическом алгоритме?
	а) Набор хромосом
	b) Метод оптимизации
	с) Метод визуализации данных
	d) Метод генерации данных
	Ответ: а
	8. Что такое элитизм в генетическом алгоритме?
	а) Сохранение лучших хромосом в следующем поколении
	b) Метод оптимизации
	с) Метод визуализации данных
	d) Метод генерации данных
	Ответ: а
	9. Что такое поколение в генетическом алгоритме?
	а) Один цикл выполнения алгоритма
	b) Метод оптимизации
	с) Метод визуализации данных
	d) Метод генерации данных
	Ответ: а
	10. Что такое локальный оптимум в генетическом алгоритме?
	а) Решение, которое лучше других в локальной области, но не глобально
	b) Метод оптимизации
	с) Метод визуализации данных
	d) Метод генерации данных
	Ответ: а
	Тесты повышенного уровня (7 вопросов, вставить пропущенный
терм	ин)
	1. В генетическом алгоритме оценивает качество решения.
	Ответ: фитнес-функция или функция пригодности
	2 — это случайное изменение параметров хромосомы.
	Ответ: мутация
	3 — это обмен частями хромосом между двумя родителями.
	Ответ: скрещивание
	4. В генетическом алгоритме выбирает лучшие хромосомы
для с	ледующего поколения.
	Ответ: селекция
	5 — это набор хромосом в генетическом алгоритме.
	Ответ: популяция

18		
6 — это сохранение лучших хромосом в следующем		
поколении.		
Ответ: элитизм		
7. В генетическом алгоритме — это один цикл выполнения		
алгоритма.		
Ответ: поколение		
Тесты высокого уровня (3 вопроса, написать формулу или		
определение)		
1. Напишите формулу фитнес-функции для задачи минимизации.		
Ответ: $f(x) = 1 / (1 + значение_целевой_функции)$		
2. Дайте определение мутации в генетическом алгоритме.		
Ответ: Случайное изменение одного или нескольких генов		
хромосоме.		
3. Напишите формулу для вероятности выбора хромосомы в методе		
"колесо рулетки".		
Otbet: $P_i = f_i / \Sigma f_j$		
<i>Тема 3 (</i> Нечеткая логика)		
Базовые тесты (10 вопросов, 4 варианта ответа)		
1. Что такое нечеткая логика?		
а) Метод работы с неопределенностью и приближенными значениями		
b) Метод оптимизации		
с) Метод визуализации данных		
d) Метод генерации данных Ответ: а		
2. Что такое нечеткое множество?		
а) Множество, где элементы имеют степень принадлежности		
b) Метод оптимизации		
с) Метод визуализации данных		
d) Метод генерации данных		
Ответ: а		
3. Что такое функция принадлежности?		
а) Функция, которая определяет степень принадлежности элемента		

В

- множеству
- b) Метод оптимизации
- с) Метод визуализации данных
- d) Метод генерации данных

Ответ: а

4. Что такое лингвистическая переменная?

- а) Переменная, значения которой описываются словами
- b) Метод оптимизации
- с) Метод визуализации данных
- d) Метод генерации данных

Ответ: а

- 5. Что такое нечеткий вывод?
- а) Процесс получения решений на основе нечетких правил
- b) Метод оптимизации
- с) Метод визуализации данных
- d) Метод генерации данных

Ответ: а

- 6. Что такое фаззификация?
- а) Преобразование четких значений в нечеткие
- b) Метод оптимизации
- с) Метод визуализации данных
- d) Метод генерации данных

Ответ: а

- 7. Что такое дефаззификация?
- а) Преобразование нечетких значений в четкие
- b) Метод оптимизации
- с) Метод визуализации данных
- d) Метод генерации данных

Ответ: а

- 8. Что такое правило Modus Ponens в нечеткой логике?
- а) Правило вывода, основанное на нечетких условиях
- b) Метод оптимизации
- с) Метод визуализации данных
- d) Метод генерации данных

Ответ: а

- 9. Что такое нечеткое отношение?
- а) Отношение между нечеткими множествами
- b) Метод оптимизации
- с) Метод визуализации данных
- d) Метод генерации данных

