Документ подписан простой электронной подписью

Информация о владель МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФИО: Вишневский Дмитрий Александрович (МИНОБРНАУКИ РОССИИ)

Должность: Ректор

Дата подписания: 17.10.2025 15:06:46

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

Уникальный программный ключ: 03474917c4d012283e5ad996a48&ДОНВАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

> Факультет информационных технологий и автоматизации производственных процессов Кафедра электроники и радиофизики

> > УТВЕРЖДАЮ проректора по учебной работе Д.В. Мулов

РАБОЧАЯ ПРОГРАММА ПРАКТИКИ

Методологический семинар по квантовой радиофизике						
	(наименование дисциплины)					
	03.04.03 Радиофизика					
	(код, наименование направления)					
 Инжене	рно-физические технологии в промышленности					
	(магистерская программа)					
Квалификация	магистр					
	(бакалавр/специалист/магистр)					
Форма обучения	я очно-заочная					
	(очная, очно-заочная, заочная)					

1 Цели и задачи изучения дисциплины

Цели дисциплины. Целью изучения дисциплины «Методологический семинар по квантовой радиофизике» является формирование у студентов представлений о лазерных технологиях в их прикладном значении, перспективах их развития, способах их реализации в производственных процессах, умения находить и сравнивать различные технологические способы реализации производственных операций, умения творчески применять и самостоятельно повышать свои знания.

Задачи изучения дисциплины:

- получение специальных знаний, необходимых для исследовательских и прикладных работ в области новейших лазерных технологий,
- оценка принципиальных возможностей лазерных технологий для конкретных технических применений, выбора оптимальных лазерных технологий и оборудования при решении практических задач.

Дисциплина направлена на формирование универсальной компетенции (УК-1), профессиональной компетенции (ПК-2) выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины — курс входит в БЛОК 1 "Дисциплины (модули)", факультативные дисциплины (модули) основной профессиональной образовательной программы подготовки по направлению 03.04.03 Радиофизика (магистерская программа «Инженерно-физические технологии в промышленности»).

Дисциплина реализуется кафедрой электроники и радиофизики.

Основывается на базе дисциплин «Квантовая радиофизика. Квантовые приборы», «Радиофизические измерения», «Проектирование и эксплуатация лазерного технологического оборудования», «Современные радиофизические методы диагностики», «Информационно-измерительные и управляющие системы», которые были освоены студентами на предыдущих семестрах в рамках основной профессиональной образовательной программы подготовки бакалавра и на этапе обучения по магистерской программе. Полученные ранее знания по уже изученным дисциплинам систематизируются, закрепляются и углубляются, фокусируя основное внимание на аспектах прикладного использования теории и инструментария квантовой радиофизики.

Является основой для изучения дисциплин «Квантовые и оптические технологии», «Лазерные и плазменные технологии обработки материалов», «Дополнительные главы квантовой и оптической электроники»

Методологический семинар как вид практических занятий является самостоятельной, многоцелевой формой обучения, которая призвана углублять и систематизировать изучение наиболее важных для будущей профессиональной деятельности тем и разделов квантовой радиофизики.

Общая трудоемкость освоения дисциплины составляет 72 ак.ч.

Для очной формы обучения программой дисциплины предусмотрены практические занятия (36 ак.ч.) и самостоятельная работа обучающегося (36 ак.ч.). Дисциплина изучается на 1 курсе во 2 семестре. Форма промежуточной аттестации – зачет.

