Документ подписан простой электронной подписью

Информация о владельце:

Должность: Ректор

Дата подписания: 20.10.2025 11:05:46

Уникальный программный ключ:

ФИО: Вишневмий Ниист ЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБРНАУКИ РОССИИ)

03474917c4d012283e5ad996a48a5e7008da037 НОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет информационных технологий и автоматизации производственных процессов Кафедра интеллектуальных систем и информационной безопасности

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Электроника и схемотехника ЭВМ

(наименование дисциплины)

10.05.03 Информационная безопасность автоматизированных систем

(код, наименование специальности)

Безопасность открытых информационных систем

(специализация)

Квалификация	специалист по защите информации			
	(бакалавр/специалист/магистр)			
Форма обучения	очная			
	(очная, очно-заочная, заочная)			

1 Цели и задачи изучения дисциплины

Цели дисциплины. Целью изучения дисциплины «Электроника и схемотехника ЭВМ» является ознакомить студентов со схемотехникой построения ЭВМ, научить применять полученные знания для решения инженерных задач, создать условия для творческого подхода к применению различных технологий построения электронных технических средств на базе аналоговой и цифровой схемотехники, сформировать у студента стойкие знания и способности к применению различных технологий построения аналоговой и цифровой электронных технических средств на базе схемотехники. Научить анализировать физическую сущность явлений и процессов, лежащих в основе функционирования микроэлектронной техники, применять основные физические законы и модели для решения задач профессиональной деятельности.

Задачи изучения дисциплины. Освоить знания и навыки, необходимые для синтеза, анализа и оптимизации электронных схем, методы применения результатов научных исследований при участии в разработке, установке, настройке, эксплуатации, аттестации и поддержании в работоспособном состоянии ЭВМ, сбор и анализ исходных данных для проектирования ЭВМ.

Дисциплина направлена на формирование общепрофессиональной (ОПК-4) компетенции выпускника.

2 Место дисциплины в структуре образовательной программы

Логико-структурный анализ дисциплины — курс входит в обязательную часть БЛОКА 1 «Дисциплины (модули)» подготовки студентов по специальности 10.05.03 Информационная безопасность автоматизированных систем (10.05.03-05 Безопасность открытых информационных систем).

Дисциплина реализуется кафедрой интеллектуальных систем и информационной безопасности. Основывается на базе дисциплин: «Физика», «Математический анализ», «Основы теории электрических цепей», «Дискретная математика».

Является основой для изучения следующих дисциплин: «Архитектура вычислительных систем», «Программно-аппаратные средства обеспечения информационной безопасности», «Физические основы построения технических средств защиты информации», «Разработка и эксплуатация автоматизированных систем в защищенном исполнении», «Программно-аппаратные средства защиты информации».

Для изучения дисциплины необходимы компетенции, сформированные у студента для решения профессиональных задач деятельности, связанных с электроникой.

Курс является фундаментом для ориентации студентов в сфере разработки информационных систем.

Общая трудоемкость освоения дисциплины составляет 9 зачетных единиц, 324 ак.ч. Программой дисциплины предусмотрены лекционные (72 ак.ч.), лабораторные (72 ак.ч.), практические (18 ак.ч) занятия, самостоятельная работа студента (162 ак.ч.) в том числе курсовой проект в четвертом семестре.

Дисциплина изучается на 2 курсе в 3, 4 семестрах. Форма промежуточной аттестации — экзамен. В четвертом семестре предусмотрен курсовой проект, форма промежуточной аттестации — дифференцированный зачет.

3 Перечень результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины «Электроника и схемотехника ЭВМ» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание	Код	Код и наименование индикатора				
компетенции	компетенции	достижения компетенции				
Способен	ОПК-4	ОПК-4.1 Анализирует физическую сущность				
анализировать		явлений и процессов, лежащих в основе				
физическую		функционирования микроэлектронной техники				
сущность явлений и						
процессов, лежащих						
в основе						
функционирования						
микроэлектронной						
техники, применять						
основные						
физические законы						
и модели для						
решения задач						
профессиональной						
деятельности						

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 9 зачётных единицы, 324 ак.ч.

Самостоятельная работа (CPC) студента включает проработку материалов лекций, подготовку к практическим занятиям, текущему контролю, выполнение индивидуального задания, самостоятельное изучение материала подготовку К экзамену, курсового проекта ДЛЯ дифференцированному зачету.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

	_	Ак.ч. по	Ак.ч. по
Вид учебной работы	Всего ак.ч.	семестрам	семестрам
		3	4
Аудиторная работа, в том числе:	162	90	72
Лекции (Л)	72	36	36
Практические занятия (ПЗ)	18	18	
Лабораторные работы (ЛР)	72	36	36
Курсовая работа/курсовой проект	-	-	-
Самостоятельная работа студентов (СРС), в том	162	90	72
числе:	-		·
Подготовка к лекциям	36	9	9
Подготовка к лабораторным работам	24	10	14
Подготовка к практическим занятиям / семинарам	18	18	-
Выполнение курсовой работы / проекта	26	-	26
Расчетно-графическая работа (РГР)	12	12	-
Реферат (индивидуальное задание)	-	-	-
Домашнее задание	-	-	-
Подготовка к контрольным работам	-	-	-
Подготовка к коллоквиуму	-	-	-
Аналитический информационный поиск	6	3	3
Работа в библиотеке	12	6	6
Подготовка к экзамену (диф.зачету)	46	32	14
Промежуточная аттестация – экзамен (Э), диф.зачет	о по	Э	о по
(ДЗ)	Э, ДЗ	9	Э, ДЗ
Общая трудоемкость дисциплины			
ак.ч.	324	180	144
3.e.	9	5	4

