Документ подписан простой электронной подписью Информация о владельце:

ФИО: Вишневский Дмитрий Александрович

Должность: Ректор МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Дата подписания: 17.10.2025 16:47:32 (МИНОБРНАУКИ РОССИИ)

Уникальный программный ключ:

03474917c4d012283e5ad996a48a5e70bf8ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ
ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ
«ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
(ФГБОУ ВО «ДонГТУ»)

Факультет

информационных технологий и автоматизации

производственных процессов

Кафедра

автоматизированного управления и инновационных технологий

1

УТВЕРЖДАЮ

И.о. проректора по учебной работе

Д.В. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

	Промышленная огнетехника (наименование дисциплины)
15.03.04 Автомати	зация технологических процессов и производств (код. наименование направления)
Автоматизирован	ное управление технологическими процессами
	и производствами
	(профиль подготовки)
Свалификация	бакалавр
-	(бакалавр/специалист/магистр)
Рорма обучения	очная, заочная
	(очная, очно-заочная, заочная)

1 Цели и задачи изучения дисциплины

Цели дисциплины. Целью изучения дисциплины «Промышленная огнетехника» является формирование системы знаний в области высокотемпературных процессов в разнообразных отраслях промышленности (металлургической, машиностроительной, химической и т.д.), а также получение необходимых знаний в области энергосбережения за счет усовершенствования тепловых схем теплотехнологичных установок (ТТУ).

Задачи изучения дисциплины: изучение студентами конструкций и принципов работы основных типов высокотемпературных теплотехнологических агрегатов, овладение методиками составления тепловых балансов, расчета горения топлива, внешнего и внутреннего теплообмена разнообразных ТТУ.

Дисциплина направлена на формирование профессиональных компетенций (ПК-2 и ПК-5) выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины — курс входит в обязательную часть БЛОК 1 «формируемая участниками образовательных отношений» подготовки студентов по направлению подготовки 15.03.04 Автоматизация технологических процессов и производств.

Дисциплина реализуется кафедрой автоматизированного управления и инновационных технологий. Основывается на базе дисциплин: Физика, Математика, Термодинамика и теплотехника, Гидравлика, Технологические процессы автоматизированного производства, Оборудование технологических процессов отрасли, Энергоснабжение производства в отрасли.

Является основой для изучения следующих дисциплин: преддипломная практика, подготовка выпускной квалификационной работы.

Для изучения дисциплины необходимы компетенции, сформированные у студента собирать и подготавливать информацию для составления технического задания на АСУТП, а также собирать и накапливать данные о технологическом процессе, разрабатывать отдельные разделы проекта автоматизированной системы управления технологическим процессом.

Курс способствует формированию у студентов представлений об производственных объектах, оборудовании, технике и технологии теплоэнергетической и металлургической промышленности как объектов автоматизации.

Дисциплина изучается на 4 курсе в 7-ом семестре и 8-м семестре. Форма промежуточной аттестации в седьмом семестре — зачет, восьмом семестре — экзамен.

Общая трудоемкость освоения дисциплины в седьмом семестре составляет 4 зачетные единицы, 144 ак.ч. Программой дисциплины предусмотрены лекционные занятия (36 ак.ч.), практические занятия (36 ак.ч.) и самостоятельная работа студента (72 ак.ч.).

Общая трудоемкость освоения дисциплины в восьмом семестре составляет 4 зачетные единицы, 144 ак.ч. Программой дисциплины предусмотрены лекционные занятия(24 ак.ч.), практические (36 ак.ч.) и самостоятельная работа студента (84 ак.ч.).

Для *заочной* формы обучения дисциплина изучается на 5 курсе в 9-ом семестре и 10-м семестре. Форма промежуточной аттестации в 9-м семестре – зачет, 10-м семестре – экзамен.

Общая трудоемкость освоения дисциплины в девятом семестре составляет 4 зачетные единицы, 144 ак.ч. Программой дисциплины предусмотрены лекционные занятия(8 ак.ч.), практические занятия (6 ак.ч.) и самостоятельная работа студента (130 ак.ч.).

Общая трудоемкость освоения дисциплины в десятом семестре составляет 4 зачетные единицы, 144 ак.ч. Программой дисциплины предусмотрены лекционные занятия(10 ак.ч.), практические (10 ак.ч.) и самостоятельная работа студента (124 ак.ч.).

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Программирование и алгоритмизация» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 — Компетенции, обязательные к освоению

таолица т	таолица 1 — Компетенции, ооязательные к освоению						
Содержание	Код	Код и наименование индикатора					
компетенции	компетенции	достижения компетенции					
Способен собирать и подготавливать информацию для составления технического задания на АСУТП	ПК-2	ПК-2.5. Умеет выделять особенности теплоэнергетических и металлургических процессов и оборудования как объектов автоматизации для составления технического задания на АСУТП. ПК-2.6. Владеет методами анализа теплоэнергетических и металлургических процессов и оборудования как объектов управления					
Способен разрабатывать методическое и информационн ое обеспечение автоматизирова нной системы управления технологически м процессом	ПК-5	ПК-5.1. Знает содержание методического и информационного обеспечения автоматизированных систем управления. ПК-5.2. Знает нормативные и руководящие документы по разработке методического и информационного обеспечения автоматизированных систем управления.					

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины в седбмом семестре составляет 4 зачётные единицы, 144 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к текущему контролю, подготовка к практическим занятиям, самостоятельное изучение материала и подготовку к зачету.