Для очно-заочной формы обучения программой предусмотрены: практические занятия (18 ак.ч.) и самостоятельная работа обучающегося (54 ак.ч.). Дисциплина изучается на 2 курсе в 4 семестре. Форма промежуточной аттестации – зачет.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Методологический семинар по квантовой радиофизике» направлен на формирование компетенций, представленных в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание компетенции	Код компете нции	Код и наименование индикатора достижения компетенции
Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий	УК-1	УК-1.1. Анализирует проблемную ситуацию как систему, выявляя ее составляющие и связи внутри; осуществляет поиск вариантов решения поставленной проблемной ситуации; определяет стратегию достижения поставленной цели.
Способен критически анализировать современные инженерно-физические проблемы, ставить задачи и разрабатывать программу исследования, выбирать адекватные способы и методы решения экспериментальных и теоретических задач, анализировать, обобщать и применять полученные результаты	ПК-2	ПК-2.2. Умеет ставить задачи в области профессиональной деятельности, предлагать пути их решения; разрабатывать и применять наиболее подходящие теоретические и экспериментальные методы исследований к конкретной научной задаче и интерпретировать полученные результаты.

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 72 ак.ч.

Самостоятельная работа студента (СРС) включает подготовку к практическим (семинарским) занятиям, текущему контролю, выполнение индивидуального задания, самостоятельное изучение материала и подготовку к зачету.

Самостоятельная работа студентов сосредоточена в основном на подготовке докладов и презентаций в электронном виде. Это помогает им не только осваивать материал по теме дисциплины, но и приобретать навыки работы с литературой, электронными библиотеками, умение грамотно оформлять и представлять проделанную работу, а также правильно излагать полученную информацию.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам 2
Аудиторная работа, в том числе:	36	36
Лекции (Л)	-	-
Практические занятия (ПЗ)	36	36
Лабораторные работы (ЛР)	-	-
Курсовая работа/курсовой проект	-	-
Самостоятельная работа студентов (СРС), в том числе:	36	36
Подготовка к лекциям	-	-
Подготовка к лабораторным работам	-	-
Подготовка к практическим занятиям / семинарам	9	9
Выполнение курсовой работы / проекта		
Расчетно-графическая работа (РГР)		
Реферат (индивидуальное задание)	9	9
Домашнее задание (индивидуальное задание)	9	9
Подготовка к контрольной работе		
Подготовка к коллоквиуму		
Аналитический информационный поиск	6	6
Работа в библиотеке		
Подготовка к зачету	3	3
Промежуточная аттестация – зачет (3)	3	3
Общая трудоемкость дисциплины		
ак.ч.	72	72
3.e.	-	-

5 Содержание дисциплины

С целью освоения компетенций, приведенных в п.3 дисциплина разбита на 6 тем:

- тема 1 (Лазерные приборы. Специфика их конструкции и применения);
- тема 2 (Лазерные системы и основные области их использования);
- тема 3 (Параметры и характеристики лазеров как источников излучения и способы их измерения);
- тема 4 (Основные виды лазерных технологий и области их применения);
- тема 5 (Общая характеристика технологического лазера и систем на его основе);
- тема 6 (Основные направления развития лазерных технологий).

Виды занятий по дисциплине и распределение аудиторных часов для очной и очно-заочной формы приведены в таблицах 3 и 4 соответственно.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	ак.ч.	Содержание практических (семинарских) занятий	ак.ч.	Тема лабораторных занятий	ак.ч.
1	Лазерные приборы. Специфика их конструкции и применения	-	-	 Специфика конструкций лазерных приборов. Лазерные эталоны длины и времени. Лазерные гироскопы. Дальномеры, высотометры, тахеометры. Лазерные геодезические приборы. Когерентные измерители перемещений (лазерные интерферометры, деформографы, дилатометры, гравиметры). Лазерные локаторы (лидары). Медицинские лазерные приборы. 	6	-	-
2	Лазерные системы и основные области их использования	-	-	 Доплеровские системы. Лазерные системы связи. Лазерные системы воспроизведения информации. Лазерные системы экологического мониторинга природной среды. Лазерные локационные системы. 	6	-	-
3	Параметры и характеристики ла- зеров как источников излучения и способы их измерения			 Спектральные, пространственные, энергетические и временные параметры и характеристики лазерного излучения. Режимы работы лазеров. Эксплуатационные параметры и характеристики лазеров. Стабильность параметров и характеристик лазерного излучения. Способы измерения параметров и характеристик лазерного излучения. 	6	-	-