5 Содержание дисциплины

С целью освоения компетенций, приведенных в п.3 дисциплина разбита на 8 тем:

- тема 1 (Базовые компоненты электроники);
- тема 2 (Операционные усилители);
- тема 3 (Логические интегральные схемы);
- тема 4 (Типовые схемотехнические решения);
- тема 5(Схемотехника устройств и систем на базе микропроцессоров);
- тема 6(Схемотехника устройств и систем на базе микроконтроллеров);
- тема 7(Принципы и основные методы проектирования узлов и блоков автоматизированных систем);
 - тема 8(Этапы проектирования).

Виды занятий по дисциплине и распределение аудиторных часов для очной формы приведены в таблице 3.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий		Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1	2	3	4	5	6	7	8
		Введение. Этапы и направления развития электроники. Классификация и области применения компонентов ЭВМ. Резисторы, конденсаторы, дроссели, трансформаторы, их		Классификация электронных устройств	2	Электронный осциллограф	6
		классификация, основные параметры и характеристики; полупроводниковые диоды, классификация, принцип работы, основные параметры и характеристики; биполярные		Цепи синусоидального тока	2	Пассивные компоненты электроники	6
1	Базовые компоненты электроники	транзисторы, классификация, принцип работы, основные параметры и характеристики; полевые транзисторы, классификация, принцип работы, основные параметры и характеристики; IGBT и	18	Передаточная функция аналогового устройства	2	Динамические характеристики диода	8
		МОSFEТ транзисторы, классификация, принцип работы, основные параметры и характеристики; тиристоры, классификация, принцип работы, основные параметры и характеристики; датчики и индикаторные устройства в компьютерной электронике, классификация, принцип работы, основные параметры и		Цепи с полу- проводниковыми приборами	2		
		характеристики.					

_ .

Продолжение таблицы 3

1	2	3	4	5	6	7	8
		Усилители, усилители мощности и усилители постоянного тока, общие сведения, основные параметры и характеристики, классификация; обратные связи, общие сведения,		Однокаскадные усилители Операционные усилители	2	Усилительные каскады на биполярных транзисторах	8
2	Операционные усилители	основные параметры и характеристики. Операционные усилители (ОУ), структура, общие сведения, основные параметры и характеристики; основные схемы включения операционных усилителей. Интеграторы и дифференциаторы, активные фильтры, генераторы гармонических колебаний, аналоговые коммутаторы, суммирующие устройства, устройства сравнения аналоговых сигналов, мультивибраторы, преобразователи сигналов на операционных усилителях, генераторы несинусоидальных колебаний, общие сведения, основные параметры и	18	Активные фильтры Базовые схемы на ОУ Генераторы гармонических колебаний на ОУ	2 2	Операционные усилители. Активные фильтры	8

0

Продолжение таблицы 3

1	2	3	4	5	6	7	8
3	Логические интегральные схемы	Физическое представление логических значений двоичных чисел электрическими сигналами. Цифровые интегральные микросхемы. Основные параметры и характеристики. Классификация. Базовые логические элементы. Классификация и области применения основных типов базовых логических элементов. Элементы транзисторнотранзисторной, эмиттерносвязанной, интегральночинжекционной, логики. Элементы логики на полевых МДП транзисторах. Способы повышения быстродействия основных типов базовых логических элементов.	8	-	-	Знакомство с лабораторным стендом "Altera DE2" Исследование цифровых устройств на основе программируемых логических интегральных схем (ПЛИС) в среде Quartus II	4
4	Типовые схемотехнические решения	Принципы построения, действия и расчета цифровых компараторов, регистров, счетчиков, шифраторов, дешифраторов, мультиплексоров, сумматоров, управляющего, арифметического и запоминающего устройств, устройства ввода-вывода Оптимизация схем и структурных решений по заданным критериям.	8	-	-	Исследование цифровых комбинационных схем в среде Quartus II	4

Продолжение таблицы 3

1	2	3	4	5	6	7	8
5	Схемотехника устройств и систем на базе микропроцессоров	Общая характеристика микропроцессоров. Однокристальные восьми и шестнадцатиразрядные микропроцессоры. Арифметические сопроцессоры. Суперскалярные микропроцессоры с CISC и RISC-архитектурой. Микропроцессорные комплекты больших интегральных схем. Системы команд микропроцессоров.	8	-	-	Исследование составных частей арифметически-логического устройства в среде Quartus II Исследование работы различных типов триггеров в среде Quartus II	6
6	Схемотехника устройств и систем на базе микроконтроллеров	Универсальные, функционально- ориентированные и специализированные микроконтроллеры. Основные параметры и характеристики. Принципы построения, действия и расчета. Примеры применения	8	-	-	Исследование работы регистров в среде Quartus II Исследование работы счетчиков в среде Quartus II	6

Окончание таблицы 3

1	2	3	4	5	6	7	8
7	Принципы и основные методы проектирования узлов и блоков автоматизированных систем	Распределение обработки информации в МПС на аппаратных и микро программных средствах. Оптимизация решения в соответствии с заданными критериями эффективности Этапы разработки архитектуры МПС	4	-	-	-	-
Всег	го аудиторных часов	72		18		72	

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации студентов по дисциплине

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 4.