Общая трудоёмкость учебной дисциплины в восьмом семестре составляет 4 зачётные единицы, 144 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к текущему контролю, подготовка к практическим занятиям, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы, и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	семе	ч. по естрам
		7	8
Во втором и третьем семест			T
Аудиторная работа, в том числе:	132	72	60
Лекции (Л)	60	36	24
Практические занятия (ПЗ)	72	36	36
Лабораторные работы (ЛР)	_	_	_
Курсовая работа/курсовой проект		_	_
Самостоятельная работа студентов (СРС), в том числе:	156	72	84
Подготовка к лекциям	26	12	14
Подготовка к защите лабораторных работ		-	-
Подготовка к практическим занятиям / семинарам	26	12	14
Выполнение курсовой работы / проекта		-	-
Расчетно-графическая работа (РГР)		-	-
Реферат (индивидуальное задание)		-	-
Домашнее задание		-	-
Подготовка к контрольной работе (тестированию)	24	12	12
Подготовка к коллоквиуму		-	-
Аналитический информационный поиск	26	12	14
Работа в библиотеке	26	12	14
Подготовка к зачету/экзамену	28	12	16
Промежуточная аттестация – зачет (3), экзамен (Э)	3, Э	3	Э
Общая трудоемкость дисципл	ины		
ак.ч.	288	144	144
3.e.	8	4	4

5 Содержание дисциплины

С целью освоения компетенции, приведенной в п.3 дисциплина разбита:

В седьмом семестре на следующие темы:

- тема 1 (Теплотехнологические установки (ТТУ))
- тема 2 (Особенности сжигания топлива в ТТУ)
- тема 3 (Теплообмен в теплотехнологических установках)
- тема 4 (Внутренний теплообмен)
- тема 5 (Структура материального и теплового баланса ВТТУ)

В восьмом семестре дисциплина разбита на следующие темы:

- тема 6 (Особенности движения газов в ТТУ)
- тема 7 (Основы энергосберегающих теплотехнологий)
- тема 8(Термическая переработка твердого топлива)

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 3 и 4 соответственно.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
	,		седьмой сем	естр	,	, ,	
1	Тема 1. Теплотехнолог ические установки (ТТУ)	Классификация ТТУ по разнообразным признакам. Теплотехническая классификация технологических процессов и теплотехнические принципы, которые реализованы в них. Структурная схема теплотехнологических установок (ТТУ) и краткая характеристика ее элементов. Тепловые и теплотехнические схемы ТТУ	8	ПЗ № 1 «Расчет полного горения газообразног о топлива» «Расчет полного горения твердого топлива»	8	-	_
2	Тема 2. Особенности сжигания топлива в ТТУ	Топливо, применяемое в ТТУ. Основные положения расчета горения топлива. Калориметрическая и теоретическая температуры горения. Закон Аррениуса. Методика расчета полного горения топлива (α > 1) в ТТУ. Методика расчета неполного горения топлива. Основные расчетные формулы. Горелочные устройства, применяемые для сжигания топлива в ТТУ. Назначение, классификация, конструкции	8	ПЗ № 2 «Расчет полного горения смеси газообразного топлива» «Расчет неполного горения газообразного топлива (α < 1)»	8	_	_

~1

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
	темы (раздела)	Общая организация теплопередачи в рабочей камере разнообразных типов ТТУ. Внешний теплообмен. Теплообмен в промышленных печах с большим объемом свободного рабочего пространства. Режимы теплообмена в нагревательных и плавильных печах: равномерно распределенный внешний теплообмен в рабочем пространстве печи; направленный косвенный радиационный теплообмен; внешний теплообмен в плотном, кипящем и		практических занятий ПЗ № 3 «Определени е времени нагрева стальной заготовки, имеющей форму цилиндра при заданной температуре поверхности заготовки tм поверхности заготовки tм нагрева стальной заготовки, имеющей форму плоской пластины при		лабораторных	= -
		взвешенном слое материала		заданной температуре поверхности заготовки $t_{\scriptscriptstyle M}^{\scriptscriptstyle \Pi OB}$ »			

 ∞

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
4	Тема 4. Внутренний теплообмен	Термически тонкие и массивные тела. Критерий массивности. Расчет нагрева тонких тел. Нагрев массивных тел. Условия однозначности при расчете массивных тел. Методика расчета нагрева метала в нагревательных печах при постоянной температуре печи $(T_n = const)$	8	ПЗ № 4 «Определени е приведенной (видимой) степени черноты и приведенного (видимого) коэффициента излучения»	6	_	_
5	Тема 5. Структура материального и теплового баланса ВТТУ	Общее уравнение теплового баланса у рабочей камере ТТУ и анализ ее. Эксергетический баланс ТТУ. Удельный расход топлива и методы его снижения. Система КПД ТТУ	8	ПЗ № 5 «Расчет общего теплового баланса доменной плавки»	8	_	_
	Всего	аудиторных часов	36	30	6		-
			Восьмой сем	иестр			
1	Тема 6. Особенности движения газов в ТТУ	Аэродинамика струй и определение основных его характеристик. Основы аэродинамического расчета ТТУ. Уравнение Бернулли. Выбор тягодутьевых устройств	8	ПЗ № 6 «Определени е высоты дымовой трубы, предназначенн ой для удаления дымовых газов	10	_	_

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
				методической печи»			
				ne m//			
2	Тема 7. Основы энергосберегаю щих теплотехнологий	Источники и направления использования ВЭР. Устройства для использования ВЭР. Основы расчета рекуперативных и регенеративных теплообменных аппаратов. Регенеративное замкнутое теплоиспользование. Внешнее энергетическое теплоиспользование. Комбинированное энерготехнологическое теплоиспользование	8	ПЗ № 7 «Тепловой расчет рекуператора	12	_	_
3	Тема 8. Термическая переработка твердого топлива	Газификация кокса у доменной печи	8	ПЗ № 8 «Поверочный расчет теплообменн ого аппарата» Проведение контрольного опроса по всем тематикам	14	_	_
	Всего	аудиторных часов	24	30	6		_