Ответ: а

- 10. Где применяется нечеткая логика?
- а) В системах управления и принятия решений
- b) В методах оптимизации
- с) В методах визуализации данных

1) D	
d) В методах генерации данных	
Ответ: а	
Тесты повышенного уровня (7 вопросов, вставить пропущенный	
термин)	
1. В нечеткой логике определяет степень принадлежности	
элемента множеству.	
Ответ: функция принадлежности	
2 — это процесс получения решений на основе нечетких	
правил.	
Ответ: нечеткий вывод	
3. — это преобразование четких значений в нечеткие.	
Ответ: фаззификация	
4. — это преобразование нечетких значений в четкие.	
Ответ: дефаззификация	
5. В нечеткой логике описывается словами.	
Ответ: лингвистическая переменная	
6 — это отношение между нечеткими множествами.	
Ответ: нечеткое отношение	
7. В нечеткой логике используется для вывода на осн	ове
нечетких условий.	
Ответ: правило Modus Ponens	
Тесты высокого уровня (3 вопроса, написать формулу или	
определение)	
1. Напишите формулу для функции принадлежности треугольн	ОГО
типа.	
Otbet: $\mu(x) = \max(0, \min((x - a)/(b - a), (c - x)/(c - b)))$	
2. Дайте определение нечеткого множества.	
Ответ: Множество, где каждый элемент имеет степ	ень
принадлежности от 0 до 1.	
3. Напишите формулу для центроидного метода дефаззификал	(ии.
Otbet: $y = (\Sigma \mu(x_i) * x_i) / \Sigma \mu(x_i)$	

6.5 Вопросы для подготовки к экзамену

- 1) Какие функции выполняет линейный нейрон?
- 2) Какие функции активации используют в НС?
- 3) Какие задачи называют линейно сепарабельными?
- 4) Можно ли обучить линейный нейрон выполнять логическую функцию исключающего ИЛИ?

- 5) Какой алгоритм используется для обучения однослойных НС?
- 6) Каким алгоритмом обучают многослойные НС?
- 7) Из каких основных этапов состоит алгоритм обратного распространения ошибки?
- 8) Почему алгоритм обратного распространения ошибки относится к классу алгоритмов градиентного спуска?
- 9) Как влияет функция принадлежности на правило изменения весов в обратном алгоритме распространения ошибки?
 - 10) Какую функцию называют радиальной базисной функцией?
 - 11) Из каких слоев состоит радиально-базисная НС?
 - 12) Из каких слоев состоит НС регрессии?
 - 13) Из каких слоев состоит вероятностная НС?
- 14) Какие виды НС предназначены для решения задачи аппроксимации функций, а какие для классификации объектов?
 - 15) В чем заключается задача кластеризации?
 - 16) Какую структуру имеет НС Кохонена?
 - 17) Каким алгоритмом обучается НС Кохонена?
 - 18) Вопросы реализации ИНС в пакете MATLAB?
 - 19) Задачи аппроксимации произвольной функции при помощи ИНС?
 - 20) Области применение ИНС?
- 21) Различие в работе ИНС и традиционных компьютеров с архитектурой Фон Неймана?
 - 22) Векторные пространства?
 - 23) Матрицы и линейные преобразования векторов?
 - 24) Биологический нейрон и его кибернетическая модель?
 - 25) Биологическая изменчивость и обучение нейронных сетей?
 - 26) Опишите формальный нейрон?
 - 27) Опишите персептрон Розенблатта?
 - 28) Опишите теорему об обучении персептрона?
 - 29) Линейная разделимость и персептронная представляемость?
 - 30) Свойства процессов обучения в нейронных сетях?
 - 31) Задачи классификации и категоризации?
- 32) Обучение ИНС с учителем, как задача многофакторной оптимизации?
 - 33) Многослойный персептрон?
 - 34) Обучение методом обратного распространения ошибки?
 - 35) Приведите звезды Гроссберга?
- 36) Принцип «победитель забирает все» в модели Липпмана Хемминга?