Таблица 4 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
ОПК-4	экзамен	Комплект контролирующих материалов для экзамена
ОПК-4	Дифференцированный зачет	Комплект контролирующих материалов для дифзачета

Всего по текущей работе в третьем семестре студент может набрать 100 баллов, в том числе:

- Расчетно-графическая работа (РГР) всего 40 баллов;
- лабораторные работы всего 60 баллов.

Всего по текущей работе в четвертом семестре студент может набрать 100 баллов, в том числе:

– лабораторные работы – всего 100 баллов.

По курсовому проекту в четвертом семестре студент может набрать 100 баллов, в том числе:

- выполнение курсового проекта 40 баллов;
- оформление курсового проекта 10 баллов;
- защита курсового проекта
 50 баллов.

Оценка по экзамену проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Экзамен по дисциплине «Электроника и схемотехника ЭВМ» проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время сессии студент имеет право повысить итоговую оценку либо в форме устного собеседования по

приведенным ниже вопросам (п.п. 6.5), либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 5.

Таблица 5 – Шкала оценивания знаний

Сумма баллов за все виды учебной	Оценка по национальной шкале
деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашнее задание

Отсутствует.

6.3 Расчетно-графическая работа (РГР) – индивидуальное задание

Для схемы цепи, изображенной на рисунке 1 (a-м), по заданным в таблице 6 параметрам получить:

- 1. Передаточную функцию с помощью преобразования Лапласа;
- 2. Комплексную передаточную функцию;
- 3. Выражения для АЧХ, ФЧХ и ЛАЧХ;

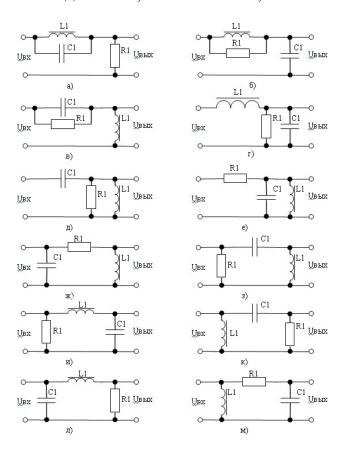


Рисунок 1 – Схемы пассивных цепей

Таблица 6 – Варианты задания

No	Рисунок	R1, Ом	С1, мкФ	L 1, мΓ	<i>f</i> , Гц
1	2.18, a	100	10	5	200
2	2.18, б	50	15	10	250
3	2.18, в	75	20	5	300
4	2.18, г	100	5	10	330
5	2.18, д	50	10	5	240
6	2.18, e	75	15	10	730
7	2.18, ж	100	20	5	800
8	2.18, 3	50	5	10	950
9	2.18, и	75	10	5	1000
10	2.18, к	200	15	10	100
11	2.18, л	30	20	5	100
12	2.18, м	40	5	10	200
13	2.18, a	50	10	5	300
14	2.18, б	30	15	10	450
15	2.18, в	40	20	5	520
16	2.18, г	50	5	10	630
17	2.18, д	30	10	5	415
18	2.18, e	40	15	10	320
19	2.18, ж	50	20	5	220
20	2.18, 3	150	5	10	250
21	2.18, и	75	10	10	100
22	2.18, к	100	15	5	200
23	2.18, л	50	20	10	300
24	2.18, м	75	5	5	450
25	2.18, a	200	10	10	520

Построить ЛАЧХ и ЛФЧХ для цепи, заданной в таблице 7.

Частотные характеристики строить в одной системе координат. Определить коэффициент передачи и фазовый сдвиг на частоте, заданной в таблице 7 согласно своему варианту.

6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Тема 1 (Базовые компоненты электроники)

- 1. Какие основные параметры характеризуют резистор?
- 2. Какие основные параметры характеризуют конденсатор?
- 3. Какие основные параметры характеризуют катушку индуктивности?
- 4. Какие основные параметры характеризуют диод?
- 5. Какие основные параметры характеризуют транзистор?

Тема 2 (Операционные усилители)

- 1. Что из себя представляет операционный усилитель?
- 2. Как построить неинвертирующий усилитель на ОУ?
- 3. Как построить инвертирующий усилитель на ОУ?
- 4. Как построить дифференциальный усилитель на ОУ?

5. Как построить повторитель на ОУ?

Тема 3 (Логические интегральные схемы)

- 1. Какие логические элементы входят в состав базовых?
- 2. Что такое транзисторно-транзисторная логика?
- 3. Что такое эмиттерно-связанная логика?
- 4. Что такое диодно-транзисторная логика?
- 5. Какая разница между МОП и КМОП логикой?