Таблица 4 –Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

№ π/π	Наименование раздела дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч. девятый се	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		Vyggaydyyggyyg TTV yg	девятый се	Местр		1	
1	Тема 1. Теплотехнолог ические установки (ТТУ)	Классификация ТТУ по разнообразным признакам. Теплотехническая классификация технологических процессов и теплотехнические принципы, которые реализованы в них. Структурная схема теплотехнологических установок (ТТУ) и краткая характеристика ее элементов. Тепловые и теплотехнические схемы ТТУ	4	ПЗ № 1 «Расчет полного горени газообразного топлива» «Расчет полног горения твердого топлива»	6		
2	Тема 2. Особенности сжигания топлива в ТТУ	Топливо, применяемое в ТТУ. Основные положения расчета горения топлива. Калориметрическая и теоретическая температуры горения. Методика расчета полного горения топлива (α > 1) в ТТУ. Методика расчета неполного горения топлива.	4				
	Всего ау	удиторных часов	8		6		_

			десятый се	местр			
1	Тема 3. Особенности движения газов в ТТУ	Аэродинамика струй и определение основных его характеристик. Основы аэродинамического расчета ТТУ. Уравнение Бернулли. Выбор тягодутьевых устройств	4	ПЗ № 2 «Определение высоты дымовой трубы, предназначенно й для удаления дымовых газов из методической печи»	4		
2	Тема 4. Основы энергосберегаю щих теплотехнологий	Источники и направления использования ВЭР. Устройства для использования ВЭР. Основы расчета рекуперативных и регенеративных теплообменных аппаратов. Регенеративное замкнутое теплоиспользование. Внешнее энергетическое теплоиспользование. Комбинированное энерготехнологическое теплоиспользование	6	ПЗ № 3 «Поверочный расчет теплообменного аппарата»	6		
	Bcero ag	Всего аудиторных часов		10		_	_

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 — Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство			
Седьмой семестр					
ПК-2, ПК-5	Зачет	Комплект контролирующих материалов для зачета			
	Восьмой семе	стр			
ПК-2, ПК-5	Экзамен	Комплект контролирующих материалов для экзамена			

Всего по текущей работе в седьмом семестре студент может набрать 100 баллов, в том числе:

- выполнение контрольных работ (ответы на тесты) всего 50 баллов;
- выполнение практических работ всего 50 баллов.

Зачет проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку.

В восьмом семестре всего по текущей работе студент может набрать 100 баллов, в том числе:

- выполнение контрольных работ (ответы на тесты) всего 50 баллов;
- выполнение практических размение всего 50 баллов.

Экзамен по дисциплине «Промышленная огнетехника» может быть выставлен автоматически, если студент выполнил все контрольные задания в семестре. В случаеесли полученная в семестре сумма баллов не устраивает студента, то студент имеет право повысить итоговую оценку, сдав экзамен,

который проходит в форме устного собеседования по приведенным, ниже вопросам (п.п. 6.6).

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашнее задание

Домашнее задание по дисциплине не предусмотрено.

6.3Индивидуальное задание

Индивидуальное задание по дисциплине не предусмотрено.

6.4 Оценочные средства для самостоятельной работы при подготовке к практическим работам

При подготовке к практическим занятиям студенту необходимо проработать следующие вопросы

- 1. Классификация ТТУ по разнообразным признакам.
- 2. Теплотехническая классификация технологических процессов и теплотехнические принципы, которые реализованы в них.
- 3. Структурная схема теплотехнологических установок (ТТУ) и краткая характеристика ее элементов.
- 4. Тепловые и теплотехнические схемы ТТУ. Топливо, применяемое в ТТУ.
- 5. Основные положения расчета горения топлива. Калориметрическая и теоретическая температуры горения. Закон Аррениуса.
- 6. Методика расчета полного горения топлива ($\alpha > 1$) в ТТУ. Методика расчета неполного горения топлива. Основные расчетные формулы.
- 7. Горелочные устройства, применяемые для сжигания топлива в ТТУ. Назначение, классификация, конструкции.
 - 8. Общая организация теплопередачи в рабочей камере разнообразных

- 9. Внешний теплообмен. Теплообмен в промышленных печах с большим объемом свободного рабочего пространства. Режимы теплообмена в нагревательных и плавильных печах: равномерно распределенный внешний теплообмен в рабочем пространстве печи; направленный косвенный радиационный теплообмен; внешний теплообмен в плотном, кипящем и взвешенном слое материала. Термически тонкие и массивные тела. Критерий массивности. Расчет нагрева тонких тел.
- 10. Нагрев массивных тел. Условия однозначности при расчете массивных тел. Методика расчета нагрева метала в нагревательных печах при постоянной температуре печи ($T_{\pi} = \text{const}$).
- 11. Общее уравнение теплового баланса у рабочей камере ТТУ и анализ ее. Эксергетический баланс ТТУ.
 - 12. Удельный расход топлива и методы его снижения.
 - 13. Система КПД ТТУ. Коэффициент использования топлива.
 - 14. Аэродинамика струй и определение основных его характеристик.
- 15. Основы аэродинамического расчета ТТУ. Уравнение Бернулли. Выбор тягодутьевых устройств.
- 16. Источники и направления использования ВЭР. Устройства для использования ВЭР.
- 17. Основы расчета рекуперативных и регенеративных теплообменных аппаратов.
 - 18. Регенеративное замкнутое теплоиспользование.
- 19. Внешнее энергетическое теплоиспользование. Комбинированное энерготехнологическое теплоиспользование.
 - 20. Газификация кокса у доменной печи

6.5 Оценочные средства (тесты) текущего контроля успеваемости

При ответе на тесты выбрать один из предлагаемых вариантов

Тесты состоит из 25 вопросов, каждый из них оценивается по 2 балла. Количество правильных ответов определяет общее количество баллов. Если студент не дал правильные ответы на половину вопросов, то сдача теста не засчитывается. Поэтому оптимальное количество баллов, которое может набрать студент, составляет: min - 26, max - 50.