_

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	ак.ч.	Содержание практических (семинарских) занятий	ак.ч.	Тема лабораторных занятий	ак.ч.
4	Основные виды лазерных технологий и области их применения	-	-	 Технологии обработки твердых материалов. Технология лазерного сверления микроотверстий. Технологии в микроэлектронике. Аддитивные технологии. Лазерная химия. 	8	-	-
5	Общая характеристика техноло- гического лазера и систем на его основе	-	-	 Функциональная схема технологического лазера (ТЛ). Структурная схема лазерных технологических установок (ЛТУ) и комплексов (ЛТК). Основные параметры технологических лазеров и лазерного излучения. 	6	-	-
6	Основные направления развития лазерных технологий	-	-	Космос.Энергетика.Строительство.Лазерное оружие.Экология (очистка среды).	4	-	-
	Всего аудиторных часов	_	_		36	-	-

Таблица 4 –Виды занятий по дисциплине и распределение аудиторных часов (очно-заочная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	ак.ч.	Содержание практических (семинарских) занятий	ак.ч.	Тема лабораторных занятий	ак.ч.
1	Лазерные приборы. Специфика их конструкции и применения	-	-	 Специфика конструкций лазерных приборов. Лазерные эталоны длины и времени. Лазерные гироскопы. Дальномеры, высотометры, тахеометры. Лазерные геодезические приборы. Когерентные измерители перемещений (лазерные интерферометры, деформографы, дилатометры, гравиметры). Лазерные локаторы (лидары). Медицинские лазерные приборы. 	4	-	-
2	Лазерные системы и основные области их использования	-	-	 Доплеровские системы. Лазерные системы связи. Лазерные системы воспроизведения информации. Лазерные системы экологического мониторинга природной среды. Лазерные локационные системы. 	2	-	-
3	Параметры и характеристики ла- зеров как источников излучения и способы их измерения			 Спектральные, пространственные, энергетические и временные параметры и характеристики лазерного излучения. Режимы работы лазеров. Эксплуатационные параметры и характеристики лазеров. Стабильность параметров и характеристик лазерного излучения. Способы измерения параметров и характеристик лазерного излучения. 	2	-	-

4

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	ак.ч.	Содержание практических (семинарских) занятий	ак.ч.	Тема лабораторных занятий	ак.ч.
4	Основные виды лазерных технологий и области их применения	-	-	 Технологии обработки твердых материалов. Технология лазерного сверления микроотверстий. Технологии в микроэлектронике. Аддитивные технологии. Лазерная химия. 	4	-	-
5	Общая характеристика технологического лазера и систем на его основе	-	-	 Функциональная схема технологического лазера (ТЛ). Структурная схема лазерных технологических установок (ЛТУ) и комплексов (ЛТК). Основные параметры технологических лазеров и лазерного излучения. 	4	-	-
6	Основные направления развития лазерных технологий	-	-	Космос.Энергетика.Строительство.Лазерное оружие.Экология (очистка среды).	2	-	-
	Всего аудиторных часов	-	_		18	-	-

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
УК-1, ПК-2	Зачет	Комплект контролирующих материалов для зачета

Всего по текущей работе в семестре студент может набрать 100 баллов. Оценка по текущей работе студента складывается из баллов:

- за реферат (40 баллов);
- за доклад на занятии (20 баллов);
- за участие в обсуждении докладов (20 баллов);
- за краткие выступления и ответы на вопросы по теме семинара -(20 баллов).

Основные критерии оценки:

- реферат: обоснованность отбора теоретического материала, объем, характер и полнота, логичность, взаимосвязь и последовательность изложения темы;
- презентация: дизайн, композиция, содержание слайдов, полнота представления темы индивидуального задания;
- качество доклада: аргументированность, манера изложения; объем и глубина знаний по теме;
- ответы на вопросы: полнота, аргументированность, стремление использовать ответы для раскрытия темы
- *участие в обсуждении*: вопросы докладчику, комментарии, дополнения к выступлению, демонстрирующие глубину и осознанность освоения материала, степень подготовки к семинару.