Тема 4 (Типовые схемотехнические решения)

- 1. Что такое дешифратор?
- 2. Что такое демультиплексор?
- 3. В чем заключается отличие демультиплексора от дешифратора?
- 4. Что такое полный и неполный цифровой компаратор?
- 5. Чем отличается цифровой полусумматор от сумматора?

Тема 5(Схемотехника устройств и систем на базе микропроцессоров)

- 1. По каким признакам выделяют поколения вычислительных машин?
- 2. Какой уровень детализации вычислительной машины позволяет определить, можно ли данную ЭВМ причислить к фон-неймановским?
- 3. Каким образом можно охарактеризовать производительность вычислительной машины?
- 4. Поясните достоинства и недостатки ВМ с полным набором команд. Какие исторические причины привели к их возникновению?
- 5. Какие исторические причины способствовали появлению ВМ с сокращенным набором команд?

Тема 6(Схемотехника устройств и систем на базе микроконтроллеров)

- 1. Что такое микроконтроллер?
- 2. В чем разница между микроконтроллером и микропроцессором?
- 3. Какие основные характеристики микропроцессоров Вы знаете.
- 4. Какие бывают основные архитектуры микроконтроллеров?
- 5. Какие семейства микроконтроллеров вы знаете?

Тема 7(Принципы и основные методы проектирования узлов и блоков автоматизированных систем)

- 1. Что представляет из себя АСУ ТП?
- 2. Какие разделы включает общий проект предприятия при разработке проекта систем автоматизации?
 - 3. Что такое полный и неполный цифровой компаратор?
 - 4. Какие методы аналого-цифрового преобразования вы знаете?
 - 5. Чем отличаются графические ЖК дисплеи от знакосинтезирующих?
 - 6. По каким признакам классифицируются регистры?

Тема 8(Этапы проектирования)

- 1. Какие работы выполняются на этапе технического задания?
- 2. Какие работы выполняются на этапе НИР?
- 3. Какие работы выполняются на этапе эскизного проектирования?
- 4. Какие работы выполняются на этапе разработки технического проекта объекта?
 - 5. Какие работы выполняются на этапе рабочего проектирования?

6.5 Вопросы для подготовки к экзамену

3 семестр

- 1) Каково назначение электронной пушки и электронно-лучевой трубки в осциллографе?
 - 2) Что значит линейная цепь?
 - 3) Что значит принцип суперпозиции?
 - 4) Что называют углом сдвига фаз?
 - 5) Есть ли разница между понятиями «сопротивление» и «резистор»?
 - 6) Назовите основные параметры резистора?
 - 7) Перечислите основные параметры конденсатора?
 - 8) Назовите основные параметры катушки индуктивности?
- 9) На какие электроды подается исследуемый сигнал в электроннолучевой трубке?
 - 10) Каково назначение первого и второго анода?
- 11) При каком условии можно получить на экране один полный период исследуемого сигнала?
 - 12) Что показывает чувствительность трубки?
- 13) С каким элементом трубки связана ручка "Фокус" и ручка "Яркость" передней панели?
- 14) При каком условии можно получить на экране неподвижное изображение исследуемого сигнала?
 - 15) Что такое время рассасывания диода?
- 16) Что такое время установления прямого сопротивления и время восстановления обратного сопротивления?
- 17) Как подключить в схему осциллограф для наблюдения тока и напряжения диода?
- 18) Как измерить время рассасывания и восстановления обратного сопротивления диода с помощью осциллографа?
 - 19) В чем проявляются переходные процессы в диодах?
 - 20) Какими явлениями вызваны переходные процессы в диодах?
 - 21) Что такое накопление носителей в базе диода?
- 22) Что такое равновесная, неравновесная, избыточная, граничная концентрации носителей?
- 23) От чего зависят равновесная, неравновесная, избыточная, граничная концентрации носителей?
- 24) Какие предельные значения имеют равновесная, неравновесная, избыточная, граничная концентрации носителей?
 - 25) Что такое равновесный, неравновесный, избыточный заряд в базе?
 - 26) Как изменяется накопленный заряд в базе при инжекцни и экстракции?
- 27) Почему при анализе переходных процессов в диодах рассматривается накопленный заряд только в базе?
 - 28) Что такое модуляция сопротивления базы?
 - 29) Чем вызвана модуляция сопротивления базы?
 - 30) Как сказывается на переходных процессах в диодах модуляция

сопротивления базы?