Тесты для контроля уровня знаний студентов.

Задание 1 Из каких элементов состоит структурная схема TTУ. Укажите неправильный ответ.

1 Топка (рабочее пространство) 2 Регенератор 3 Водяной экономайзер

4 Воздухоподогреватель 5 Рекуператор

1 2 3 4 5

Задание 2 Какой теплотехнический принцип реализован в доменной печи, в кислородном конвертере и мартеновской печи? Укажите правильные ответы.

- 1) принцип излучающего факела;
- 2) принцип плотного фильтрующего слоя;
- 3) принцип пересыпающего слоя;
- 4) принцип поверхностного излучения;
- 5) принцип погруженного факела.

Дом	енная	печь				ороді ертер				Map	генов	ская г	іечь	
1	2	3	4	5	1	2	3	4	5	1	2	3	4	5

Задание 3 К какой группе относятся кислородный конвертер, цементная печь и туннельная печь по теплотехнической классификации?

- 1) с плотным продуваемым слоем; 2) объемной уложенной загрузкой;
- 3) пересыпающим слоем; 4) кипящим слоем; 5) с погруженным факелом.

	лород вертер				Цем	ентна	я печі)		Тунн	нельна	ая печ	Ъ	
1	2	3	4	5	1	2	3	4	5	1	2	3	4	5

Задание 4 Какие из перечисленных элементов не относятся к устройству доменной печи?

1 Шахта 2 Горн 3 Регенератор 4 Колошник 5 Шлаковики 6 Распар 7 Заплечики 8 Лещадь.

1 2 3 4 5 6 7	8
---------------	---

Задание 5 Какой способ смесеобразования реализован в инжекционной и диффузионной горелках?

1 Внешнее смешение газа и воздуха

- 2 Предварительное смесеобразование
- 3 Частичное внутреннее смешение
- 4 Внутреннее смешение газа и воздуха

Инжекц	ионная го	релка		Диффузі	ионная го	релка	
1	2	3	4	1	2	3	4

Задание 6 Какие примерные значения теплоты сгорания мазута, природного газа, коксового и доменного газов? $(\kappa / 2\pi)$

1) 16000

2) 36000

3) 40000

4) 4000

Ma	Мазут			Природный газ			Коксовый газ			Доменный газ					
1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4

<u>Задание 7</u> По каким формулам рассчитываются калориметрическая температура горения, теоретическая температура горения и жаропроизводительность топлива?

Задание 8 Утверждение, что природный газ состоит из углеводородных соединений C_nH_{2n}

А – верно

В – неверно

Задание 9 Состав продуктов полного горения природного газа (при $\alpha > 1$): Укажите правильный ответ.

 $1) \ CO, \ H_2O, \ CO_2, \ O_2; \ \ 2) \ CO_2, \ H_2O, \ H_2, \ O_2; \ 3) \ CO_2, \ H_2O, \ N_2, \ O_2;$

4) CO₂, N₂, H₂O, CO.

1 2 3 4

Задание 10 Состав коксового газа: Укажите правильный ответ.

1) N₂, CO, CO₂, H₂, CH₄, O₂; 2) H₂, CH₄, CO, N₂, CO₂, O₂, C_nH_{2n};

3)CO, CO₂, N₂, O₂, H₂.

1 2 3	
-------	--

В

Задание 11 Укажите правильный ответ. Состав доменного газа:

1) H₂, CH₄, CO, N₂, CO₂, O₂, C_nH_{2n}; 2) CO, CO₂, N₂, O₂, H₂;

3) N_2 , CO, CO₂, CH₄, H₂, O₂.

1	2	3

<u>Задание 12</u> Что такое калориметрическая (t_{κ}) и теоретическая температура горения (t_m) ? Что такое жаропроизводительность топлива (t_{∞}) ?

Дайте правильные ответы.

- 1. Температура, до которой нагрелись бы продукты сгорания топлива, если бы все тепло, введенное в камеру сгорания за вычетом тепла на диссоциацию трехатомных газов, пошло бы на их нагрев.
- 2. Температура горения с минимальным (стехиометрическим $\alpha = 1$) количеством окислителя и без подогрева компонентов сгорания.
- 3. Температура, до которой нагрелись бы образующиеся при полном горении топлива продукты сгорания топлива, если бы все тепло, введенное в камеру сгорания, пошло на нагрев этих продуктов сгорания.

t_{κ}	$t_{\scriptscriptstyle K}$					$t_{\mathcal{H}}$			
1	2	3	1	2	3	1	2	3	

Задание 13 Какой вид теплообмена преобладает в рабочей камере доменной печи, мартеновской печи, методической нагревательной печи?

- 1. Радиационно конвективный. 2. Радиационный (лучистый).
- 3. Конвективный. 4. Радиационно кондуктивный. 5. Теплопроводность.

Мето	Методическая печь				Мартеновская печь					Доменная печь				
1	2	3	4	5	1	2	3	4	5	1	2	3	4	5

Задание 14 Как организована теплопередача в высокотемпературных ТТУ с большим свободным объемом рабочего пространства? Укажите правильные ответы.

- 1. Теплопроводностью от газов. 2. Конвекцией от газов.
- 3. Конвекцией от кладки. 4. Излучением от газов.
- 5. Теплопроводностью от кладки. 6. Излучением от кладки.