Зачет проставляется автоматически, если студент набрал в течение семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Если полученная в семестре сумма баллов не устраивает студента, во время зачетной недели студент имеет право повысить итоговую оценку либо в форме устного собеседования по приведенным ниже вопросам (п.п. 6.5), либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашнее задание

В качестве домашнего задания студенты выполняют:

- 1) Информационный поиск по теме семинарского занятия.
- 2) Готовят выступление на семинарском занятии с докладом по заранее выбранной теме из предложенной тематики индивидуальных заданий (п.п. 6.3)

6.3 Оценочные средства для самостоятельной работы и текущего контроля успеваемости - индивидуальные темы докладов на семинарских занятиях

Лазерные приборы. Специфика их конструкции и применения

- 1) Специфика конструкций лазерных приборов.
- 2) Лазерные эталоны длины и времени.
- 3) Лазерные гироскопы.
- 4) Дальномеры, высотометры, тахеометры.
- 5) Лазерные геодезические приборы.
- 6) Когерентные измерители перемещений (лазерные интерферометры, деформографы, дилатометры, гравиметры).
 - 7) Лазерные локаторы (лидары).
 - 8) Медицинские лазерные приборы.

Лазерные системы и основные области их использования

- 1) Доплеровские системы.
- 2) Лазерные системы связи.
- 3) Лазерные системы воспроизведения информации.
- 4) Лазерные системы экологического мониторинга природной среды.
- 5) Лазерные локационные системы.

Параметры и характеристики лазеров как источников излучения и способы их измерения

- 1) Спектральные, пространственные, энергетические и временные параметры и характеристики лазерного излучения.
 - 2) Режимы работы лазеров.
 - 3) Эксплуатационные параметры и характеристики лазеров.
- 4) Стабильность параметров и характеристик лазерного излучения. Способы измерения параметров и характеристик лазерного излучения.

Основные виды лазерных технологий и области их применения

- 1) Технологии обработки твердых материалов: сверление отверстий, резка, сварка, наплавка, термоупрочнение (отжиг), очистка поверхности от загрязнений и ржавчины.
- 2) Технологии в микроэлектронике: изготовление фотошаблонов печатных плат, нанесение рисунка печатных плат, сверление печатных плат, пайка печатных узлов, лазерный контроль качества паяных соединений.
- 3) Аддитивные технологии: лазерная наностереолитография; лазерная стереолитография для изготовления медицинских имплантатов; лазерное напыление тонких пленок и выращивание деталей в машиностроении.

Общая характеристика технологического лазера и технологических установок на его основе

- 1) Функциональная схема технологического лазера (ТЛ).
- 2) Структурная схема лазерных технологических установок (ЛТУ) и комплексов (ЛТК).
- 3) Основные параметры технологических лазеров и лазерного излучения.

Основные направления развития лазерных технологий

1) Космос: лазерные реактивные двигатели; разведка и добыча полезных ископаемых на космических телах; удаление космического «мусора» с Земли или из космоса.

- 2) Энергетика: передача энергии на большие расстояния (из космоса); термоядерный синтез, управление грозовыми разрядами; очистка и утилизация радиоактивно зараженных объектов.
- 3) Строительство: резка бетона, скал, камня, стали, стекла; проходка туннелей и скважин.
 - 4) Лазерное оружие: космическое противоракетное, ослепляющее.
- 5) Экология (очистка среды): ликвидация разливов нефтепродуктов; дистанционная ликвидация аварий.

Студенты, которые не выступали с докладом на семинарских занятиях, готовят в качестве индивидуального задания реферат или презентацию на одну из приведенных ниже (п.п. 6.4) тем.