- 31) Как по временным диаграммам определить сопротивление базы?
- 32) Что такое диффузионная емкость? Какие заряды ее образуют? От чего она зависит?
- 33) Как изменяется концентрация неосновных носителей в базе диода при включении?
- 34) Что такое время установления прямого сопротивления? От чего оно зависит? Чему равно?
 - 35) От чего зависит характер напряжения на диоде при включении?
- 36) Как изменяется концентрация неосновных носителей в базе при выключении?
 - 37) В чем проявляются переходные процессы при выключении диода?
- 38) Что такое время рассасывания накопленного заряда? Почему в это время через диод протекает обратный ток неизменной величины?
- 39) От чего зависит величина обратного тока во время рассасывания? За счет чего ее можно уменьшить (увеличить)?
- 40) От чего зависит длительность этапа рассасывания? Может ли она быть равной нулю? Какой характер при этом будет иметь обратный ток?
- 41) Какие процессы происходят в базе диода на этапе спада обратного тока?
 - 42) За счет чего можно уменьшить время переходных процессов?
- 43) Как измерить параметры статического режима работы усилительного каскада?
 - 44) Как измерить входное и выходное сопротивление усилителя?
 - 45) Что такое амплитудная характеристика (АХ) усилителя?
 - 46) Как измерить АХ усилителя?
 - 47) Что такое амплитудно-частотная характеристика (АЧХ) усилителя?
 - 48) Что такое фазо-частотная характеристика (ФЧХ) усилителя?
 - 49) Как измерить АЧХ и ФЧХ усилителя?
- 50) Что из себя представляет логарифмическая амплитудно-частотная характеристика (ЛАЧХ) усилителя?
- 51) Что из себя представляет логарифмическая фазо-частотная характеристика (ЛФЧХ) усилителя?
 - 52) Чем отличается ЛАЧХ от АЧХ усилителя?
 - 53) Чем отличается ЛФЧХ от ФЧХ усилителя?
- 54) Какая из схем однокаскадных усилителей на биполярном транзисторе имеет наибольшее входное, выходное сопротивление, наибольший коэффициент усиления по току и напряжению?
- 55) Как выполняется стабилизация режима покоя усилительных каскадов на биполярных транзисторах?
 - 56) Что такое линейные искажения?
 - 57) Что такое нелинейные искажения?
 - 58) Как выглядят АЧХ и ФЧХ каскада ОБ в области низких частот?
 - 59) Как выглядят АЧХ и ФЧХ каскада ОЭ в области низких частот?
 - 60) Как выглядят АЧХ и ФЧХ каскада ОК в области низких частот?

- 61) Как выглядят АЧХ и ФЧХ каскада ОБ в области высоких частот?
- 62) Как выглядят АЧХ и ФЧХ каскада в области высоких частот?
- 63) Как выглядят АЧХ и ФЧХ каскада ОК в области высоких частот?
- 64) Как измерить напряжение смещения нуля (Ucм) в ОУ?
- 65) Как измерить входное и выходное сопротивления в ОУ?
- 66) Как измерить разность входных токов (ΔІвх) в ОУ?
- 67) Как измерить АХ ОУ?
- 68) Как измерить АЧХ и ФЧХ ОУ?
- 69) Как определить граничную частоту (f2p) и частоту единичного усиления (f1) по AЧХ ОУ?
 - 70) Какие способы построения активных фильтров Вам известны?
 - 71) Как определить частоты сопряжения ЛАЧХ фильтра?
 - 72) Как определить статический коэффициент передачи фильтра?
 - 73) Что такое дрейф ОУ?
 - 74) Что такое напряжение смещения ОУ и как его определить?
 - 75) Как измерить ЭДС дрейфа ($e_{\pi p}$) ОУ?
 - 76) Как определить входное сопротивление ОУ?
 - 77) Как определить выходное сопротивление ОУ?
 - 78) Определение коэффициента усиления ОУ?
- 79) Частота единичного усиления и граничная частота ОУ: определение, как измерить?
 - 80) Что такое разность входных токов ОУ?
 - 81) В чем причина возникновения разности входных токов ОУ?
 - 82) Как построить неинвертирующий усилитель на ОУ?
 - 83) Как построить инвертирующий усилитель на ОУ?
 - 84) Как построить дифференциальный усилитель на ОУ?
 - 85) Как построить повторитель на ОУ?
 - 86) Какое влияние оказывает ООС на основные показатели ОУ?
- 87) Как выглядят частотные характеристики активного ФВЧ 1-го порядка?
- 88) Как выглядят частотные характеристики активного ФНЧ 1-го порядка?
 - 89) Как выглядят частотные характеристики активного ПФ 1-гопорядка?
- 90) Как выглядят частотные характеристики активного ФВЧ 2-го порядка?
- 91) Как выглядят частотные характеристики активного ФНЧ 2-го порядка?
 - 92) Как выглядят частотные характеристики активного $\Pi\Phi$ 2-го порядка?
 - 93) Как влияют параметры ОУ на характеристики фильтров?
- 94) Как влияет отрицательная обратная связь на частотные характеристики фильтров?
 - 95) Какие способы построения активных фильтров Вам известны?
 - 96) Чем определяется количество частот сопряжения АЧХ фильтра?