1	2	3	1	7	6
1	<u> </u>	3	4	5	U

Задание 15 Какой вид имеет уравнение результирующего теплового потока, падающего на поверхность нагреваемого изделия, при условии, когда преобладает лучистый теплообмен и конвективный теплообмен?

$$Q = C_{_{B}} \cdot H \cdot \xi \left[\left(\frac{T_{_{\Gamma}}}{100} \right)^{4} - \left(\frac{T_{_{M}}}{100} \right)^{4} \right].$$

$$2. \quad Q = \alpha \cdot H \cdot (t_{_{\Gamma}} - t_{_{M}}).$$

$$3. \quad Q = \alpha \cdot H \cdot \left[\left(\frac{T_{_{\Gamma}}}{100} \right)^{4} - \left(\frac{T_{_{M}}}{100} \right)^{4} \right].$$

$$4. \quad Q = C_{_{B}} \cdot H \cdot (T_{_{\Gamma}} - T_{_{M}}).$$

$$5. \quad Q = C_{_{O}} \cdot \varepsilon_{_{B}} \cdot H \cdot \xi \left[\left(\frac{T_{_{\Gamma}}}{100} \right)^{4} - \left(\frac{T_{_{M}}}{100} \right)^{4} \right]_{cp}.$$

Лучистый теплообмен					Конвективный теплообмен					
1	2	3	4	5	1	2	3	4	5	

Задание 16 Что является критерием массивности тел? Укажите правильный ответ.

- 1. Число Прандтля. 2. Число Фурье. 3. Число Био. 4. Число Нуссельта.
- 5. Число Рейнольдса.

	_			_
1	2	3	4	5

Задание 17 Что является исходным сырьем для получения чугуна в доменных печах? Укажите неправильный ответ

1) Агломерат;

2) Железорудные окатыши;

3)

Металлолом;

4) Флюсы;

5) Кокс.

1	2	3	4	5

Задание 18 Что является исходным сырьем для получения стали в мартеновских печах? Укажите неправильные ответы

1) Металлолом;

2) Чугун;

3) Агломерат;

Кокс;

5) Специальные добавки.

1	2	3	4	5

Задание 19 Для чего составляется тепловой баланс ТТП и ТТУ? Укажите правильные ответы.

Для определения:

- 1) расхода топлива; 2) КПД; 3) расхода исходного материала;
- 4) определения тепловых потерь; 5) выхода годного целевого продукта.

1	2	3	4	5

Задание 20 Для чего составляется материальный баланс ТТП и ТТУ? Укажите правильные ответы.

Для определения:

- 1) расхода материала, участвующего в технологическом процессе;
- 2) КПД; 3) прихода материала, участвующего в технологическом процессе;
- 4) определения тепловых потерь; 5) выхода годного целевого продукта.

Задание 21 Общее уравнение теплового баланса имеет следующий вид. Указать правильный ответ.

1)
$$Q_{x}^{T} + Q_{\phi}^{B} + Q_{\phi}^{T} + Q_{y}^{T} + Q_{3R3} = Q_{y}^{T} + Q_{m} + Q_{3R3} + Q_{0,r} + Q_{B,r} + Q_{0,r} + Q_{B,r} + Q_{x,B} + Q_{x,B} + Q_{x,B} + Q_{x,C} + Q_{x,B}$$
2) $Q_{x}^{T} + Q_{\phi}^{B} + Q_{\phi}^{T} + Q_{y}^{T} + Q_{y}^{T} + Q_{3R3} = Q_{y}^{T} + Q_{m} + Q_{m} + Q_{3R3} + Q_{x,B} + Q_{x,B} + Q_{x,B} + Q_{x,C} + Q_{x,B}$
1 2 3

$$+ Q_{x,B} + Q_{y} + Q_{x,B} + Q_{0,C} + Q_{x,B}$$

$$+ Q_{x,B} + Q_{y,B} + Q_{y,C} + Q_{x,B}$$

Задание 22 Что нужно знать, чтобы выбрать тягодутьевые устройства (дымосос или вентилятор)? Укажите правильные ответы.

- 1) Расход продуктов сгорания; 2) расход воздуха;
- 3) аэродинамическое сопротивление в воздухопроводе; 4) аэродинамическое сопротивление в в газоходе; 5) диаметр воздухопровода;
- 6) площадь сечения газохода; 7) скорость воздуха; 8) скорость продуктов сгорания.

Ді	Дымосос					Вентилятор									
1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8

- Задание 23 Какие устройства применяются для использования ВЭР при замкнутом регенеративном и внешнем энергетическом теплоиспользовании? Укажите правильные ответы.
- 1) Котел утилизатор; 2) регенератор; 3) рекуператор.

Замкнуто	е регенерат	гивное	Внешнее энергетическое		
теплоисп	ользовани	2	теплоисп	ользовани	e
1	2	3	1	2	3

Задание 24 Какие уравнения используются при расчете регенеративных и рекуперативных теплообменных аппаратов? Укажите правильные ответы.

$$1. \ Q = V_1 \cdot \overline{C}_1(t_1' - t_1'') \eta = V_2 \cdot \overline{C}_2(t_2'' - t_2') . \quad 2. \ \Delta t = \frac{\Delta t_6 - \Delta t_M}{\ell n \Delta t_6 / \Delta t_M} . \quad 3. \ Q = \kappa H \Delta t .$$

$$\kappa = \frac{1}{\frac{1}{\alpha_1} + \frac{\delta}{\lambda} + \frac{1}{\alpha_2}} \qquad \kappa = \frac{1}{\frac{1}{\alpha_1 \tau_1} + \frac{2}{\zeta \cdot \eta_\kappa \cdot \eta_3 \cdot \rho \cdot c} + \frac{1}{\alpha_2 \tau_2}} .$$

Регенеративных ТА				Рекуперативных ТА					
1	2	3	4	5	1	2	3	4	5

Задание 25 С какой целью осуществляется термическая обработка твердого топлива?

Для получения:

- 1) кокса; 2) полукокса; 3) получения горючих газов;
- 4) жидкого топлива; 5) сажистого углерода.