6.4 Темы для рефератов (презентаций) – индивидуальное задание

- 1) Физические основы применения лазеров.
- 2) Применение лазеров в науке и технике.
- 3) Свойства лазерного излучения. Управление характеристиками лазерного излучения.
- 4) Особенности использования лазеров в приборах. Лазерная спектроскопия.
 - 5) Лазерный спектральный анализ.
- 6) Применение лазеров для дистанционного зондирования в аналитических целях. Лазерная фотохимия.
 - 7) Лазерный управляемый термоядерный синтез.
 - 8) Лазерная связь. Оптическая цифровая память.
 - 9) Лазеры в метрологии. Лазерные методы измерения.
 - 10) Лазерная интерферометрия плазмы.
 - 11) Лазеры в геодезии. Лазерные навигационные системы.
- 12) Классификация лазерных технологий и их использование в разных отраслях промышленности, в медицине и в научных исследованиях.
 - 13) Основные направления развития лазерных технологий
- 14) Лазерная обработка материалов: взаимосвязь между обработкой и параметрами лазеров.
- 15) Характерные отличия и особенности протекания физических процессов при лазерной обработке металлов, полупроводников и диэлектриков.
- 16) Твердотельные технологические лазеры. Основные характеристики и области их использования.
 - 17) Газовые технологические лазеры. Основные характеристики и

области их использования.

- 18) Полупроводниковые лазеры, их особенности. Основные характеристики и области их использования.
- 19) Волоконные технологические лазеры. Основные характеристики и области их использования.
 - 20) Ионные лазеры, их особенности и области применения.
 - 21) Основные параметры технологических лазеров.
- 22) Физические основы лазерной микрообработки. Факторы, ограничивающие качество микрообработки.
- 23) Лазерные источники для микрообработки. Их параметры и режим работы.

6.5 Вопросы для подготовки к зачету

- 1) Какие факторы необходимо учитывать при конструировании лазерных приборов?
 - 2) Основные характеристики лазеров как источников излучения.
 - 3) Режимы работы лазеров.
 - 4) Эксплуатационные параметры и характеристики лазеров.
- 5) Способы измерения параметров и характеристик лазерного излучения.
 - 6) Опишите устройство и работу лазерного дальномера и локатора.
 - 7) Что такое лазерные эталоны длины и времени?
- 8) Опишите устройство и работу лазерного гироскопа. Какая его точность измерений?
- 9) Опишите устройство, работу и область применения лазерного интерферометра.
 - 10) Лазерные технологии и их преимущества.
 - 12) Функциональная схема технологического лазера (ТЛ
- 13) Структурная схема лазерных технологических установок (ЛТУ) и комплексов (ЛТК).
- 14) Основные параметры технологических лазеров и лазерного излучения:
 - 15) Привести примеры существующих технологий обработки твердых
- 16) Привести примеры существующих лазерных технологий в микроэлектронике.
 - 17) Приведите примеры применения лазерных технологий в медицине. материалов.
 - 18) Что такое аддитивные технологии? Привести примеры.

- 19) Привести примеры лазерных технологий в медицине.
- 20) Каковы перспективы развития технологических лазеров?

6.6 Примерная тематика курсовых работ

Курсовые работы не предусмотрены.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Квантовые технологии в телекоммуникационных системах: учебник / К.Е. Румянцев; Южный федеральный университет. –Ростов-на-Дону; Таганрог: Издательство Южного федерального университета, 2021. –346 с. https://znanium.ru/catalog/document?id=415228 (дата обращения: 18.05.2024).
- 2. Рахманов Б.Н. Теоретическая и экспериментальная лазерная дозиметрия: монография / Б.Н. Рахманов, В.Т. Кибовский. Москва: ИНФРА-М, 2024. 210 с. (Научная мысль). https://znanium.ru/catalog/document?id=438675 (дата обращения: 18.05.2024).