4 семестр

- 1) Что такое аналоговые, дискретные и цифровые сигналы?
- 2) Что такое логическая функция?
- 3) Что такое логическое устройство?
- 4) Какие способы задания логических функций Вы знаете?
- 5) Какие базовые логические элементы Вы знаете?
- 6) Что такое преобразователи уровней логических сигналов?
- 7) Какие тождества и законы алгебры логики Вы знаете?
- 8) Что такое дизъюнктивные и конъюнктивные нормальные формы представления логических функций?
- 9) Как производится минимизация логических функций с использованием законов и тождеств?
- 10) Как производится минимизация логических функций методом карт Карно?
- 11) Как производится минимизация логической функции и синтез её в базисе 2И-НЕ или 2ИЛИ-НЕ?
- 12) Какие основные параметры и характеристики логических элементов различных технологий Вы знаете?
 - 13) Что такое система счисления, применяемая для цифровых сигналов?
- 14) Каков принцип работы ключа на биполярном транзисторе как основного элемента цифровых схем?
- 15) Какими свойствами должны обладать элементарные узлы реального цифрового устройства для обеспечения его надежной работы?
 - 16) Что такое нагрузочная способность логического элемента?
- 17) Какие виды и особенности схемотехнических решений логических устройств Вы знаете?
- 18) В чем заключаются достоинства и недостатки ТТЛ (транзисторнотранзисторной) логики?
 - 19) В чем заключаются достоинства и недостатки ТТЛШ логики?
- 20) В чем заключаются достоинства и недостатки ДТЛ (диоднотранзисторной) логики?
- 21) В чем заключаются достоинства и недостатки РТЛ (резистивнотранзисторной) логики?
 - 22) В чем заключаются достоинства и недостатки РЕТЛ логики?
- 23) В чем заключаются достоинства и недостатки ЭСЛ (эмиттерносвязанной) логики?
- 24) В чем заключаются достоинства и недостатки МОП (металл-оксидполупроводник) логики?
 - 25) В чем заключаются достоинства и недостатки КМОП логики?
- 26) Какие задачи решают комбинационные устройства преобразователи кодов?
- 27) Чем характеризуется комбинационное устройство как преобразователь кодов?

- 28) Чем определяются задержки распространения сигнала в комбинационных схемах?
 - 29) Что такое дешифраторы и каков их принцип работы?
 - 30) Что такое шифраторы и каков их принцип работы?
 - 31) Чем отличаются дешифраторы от преобразователей кодов?
- 32) Что такое преобразователь двоичных кодов в код Грея и каков его принцип работы?
 - 33) Что такое мультиплексоры и каков их принцип работы?
 - 34) Что такое демультиплексоры и каков их принцип работы?
 - 35) Что такое мультиплексорное дерево и каков его принцип работы?
 - 36) Что такое демультиплексорное дерево и каков его принцип работы?
 - 37) Что такое цифровые компараторы и каков их принцип работы?
- 38) Что такое полусумматоры и полувычитатели, и каков их принцип работы?
 - 39) Что такое одноразрядный полный сумматор?
 - 40) Для чего предназначены сумматоры в цифровых устройствах?
 - 41) Каково назначение входов и выходов в полусумматорах?
 - 42) Для чего предназначены полные сумматоры?
 - 43) Где применяются совместно сумматоры и полусумматоры?
 - 44) Что такое триггер и каков принцип его работы?
 - 45) Какие типы триггеров Вы знаете?
 - 46) В чем отличие статических триггеров от динамических?
- 47) В чем заключается отличие одноступенчатых триггеров от двухступенчатых?
- 48) На какие классы разделяют триггеры по функциональным возможностям?
 - 49) Как обозначаются входы триггеров?
 - 50) Что такое асинхронный RS-триггер и каков принцип его работы?
 - 51) Что такое синхронный RS-триггер и каков принцип его работы?
 - 52) Что такое синхронный ЈК-триггер и каков принцип его работы?
 - 53) Что такое асинхронный ЈК-триггер и каков принцип его работы?
 - 54) В чем заключается суть работы синхронного триггера?
 - 55) В чем заключается суть работы асинхронного триггера?
 - 56) Как подразделяют синхронные триггеры по входу синхронизации С?
 - 57) Что такое D-триггер и каков принцип его работы?
- 58) Что такое D-триггер с дополнительными входами и каков принцип его работы?
 - 59) Чем отличается JK-триггер от RS-триггера?
 - 60) Где применяются ЈК-триггеры?
 - 61) Что такое динамический триггер?
 - 62) Что такое счетный Т-триггер и каков принцип его работы?
 - 63) Почему Т-триггер называют делителем частоты?
 - 64) Для чего предназначены регистры?
 - 65) Что такое реверсивный регистр сдвига и каков принцип его работы?
 - 66) Какие разновидности счетчиков Вы знаете?