1	2	3	4	5

6.6 Вопросы для подготовки к зачету

- 1 Какие виды топлива используются в ВТТУ? Их характеристика.
- 2 Какие требования предъявляются к сжиганию топлива в ВТТУ, в чем заключаются особенности сжигания?
 - 3 Дайте характеристику гомогенного и гетерогенного горения.
 - 4 От каких факторов зависит скорость горения топлива?
 - 5 Охарактеризуйте кинетическую и диффузионную области горения.

- 6 В чем заключается особенност от игания газообразных топлив (природного газа, коксового и доменного газов)?
- 7 Какие способы смесеобразования осуществляются в газовых горелках?
- 8 Конструкции и принцип работы основных типов газовых горелок, применяемых в ВТТУ.

Особенности сжигания мазута и конструкции мазутных форсунок.

- 10 Особенности пылеугольного сжигания и конструкции пылеугольных горелок.
- 11 Методика расчета полного горения топлива (при коэффициенте расхода воздуха $\alpha > 1$).
- 12 Методика расчета неполного горения топлива (при коэффициенте расхода воздуха $\alpha < 1$).
- 13 Как определяются теоретический и действительный расходы воздуха на горения?
- 14 Что понимается под коэффициентом расхода воздуха и как он определяется?
- 15 Как определяются количество и состав продуктов сгорания при сжигании однородного топлива и при сжигании топливных смесей?
- 16 Дайте определение калориметрической (адиабатической), теоретической и действительной температур горения и как они рассчитываются?
 - 17 Как определяется энтальпия продуктов сгорания?
- 18 Какими факторами определяется способ организации теплопередачи в теплотехнических установках (ТТУ)?
 - 19 Дайте классификацию ТТУ с прямым нагревом.
- 20 В каких случаях передача тепла в рабочей камере ТТУ лимитируется внешним и внутренним теплообменом?
- 21 От каких факторов зависит интенсивность передачи тепла излучением и конвекцией?
- 22 Как определяется степень черноты газов (продуктов сгорания топлива) в рабочей камере?
- 23 Напишите уравнение результирующего теплового потока в ТТУ с большим свободным объемом рабочего пространства и поясните отдельные его составляющие.
- 24 Какие режимы теплообмена и виды радиационного теплообмена имеют место в нагревательных и плавильных ТТА?
- 25 Напишите уравнение результирующего теплового потока при равномерно распределенном внешнем теплообмене в рабочей камере, когда

преобладает радиационный теплообмен и поясните величины, входящие в это уравнение.

- 26 Напишите выражение д²³ пределения приведенной степени черноты (формула В.Н. Тимофеева) печного пространства и поясните величины, входящие в это выражение.
- 27 Что такое угловой коэффициент (коэффициент облученности) и как он определяется?
- 28 Напишите выражение приведенной степени черноты (формула Д.В. Будрина) и поясните величины, входящие в это выражение.
- 29 Как определяются конвективная составляющая теплового потока от газов к поверхности материала и поправка, учитывающая конвекцию в высокотемпературных TTA?
 - 30 Понятие о температуре печи. Как она определяется?
- 31 Как определяется среднеэффективная разность четвертых степеней температур газов и нагреваемого материала, когда меняются обе эти температуры, и когда меняется только температура газов?
- 32 Напишите математическое выражение теплообмена в рабочей камере высокотемпературных ТТА, считая, что теплота передается лучеиспусканием (уравнение теплового баланса) и дайте соответствующие пояснения.
- 33 Напишите два выражения числа Больцмана и дайте соответствующие пояснения.
- 34 Как определяется температура отходящих газов из рабочей камеры из выражения числа Больцмана?
- 35 Напишите уравнение результирующего теплового потока при направленном косвенном радиационном теплообмене и дайте соответствующие пояснения.
- 36 Приведите критериальное уравнение теплообмена в плотном (фильтрующем) слое материала и дайте пояснения.
- 37 Приведите уравнения для определения коэффициента теплоотдачи конвекцией в потоке газовзвеси (в падающем слое) и кипящем псевдоожиженном соре и дайте пояснения.
- 38 Приведите выражения чисел Нуссельта, Рейнольдса, Био, Прандтля, Фурье и объясните их физический смысл.
- 39 Какой вид теплообмена является преобладающим в вышеуказанных способах тепловой обработки материалов и почему?
- 40 В каких случаях в вышеуказанных способах тепловой обработки материалов является определяющим внешний и внутренний теплообмен?
 - 41 Задачи расчета внутреннего теплообмена. В чем состоит сложность

расчета внутреннего теплообмена?

- 42 Какие тела называются термически тонкими и массивными?
- 43 Как определяется граница точких и массивных тел? Что является критерием массивности нагреваемых изделий?
 - 44 Напишите выражение числа Био и раскройте его физический смысл.
- 45 От каких факторов зависит продолжительность нагрева термически тонких изделий?
 - 46 Какие тела называются предельно тонкими и массивными?
- 47 Какова зависимость времени нагрева от линейного размера для предельно тонких тел?
- 48 Какова зависимость времени нагрева от линейного размера для предельно массивных тел?
 - 49 Как определяется температура изделия в любой момент времени?
- 50 Напишите формулу определения продолжительности нагрева термически тонких изделий, когда преобладает конвекция и дайте пояснения.
- 51 Как определяются теплофизические параметры изделий и коэффициент теплоотдачи?
- 52 Напишите формулу определения продолжительности нагрева термически тонких изделий, когда преобладает излучение и дайте пояснения.
- 53 Как определяется приведенный коэффициент излучения и от каких величин он зависит?