Дополнительная литература

- 1. Климков, Ю.М. Лазерная техника / Ю.М. Климков, М.В. Хорошев Учебное пособие М.: МИИГАиК, 2014. 143 с.
- 2. Менушенков, А.П. Физические основы лазерной технологии / А.П. Менушенков, В.Н Неволин, В.Н. Петровский. Учебное пособие. М.: НИЯУ МИФИ, 2010, 212 с.
- 3. Вейко, В.П., Опорный конспект лекций по курсу «Лазерные технологии». Раздел Введение в лазерные технологии. / В.П. Вейко, А.А. Петров СПб ГУ ИТМО 2009. 143 с.
- 4. Вейко, В.П. Опорный конспект лекций по курсу «Физико-технические основы лазерных технологий» Раздел Технологические лазеры и лазерное излучение. Изд. 2-е, испр. и дополн. СПб ГУ ИТМО 2007. 52 с.
- 5. Вейко, В.П., Лазерные технологии в микроэлектронике. /В.П. Вейко, Метев С.М. –София: Изд. Болгарской АН, 1991.
- 6. Вейко В.П. Опорный конспект лекций по курсу «Физико-технические основы лазерных технологий» Раздел Лазерная микрообработка. Изд. 2-е, испр. и дополн. СПб ГУ ИТМО 2007. 111 с.
- 7. Шахно Е.А. Физические основы применения лазеров в медицине. СПб: НИУ ИТМО, 2012. 129 с.
- 8. Оптико-электронные системы экологического мониторинга природной среды: Учеб. пособие для Вузов / В.И.Козинцев, В.М. Орлов, М.Л. Белов и др. Под ред. В.Н. Рождествина М.: Изд-во МГТУ им. Н.Э. Баумана 2002. 528 с.

- 9. Коваленко В.С., Лазерная технология / В. С. Коваленко. Киев: Выща шк., 1989. 280 с.
- 10. Григорьянц, А.Г. Технологические процессы лазерной обработки // Учеб. Пособие для вузов / А.Г. Григорьянц, И.Н. Шиганов, А.И. Мисюров. Под ред. А.Г. Григорьянца. М.: Изд-во МГТУ им. Н.Э. Баумана, 2006.

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт. Алчевск. URL: <u>library.dstu.education</u>. Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова: официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст: электронный.
- 3. Консультант студента : электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст : электронный.
- 4. Университетская библиотека онлайн : электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст: электронный.
- 5. IPR BOOKS: электронно-библиотечная система. Красногорск. URL: http://www.iprbookshop.ru/. —Текст: электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местоположение) учебных кабинетов
Специальные помещения: Научно-исследовательские лаборатории кафедры электроники и радиофизики, (оснащена приборами и контрольными средствами измерения); Лаборатории физических измерений, (оснащена приборами и контрольными средствами измерения). Компьютерный класс кафедры электроники и радиофизики, оснащенный интерактивной доской и компьютерами, имеющими доступ к проводному Интернету либо через канал беспроводной связи посредством Wi-Fi.	ауд. <u>421, 426</u> корп. <u>главный</u> ауд. <u>413, 423, 436</u> корп. <u>главный</u> ауд. <u>434</u> корп. <u>главный</u>

Лист согласования РПД

Разработал:		
Доцент кафедры электроники и радиофизики (должность)	(подпись)	<u>С.Д.Кузьминова</u> (Ф.И.О.)
И.о. заведующего кафедрой электроники и радиофизики	(подпись)	<u>А.М.Афанасьев</u> (Ф.И.О.)
Протокол № <u> </u>	.CB.2024.	
И.о. декана факультета информационных технологий и автоматизации производственных процессов	(подпись)	В.В. Дьячкова (Ф.И.О.)
Согласовано:		
Председатель методической комиссии по направлению подготовки 03.04.03 Радиофизика (магистерская программа «Инженерно-физичехнологии в промышленности»)	неские подпись)	<u>А.М.Афанасьев</u> (Ф.И.О.)
Начальник учебно-методического центра	(подпись)	О.А. Коваленко

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения					
изменений					
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:				
Осног	вание:				
Подпись лица, ответственного за внесение изменений					
тюдинсь лица, ответственного за внесение изменении					