- 67) Что такое счетчик и каков принцип его работы?
- 68) Что из себя представляет асинхронный счетчик и каков принцип его работы?
- 69) Что из себя представляет счетчик с произвольным модулем счета и каков принцип его работы?
- 70) Что из себя представляет синхронный счетчик и каков принцип его работы?
- 71) Что из себя представляет счетчик импульсов и каков принцип его работы?
 - 72) Что является основным параметром счетчика?
 - 73) Какие функции могут выполнять счетчики кроме функции счета?
- 74) Как классифицируются регистры по направлению передачи информации?
 - 75) Как классифицируются регистры по способу приёма информации?
- 76) Как классифицируются регистры по числу каналов передачи информации?
 - 77) Как классифицируются регистры по способу тактирования?
 - 78) Как классифицируются регистры по принципу функционирования?
- 79) Какие операции являются типичными для функционирования регистров?
 - 80) Что такое цифровое устройсто последовательностного типа?
- 81) Чем отличается последовательностное устройство от комбинационной схемы?
- 82) На каких базовых компонентах электроники строятся запоминающие устройства?
 - 83) Какие запоминающие устройства вы знаете?
 - 84) В чем принципиальное отличие статических ОЗУ от динамических?
 - 85) На какие основные группы подразделяются ПЗУ?
 - 86) На какие основные группы подразделяются ОЗУ?
 - 87) Для чего предназначена буферная память?
 - 88) В чем заключаются особенности буферной памяти?
 - 89) Что является запоминающей ячейкой в статических ОЗУ?
 - 90) Что является элементом памяти в динамических ОЗУ?
 - 91) Что такое принцип аналого-цифрового преобразования информации?
 - 92) Какие типы АЦП Вы знаете?
 - 93) Что такое параллельный АЦП и каков принцип его работы?
- 94) Какие процедуры приближения цифрового эквивалента к преобразуемой величине используются в АЦП?
 - 95) Какой вид преобразования дает наилучшее быстродействие АЦП?
- 96) Что такое АЦП поразрядного уравновешивания и каков принцип его работы?
- 97) Что такое АЦП двойного интегрирования и каков принцип его работы?
- 98) Что такое АЦП последовательного приближения и каков принцип его работы?

6.6 Тематика и содержание курсового проекта

Курсовой проект выполняется в четвертом семестре.

Тематикой курсового проекта является разработка периферийного устройства для ЭВМ, выполняющего функции ввода/вывода информации согласно индивидуального варианта, приведенного в таблице ниже. Индивидуальное задание студент выбирает самостоятельно (таблица 7).

Таблица 7 – Индивидуальные варианты заданий

№п/п	Функция
1	Контроль и поддержание температуры
2	Контроль веса сыпучих веществ
3	Система наведения видеокамеры
4	Контроль и поддержание освещенности в помещении.
5	Контроль и поддержание температуры в помещении
6	Контроль веса сыпучих веществ
7	Контроль и оповещение о превышении уровня запыленности в помещении
8	Контроль и оповещение о превышении уровня СО2 в помещении
9	Контроль и оповещение о снижении уровня жидкости в баке
10	Контроль и оповещение о превышении уровня шума в помещении.
11	Система жизнеобеспечения в аквариуме. (температура, содержание кислорода)
12	Система управления освещением в помещении с регулируемой реакцией на объект.
13	Устройство слежения за перемещением солнечного диска
14	Устройство контроля скорости перемещения заготовки с оповещением о ее превышении
15	Система контроля биоритмов (пульс, температура, давление)
16	Система климат контроля в помещении
17	Устройство контроля весовой продукции на складе
18	Устройство контроля за скоростью ветра и оповещения о его превышении
19	Устройство слежения за направлением ветра и оповещения о его изменении
20	Устройство сейсмоконтроля с возможностью оповещения
21	Устройство контроля и поддержания веса вещества в бункере
22	Устройство контроля и оповещения о превышении мутности жидкости на протоке
23	Кодовый замок с аналоговым ключом
24	Кодовый замок с цифровым ключом
25	Контроль и оповещение о превышении уровня задымленности в помещении

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Погорелов Р.Н. Электроника и схемотехника: учеб. пособие/Р.Н. Погорелов, Н.В. Гонтовая Алчевск : ГОУ ВО ЛНР ДонГТИ, 2021 . 134 с. : ил. + прил. 1 экз. + [Электронный ресурс]. URL: http://dspace.dstu.education:8080/jspui/bitstream/123456789/1883/1/Pogorelov_R.N._Elektronika i shemotehnika uchebnoe posobie 2021.pdf (Дата обращения 26.08.2024).
- 2. Маркелов С.Н. Электротехника и электроника: учебное пособие для студентов учреждений высшего и среднего образования, обучающихся по группе специальностей "Энергетика", "Электротехника", "Электроснабжение", "Эксплуатация транспортного электрооборудования и автоматики"/С.Н. Маркелов, Б.Я. Сазанов. Москва: ИНФРА-М, 2022. 267 с.: ил. (Высшее образование: Бакалавриат) 3 экз. + [Электронный ресурс] URL: https://delphinus.xyz/download/elektrotehnika-i-elektronika-u (Дата обращения 26.08.2024).
- 3. Басалин П.Д. Схемотехника и организация вычислительных систем: Учебное пособие/П.Д. Басалин, А.Е. Тимофеев Нижний Новгород: Нижегородский госуниверситет, 2022. 123 с. [Электронный ресурс]. URL: http://old.lib.unn.ru/students/src/2915.pdf (Дата обращения 26.08.2024).
- 4. Новожилов О.П. Электроника и схемотехника. В 2 ч. Ч.1: учебник для академического бакалавриата / О.П. Новожилов. М.: Издательство Юрайт, 2019. 382 с. Серия: Бакалавр. Академический курс. [Электронный ресурс]. URL: https://nashol.me/20231017157494/elektronika-i-shemotehnika-chast-1-novojilov-o-p-2019.html (Дата обращения 26.08.2024).