6.7 Вопросы для подготовки к экзамену

- 54 Методика расчета тонких изделий в TTA с переменной температурой печи.
 - 55 В чем заключается сущность расчета нагрева массивных изделий?
- 56 Напишите основные зависимости для определения средней температуры по сечению тел различной формы.
 - 57 Как определяется характерный геометрический размер?
- 58 Напишите дифференциальное уравнение нестационарной теплопроводности в прямоугольных и цилиндрических координатах при наличии внутренних источников теплоты и без них.
 - 59 Что понимается под понятием «условия однозначности»?
- 60 Какие граничные условия используются при расчете массивных изделий?
- 61 Дайте характеристику методов решения краевых задач теплопроводности при расчете массивных изделий.
 - 62 Приведите формулы, полученные после решения

дифференциального уравнения теплопроводности с граничными условиями I и II рода, для пластины и цилиндра.

- 63 Приведите формул₂₅ полученные после решения дифференциального уравнения теплопроводности с граничным условием Ш рода, для пластины и цилиндра.
- 64 В чем сущность расчета нагрева массивных изделий методов тепловой диаграммы?
 - 65 Как рассчитываются массивные изделия по методу "тонких" тел?
- 66 Каковы особенности расчета нагрева изделий в печах с постоянной температурой?
- 67 Граничное условие третьего рода, когда преобладает лучистый теплообмен и конвекция.
- 68 Расчетные уравнения при расчете нагрева изделий $t_n = const$ в безразмерном виде.
 - 69 Приведите выражение числа Иванцова и дайте пояснения.
- 70 Как определяется продолжительность нагрева изделий с использованием числа Иванцова и безразмерной температуры?
- 71 Приведите общее решение нагрева изделий в печи при t_n = const в безразмерном виде, когда преобладает излучение и конвекция.
- 72 Чем объясняется многоступенчатый режим нагрева массивных изделий?
- 73 Особенности расчета нагрева металла в печах с переменной температурой.
 - 74 С какой целью составляется материальный баланс?
- 75 Из каких приходных и расходных статей состоят материальные балансы основных типов TTA?
- 76 Для чего составляется тепловой баланс теплотехнологических процессов и установок?
- 77 Напишите общее выражение теплового баланса ТТУ и дайте соответствующие пояснения.
- 78 Из каких приходных и расходных статей состоят тепловые балансы основных типов ТТУ и как они определяются?
- 79 Как определяются удельный и общий расходы топлива и от каких факторов они зависят?
- 80 Напишите выражения и КПД рабочего пространства, технологического и энергетического КПД, дайте их определения.
- 81 Что понимают под коэффициентом использования топлива и как он определяется?
 - 82 Какова связь между расходом топлива и технологическим КДП?

- 83 Какими способами можно снизить расход топлива и повысить КПД ТТУ?
- 84 Что такое условное топливо и какова связь между ним и натуральным топливом?
- 85 Что собой представляет эксергетический баланс и чем он отличается от теплового баланса?
 - 86 Как определяется эксергетический КПД?
 - 87 Дайте классификацию ВЭР и их краткую характеристику.
 - 88 Какие способы нагрева компонентов горения применяются в ТТУ?
 - 89 Что такое коэффициент регенерации и как он определяется?
- 90 Как определяется экономия топлива от применения горячего воздуха?
- 91 В каких случаях применяется автономный высокотемпературный нагрев воздуха?
- 92 Какие преимущества и недостатки имеют регенеративный и энергетический способы использования тепловых и горючих отходов?
- 93 В чем состоит сущность комбинированного энерготехнологического теплоиспользования?
 - 94 Конструкции и принцип работы регенераторов и рекуператоров.
 - 95 Методика расчета регенераторов.
 - 96 Методика расчета рекуператоров.
 - 97 В чем особенность расчета котлов-утилизаторов?
 - 98 С какой целью осуществляется термическая переработка топлива?
 - 99 Полукоксование и коксование каменного угля.
- 100 Дайте характеристику коксового газа как топлива и укажите область его применения.
- 101 Получение доменного газа, его основные характеристики и область применения в качестве топлива.
- 102 Способы получения искусственных газов в газогенераторах и их основные характеристики.
- 103 Характеристика конвертерного газа и перспектива его использования в качестве топлива.
 - 104 Крекинг углеводородных газов.
 - 105 Конверсия природного газа.

6.8 Примерная тематика курсовых работ

Курсовая работа не предусмотрена.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Громова, Е.Н. Высокотемпературные теплотехнологические процессы и установки: учебное пособие, часть 1 / Е.Н. Громова. СПб.: ВШТЭ СПбГУПТД, 2020. 88 с. URL: https://nizrp.narod.ru/metod/kpte/1590159117.pdf?ysclid=m8htlk6fkp742643972. Текст: электронный.
- 2. Громова, Е. Н. Эксплуатация теплотехнологических установок: учеб. пособие / Е. Н. Громова. СПб.: ВШТЭ СПбГУПТД, 2024. 74 с. ISBN 978-5-91646-390-3. URL: https://nizrp.narod.ru/metod/kpte/1710525595.pdf?ysclid=m8htw676wz5311993. Текст: электронный.
- 3. Эксплуатация ТЭС: учебное пособие (для студентов высших учебных заведений специальности «Теплоэнергетика») /А.М. Достияров, А.А. Кибарин, Г.М. Тютебаева, Г.С. Катранова. –М.: Издательский дом Академии Естествознания, 2020. 154 с. ISBN 978-5-91327-623-0. URL: https://libr.aues.kz/facultet/101_TEF/120_Teplovie_energeticheskie_ustanovoki/5 <a href="https://libr.aues.kz/facultet/
- 4. Высокотемпературные теплотехнологические установки: практикум для студентов специальности «Теплоэнергетика и теплотехника» / И. Л. Иокова И. Е. Мигуцкий С. М. Хужакулов А. А. Абразовский . Белорусский национальный технический университет : Кафедра «Промышленная теплоэнергетика и теплотехника». Минск: БНТУ, 2024. 54 с. URL: https://rep.bntu.by/handle/data/151310. Текст: электронный.