- 37) Карта самоорганизации Кохонена?
- 38) Нейронная сеть встречного распространения?
- 39) Модель Хопфилда?
- 40) Нейродинамика в модели Хопфилда?
- 41) Правило обучения Хебба?
- 42) Ассоциативная память и задача распознавания образов?
- 43) Модификации правила Хебба?
- 44) Обобщения и применения модели Хопфилда?
- 45) Двунаправленная ассоциативная память?
- 46) Опишите когнитрон?
- 47) Опишите неокогнитрон?
- 48) Опишите теорию адаптивного резонанса?
- 49) ИНС APT1?
- 50) Обучение сети АРТ?
- 51) Теоремы АРТ?
- 52) ИНС APT2?
- 53) ИНС APT3?
- 54) Опишите черты современных архитектур?
- 55) Опишите типовые задачи решаемые при помощи ИНС?
- 56) Опишите программное и аппаратное обеспечение нейроЭВМ?
- 57) Компьютерное моделирование ИНС?
- 58) Принципы разработки нейроимитаторов?
- 59) Опишите генетический поиск?
- 60) Опишите системы нечеткой логики?
- 61) Опишите генетические операторы?
- 62) Опишите гаплоидный генетический алгоритм?
- 63) Опишите диплоидный генетический алгоритм?
- 64) Опишите правило Modus Ponens для нечетких множеств?
- 65) Опишите принцип работы алгоритма муравьиной колонии (АСО)?
- 66) Что такое алгоритм роя частиц (PSO)?
- 67) Что такое селекция? Назовите основные методы.
- 68) Опишите принцип работы генеративных состязательных сетей (GAN) в компьютерном зрении.
 - 69) Что такое сегментация изображений? Где она применяется?
 - 70) Что такое детекция объектов? Назовите примеры алгоритмов.
- 71) Опишите принцип работы сверточных нейронных сетей (CNN) в компьютерном зрении.
 - 72) Что такое обработка естественного языка (NLP)?
 - 73) Опишите метод Bag of Words.

- 74) Что такое TF-IDF? Как он используется в NLP?
- 75) Что такое word2vec? Как он работает?
- 76) Опишите принцип работы рекуррентных нейронных сетей (RNN).
- 77) Что такое генеративные состязательные сети (GAN)?
- 78) Что такое трансформеры? Где они применяются?
- 79) Что такое обучение с переносом (Transfer Learning)?
- 80) Какие проблемы могут возникнуть при обучении нейронных сетей?

6.6 Тематика и содержание курсового проекта

Курсовой проект не предусмотрен.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Рассел, Стюарт, Норвиг, Питер. Искусственный интеллект: современный подход, 4-е издание, том 3. Обучение, восприятие и действие. : Пер. с англ. СПб. : ООО "Диалектика", 2022. 640 с. Парал. тит. англ. [Электронный ресурс]:. Режим доступа: https://vk.com/topic-51126445 32505707?offset=80. (Дата обращения 26.08.2024).
- 2. Боровская, Е. В. Основы искусственного интеллекта: учебное пособие / Е. В. Боровская, Н. А. Давыдова. 4-изд., электрон. М.: Лаборатория знаний, 2020. 130 с. // Режим доступа: https://lib.tau-edu.kz/wp-content/uploads/2023/01/Боровская-Е.В.-Основы-искусственногоинтеллекта.pdf. (Дата обращения 26.08.2024).
- 3. Ватьян, А.С., Гусарова Н.Ф., Добренко Н.В. Системы искусственного интеллекта. СПб: Университет ИТМО, 2022. 186 с. Режим доступа: https://books.ifmo.ru/file/pdf/3142.pdf. (дата обращения: 26.08.2024).
- 4. Остроух, А.В. Введение в искусственный интеллект: монография / А.В. Остроух. Красноярск: Научно-инновационный центр, 2020. 250 с. Режим доступа: https://nkras.ru/arhiv/2020/ostroukh1.pdf. (Дата обращения 26.08.2024).