Дополнительная литература

- Марченко А.Л. Электротехника и электроника. В 2-х томах Т. 2. Электроника: учебник студентов высших учебных заведений, ДЛЯ обучающихся ПО неэлектротехническим направлениям подготовки бакалаврови дипломированных специалистов / А.Л. Марченко, Ю.Ф. Опадчий . — Москва: ИНФРА-М, 2022. — 391 с.: ил. + прил. — (Высшее образование: Бакалавриат) — 3 экз. + https://agrarniy.volgatech.net/studentu/organizatsiyadosuga/Марченко%20Основы%20электроники%20Учебное%20пособие%20для %20вузов.pdf (Дата обращения 26.08.2024).
- 2. Лехин С. Н. Схемотехника ЭВМ. СПб.: БХВ-Петербург, 2010. 672 с.: ил. [Электронный ресурс]. URL: https://litportal.ru/download/avtory/s-n-lehin-6100058/kniga-shemotehnika-evm-723572.html (Дата обращения 26.08.2024).

Учебно-методические материалы и пособия

1. Погорелов Р.Н. Электротехника, электроника и схемотехника (электроника): лабораторный практикум [для студ. 2 курса напр. подготовки 09.03.01 «Информатика и вычислительная техника» всех форм обучения] / сост. Р.Н. Погорелов; Каф. Специализированных компьютерных систем. — Алчевск: ГОУ ВО ЛНР ДонГТИ, 2021. — 75 с. — [Электронный ресурс]. —

- URL: http://library.dstu.education/list.php?IDlist=Q_2 Режим доступа: для авториз. пользователей. Текст: электронный. (Дата обращения 26.08.2024).
- 2. Афанасьев А.М. Проектирование цифровых устройств на ПЛИС фирмы Altera в среде Quartus II (часть 1) : практикум / А.М. Афанасьев, Р.Н. Погорелов ; Каф. Радиофизики и электроники . Алчевск : ГОУ ВПО ЛНР ДонГТУ, 2019 . 109 с. [Электронный ресурс]. URL: http://library.dstu.education/list.php?IDlist=Q_3 Режим доступа: для авториз. пользователей. Текст : электронный. (Дата обращения 26.08.2024).
- Компьютерная схемотехника: Погорелов P.H. методические указания к выполнению курсового проекта: для студентов специальности 7.090803 «Специализированные компьютерные системы»/Р.Н. Погорелов; Каф. Специализированных компьютерных систем. — Алчевск : ДонГТУ, 2004 . - 23c. [Электронный URL: pecypc]. https://moodle.dstu.education/course/view.php?id=381 Режим доступа: ДЛЯ авториз. пользователей. — Текст: электронный. (Дата обращения 26.08.2024).

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт.— Алчевск. —URL: library.dstu.education.— Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/.— Текст : электронный.
- 3. Консультант студента : электронно-библиотечная система. Mockва. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст : электронный.
- 4. Университетская библиотека онлайн : электронно-библиотечная система.— URL: http://biblioclub.ru/index.php?page=main_ub_red.— Текст : электронный.
- 5. IPR BOOKS : электронно-библиотечная система.—Красногорск. URL: http://www.iprbookshop.ru/. —Текст : электронный.
 - 6. Сайт кафедры СКС http://scs.dstu.education

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО. Материально-техническое обеспечение представлено в таблице 8.

Таблица 8 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес
	(местоположение)
	учебных
	кабинетов
Специальные помещения:	
Аудитории для проведения лекций:	ауд. <u>207</u> корп. <u>4</u>
Мультимедийная аудитория. (60 посадочных мест),	
оборудованная специализированной (учебной) мебелью (парта	
трехместная – 18 шт., парта двухместная – 6 шт, стол– 1 шт.,	
доска аудиторная— 1 шт.), учебное ПК (монитор + системный блок), мультимедийная стойка с оборудованием — 1 шт.,	
широкоформатный экран.	
тирокоформатиям экрати	ауд. <u>217</u> корп. <u>3</u>
Компьютерные классы (22 посадочных места), оборудованный	ауд. <u>211</u> корп. <u>4</u>
учебной мебелью, компьютерами с неограниченным доступом к	_
сети Интернет, включая доступ к ЭБС:	

Лист согласования РПД

Разработал:

ст. преподаватель кафедры интеллектуальных систем и информационной безопасности (должность)

(подпись)

<u>Р.Н. Погорелов</u> (Ф.И.О.)

И.о. заведующего кафедрой интеллектуальных систем и информационной безопасности (наименование кафедры)

(подпись)

Е.Е. Бизянов

(.О.И.Ф)

Протокол № 1 заседания кафедры

от <u>27.08. 2024</u>г.

И.о. декана факультета информационных технологий и автоматизации производственных процессов:

(наименование факультета)

В

В.В. Дьячкова

(.O.N.Ф)

Согласовано

Председатель методической комиссии по специальности Информационная безопасность автоматизированных систем

10.05.03

подинсь)

Е.Е. Бизянов

(Ф.И.О.)

Начальник учебно-методического центра

О.А Коваленко

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для		
внесения изменений		
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	
Основание:		
Подпись лица, ответственного за внесение изменений		