Дополнительная литература

- 1. Малышев В.С. Энергоснабжение в теплоэнергетике и теплотехнологии: учебное пособие для вузоы / В.С. Малышев, С.П. Пантилеев. Санкт-Петербург : Лань, 2025. 264 с. : ил.: .— Текст: непосредственный. URL: https://reader.lanbook.com/book/455537?demoKey=5ead4bcea22b22229cf2fb170 e8a1c61#2.
- 2. Мостовенко Л.В., Белоглазов В.П. Основы промышленной теплоэнергетики : учебное пособие / Л.В. Мостовенко, В.П. Белоглазов. Нижневартовск: изд-во НВГУ, 2021. 124 с. ISBN 978-5-00047-661-1. —

URL:

https://nvsu.ru/files/ufiles/%D0%B4%D0%BE%D0%BA%D0%B8/%D0%9E%D1%81%D0%BD%D0%BE%D0%B2%D1%8B%20%D0%BF%D1%80%D0%BE%D0%BE%D0%BD%D0%BD%D0%BE%D0%BD%D0%BD%D0%BE%D0%B9%20%D1%82%D0%B5%D0%BF%D0%BB%D0%BE%D0%BD%D0%B5%D1%80%D0%B3%D0%B5%D1%82%D0%B8%D0%BA%D0%B8%20(%D0%94%2003.06).pdf. — Текст: элк²⁸ нный.

3. Володин, В. И. Промышленная теплоэнергетика : учебнометодическое пособие по курсовому проектированию для студентов вузов по спец. 1-43 01 06 "Энергоэффективные технологии и энергетический менеджмент" / В. И. Володин. — Минск : БГТУ, 2021. —79 с. — URL: <a href="https://elib.belstu.by/bitstream/123456789/40607/1/%d0%92%d0%be%d0%bb%

Учебно-методическое обеспечение

- 1. Методические указания к самостоятельной работе студентов по курсу «Высокотемпературные технологические процессы и установки промышленных производств (ВТТПиУПП)» (для студентов специальности 15.03.04 «Автоматизированное управление технологическими процессами» 3-го курса) / Сост. М.В. Канчукова. Алчевск: ГОУ ВПО ЛНР ДонГТУ, 2017. 29 с.
- 2. Методические указания к выполнению контрольной работы по курсу «Высокотемпературные технологические процессы и установки промышленных производств (ВТТПиУПП)» (для студентов специальности 15.03.04 «Автоматизация технологических процессов и производств» 2-го курса заочной формы обучения) / Сост. М.В. Канчукова. Алчевск: ГОУ ВПО ЛНР ДонГТУ, 2017. 21 с.

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт.— Алчевск. URL: library.dstu.education.— Текст: электронный.
- 2. Научно-техническая библиотека БГТУим. Шухова: официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст: электронный.
- 3. Консультант студента :электронно-библиотечная система.— Mосква. URL: http://www.studentlibrary.ru/cgi-bin/mb4x.— Текст: электронный.
 - 4. Университетская библиотека онлайн :электронно-библиотечная

система.— URL: http://biblioclub.ru/index.php?page=main_ub_red.— Текст: электронный.

- 5. Библиотека машиностроителя.— URL: http://lib-bkm.ru.
- 6. Учебно-методическая литература для учащихся и студентов. URL: http://www.studmed.ru

29

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО. Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местоположение) учебных кабинетов
Специальные помещения:	
Мультимедийная аудитория. (60 посадочных мест),	ауд. <u>220 </u> корп. <u>1</u>
компьютер IntelCeleron E-3300;	
- мультимедийный проектор BENG M-5111;	
- демонстрационный экран;	
- посадочные места по количеству обучающихся;	
- рабочее место преподавателя.	
Аудитории для проведения лабораторных работ:	
Оборудование компьютерного класса каф. АУИТ:	ауд. <u>207</u> корп. <u>1</u>
– посадочные места на 25 обучающихся;	
– рабочее место преподавателя, столы, стулья, доска классная;	
– персональные компьютеры:	
- AMDSempron;	
– Celeron Д 2267/256;	
– PentiumIP4 511 2.8;	
– AMD Atlon 64 3000+;	
– AMD Sempron;	
– Pentium IP LGA755 2,66;	
– Intel Celeron 420;	
– Sempron 64 (Athlon 64);	
– Pentium IV 506.2.16 1;	
– AMD Sempron 3000 1;	
– HEDYCEL Celeron 2.66.	
Аудитории для проведения лабораторных работ:	ауд. <u>206</u> корп. <u>1</u>
Оборудование компьютерного класса каф. АУИТ:	
- персональные компьютеры Sepron 3200, IntelCeleron 420 в	
количестве 10шт., локальная сеть с выходом в Internet;	
- принтер LBP2900;	

- лабораторная мебель: столы, стулья для студентов (по количеству обучающихся); -рабочее место преподавателя.

30

Лист согласования РПД

Разработал

ст.преп. кафедры автоматизированно управления и инновационных технол (должность)		М.В. Канчукова (Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
И.о. заведующего кафедрой автоматизированного управления и инновационных технологий	(подпись)	<u>Е.В. Мова</u> (Ф.И.О.)
Протокол № <u>1</u> заседания кафедры автоматизированного управления и		

Согласовано

инновационных технологий

Председатель методической комиссии по направлению подготовки 15.03.04 Автоматизация технологических процессов и производств

<u>Е.В. Мова</u>

от <u>09. 07</u>. 20<u>24</u> г.

Начальник учебно-методического центра

(подпись)

O.A. Коваленко $\Phi.\text{И.О.}$

Начальник учебно-методического центра	(подпись)	<u>О.А. Коваленко</u> (Ф.И.О.)

31 Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения изменений							
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	О ВНЕСЕНИЯ ИЗМЕНЕНИЙ: ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ						
Основ	зание:						
Подпись лица, ответственного за внесение изменений							