Дополнительная литература

- 1. Таулли, Т. Основы искусственного интеллекта: нетехническое введение: Пер. с англ. / Т. Таули СПб.: БХВ-Петербург, 2021. 288с.: ил. // Режим доступа: <a href="https://psv4.userapi.com/s/v1/d/s6M1hk3LgCR_byMEzuGOXmxLrdKQXHJPo0FnGZnRI3cQoCkOw-sRF6PRSaPvB3uAD4hZfjnvmT6pdTU2EDWVon35vpXdFYwSvkYIjBTOFMNV0CMz/Osnovy_iskusstvennogo_intellekta_netekhnicheskoe_vvedenie_4.pdf. (Дата обращения: 26.08.2024).
- 2. Постолит, А. В. Основы искусственного интеллекта в примерах на Python. Самоучитель. СПб.: БХВ-Петербург, 2021. -448 с.: ил. Режим доступа:
- https://vk.com/doc44301783_616183734?hash=i95rwlLMIwIxkxRWVGcuWib9B2 lzm8uKZY7IFTCicqz. (Дата обращения 26.08.2024).
- 3. Хайкин, Саймон Нейронные сети: полный курс, 2-изд. : Пер. с анг. М.: ООО И.Д. Вильямс, 2016. 1104 с. : ил. . Режим доступа: http://i.uran.ru/webcab/system/files/bookspdf/neyronnye-seti-polnyy-kurs/229022.pdf. (Дата обращения 26.08.2024).

Учебно-методические материалы и пособия

1. Закутный А.С. Основы искусственного интеллекта: методические указания к лабораторным работам [Электронный ресурс] — URL: https://3kl.dontu.ru/course/. Режим доступа: для авториз. пользователей. — Текст: электронный. (Дата обращения 26.08.2024).

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ : официальный сайт.— Алчевск. —URL: library.dstu.education. Текст : электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст : электронный.
- 3. Консультант студента : электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст : электронный.
- 4. Университетская библиотека онлайн: электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст : электронный.
- 5. IPR BOOKS : электронно-библиотечная система.—Красногорск. URL: http://www.iprbookshop.ru/. Текст : электронный.
 - 6. Сайт кафедры ИСИБ http://scs.dstu.education.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 6.

Таблица 6 – Материально-техническое обеспечение

	Адрес
	(местоположение)
Наименование оборудованных учебных кабинетов	учебных
	кабинетов
Специальные помещения:	
Аудитории для проведения лекций:	ауд. <u>207</u> корп. <u>4</u>
Мультимедийная аудитория. (60 посадочных мест),	
оборудованная специализированной (учебной) мебелью (парта	
трехместная – 18 шт., парта двухместная – 6 шт, стол– 1 шт.,	
доска аудиторная—1 шт.), учебное ПК (монитор + системный	
блок), мультимедийная стойка с оборудованием – 1 шт.,	
широкоформатный экран.	
Компьютерные классы (22 посадочных места), оборудованный	ауд. <u>217</u> корп. <u>3</u>
учебной мебелью, компьютерами с неограниченным доступом к	ауд. <u>211</u> корп. <u>4</u>
сети Интернет, включая доступ к ЭБС:	

Лист согласования РПД

Разработал:

ст. преподаватель кафедры интеллектуальных систем и информационной безопасности (должность)

ость)

<u>A.C. Закутный</u> (Ф.И.О.)

И.о. заведующего кафедрой интеллектуальных систем и информационной безопасности (наименование кафедры)

(подиись)

Е.Е. Бизянов (Ф.И.О.)

Протокол № 1 заседания кафедры

от <u>27.08. 2024</u>г.

И.о. декана факультета информационных технологий и автоматизации производственных процессов:

(наименование факультета)

(подпись)

В.В. Дьячкова (Ф.И.О.)

Согласовано

Председатель методической комиссии по специальности Информационная безопасность автоматизированных систем

10.05.03

отупсь)

<u>Е.Е. Бизянов</u> (Ф.И.О.)

Начальник учебно-методического центра

(подпись)

О.А. Коваленко (Ф.И.О.)

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для			
внесения изменений			
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:		
Oc	нование:		
Подпись лица, ответство	енного за внесение изменений		