Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Вишневский Дмитрий Александрович

Должность: РекторМИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Дата подписания: 17.10.2025 16:47:32 (МИНОБРНАУКИ РОССИИ) (МИНОБРНАУКИ РОССИИ)

Уникальный программный ключ:

03474917c4d012283e5ad996a48a5e70bf8**b.b**\$\forall EPA\ПЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

(ФГБОУ ВО «ДонГТУ»)

Факультет

информационных технологий и автоматизации

производственных процессов

Кафедра

автоматизированного управления и инновационных технологий

> TBEPKHARO 1.0. проректора по учебной работе ДВ. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Электроника и схемотехника (наименование дисциплины) 15.03.04 Автоматизация технологических процессов и производств (код, наименование направления) Автоматизированное управление технологическими процессами и производствами (профиль подготовки)

Квалификация бакалавр (бакалавр/специалист/магистр) Форма обучения очная, заочная (очная, очно-заочная, заочная)

1 Цели и задачи изучения дисциплины

Цели дисциплины. Целью изучения дисциплины «Электроника и схемотехника» является формирование у студентов системы теоретических знаний и практических навыков в области электроники и аналоговой, и цифровой схемотехники автоматизации; средств изучение основ схемотехнической реализации аналоговых и цифровых электронных приборов и устройств, находящих свое применение в различных областях науки и техники в том числе устройствах автоматики; получение знаний для самостоятельного принятия решений ПО выбору необходимых устройств электротехнических, электронных, электроизмерительных электрооборудования, умения правильно эксплуатировать электроэнергетические системы, а также развитие способностей работы с современными видами схем на базе электронных приборов устройств.

Задачей изучения дисциплины является изучение элементной базы электронных приборов разработке основных используемых при автоматизированных систем управления, изучение их характеристик и параметров, методов их определения и принципа действия; изучение принципов построения аналоговых и цифровых электронных устройств, их схемной реализации И функционирования, приобретение навыков использования этих устройств; формирование практических навыков анализа цепей электронных устройств по принципиальным схемам и расчета простейших схемотехнических узлов входящих в состав систем управления технологическими процессами.

Дисциплина направлена на формирование общепрофессиональных (ОПК-9) компетенций выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины — курс входит в обязательную часть Блока 1 «Дисциплины (модули)» подготовки студентов по направлению подготовки 15.03.04 «Автоматизация технологических процессов и производств» (профиль «Автоматизированное управление технологическими процессами и производствами»).

Дисциплина реализуется кафедрой автоматизированного управления и инновационных технологий. Основывается на базе дисциплин: «Физика», «Электротехника».

Является основой для изучения следующих дисциплин: «Средства автоматизации и управления», «Моделирование систем и процессов», «Микропроцессорная техника», «Автоматизированные системы управления технологическими процессами», выполнение выпускной квалификационной работы.

Для изучения дисциплины необходимы компетенции, сформированные у студента: применять естественно-научные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности; способность внедрять и осваивать новое технологическое оборудование, проводить научные эксперименты использованием современного исследовательского оборудования И приборов, оценивать результаты исследований и разрабатывать отдельные разделы проекта автоматизированной системы управления технологическим процессом, а приобретенные знания использованы при подготовке зашите выпускной квалификационной работы, а также в профессиональной деятельности.

Дисциплина изучается на 2-ом курсе в 4-м семестре, форма промежуточной аттестации зачет и на 3-ем курсе в 5-м семестре, форма промежуточной аттестации – экзамен.

Общая трудоемкость освоения дисциплины за два семестра составляет 6 зачетных единиц, 216 ак.ч. Программой дисциплины предусмотрены лекционные занятия (36 ак.ч.), лабораторные занятия (36 ак.ч.), практические занятия (36 ак.ч.) и самостоятельная работа студента (108 ак.ч.).

На заочном отделении дисциплина изучается на 3-ем курсе в 6-м семестре, форма промежуточной аттестации — зачет и на 4-ом курсе в 7-м семестре, форма промежуточной аттестации — экзамен.

Общая трудоемкость освоения дисциплины за два семестра составляет 6 зачетных единиц, 216 ак.ч. Программой дисциплины предусмотрены лекционные занятия (8 ак.ч.), лабораторные занятия (8 ак.ч.), практические занятия (8 ак.ч.) и самостоятельная работа студента (192 ак.ч.).

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Автоматизация технологических процессов и производств» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 — Компетенции, обязательные к освоению

Содержание	Код	Код и наименование индикатора
компетенции	компетенции	достижения компетенции
Способен		
внедрять и		ОПК-9.1. Уметь пользоваться методической и
осваивать новое	ОПК-9	технической документацией технологического
технологическо		оборудования.
е оборудование		

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины в семестре составляет 3 зачётных единиц, 108 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к текущему контролю, подготовка к лабораторным и практическим занятиям, самостоятельное изучение материала и подготовку к зачету и экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы, и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам	Ак.ч. по семестрам
A		5 4	5
Аудиторная работа, в том числе:	108		54
Лекции (Л)	36	18	18
Практические занятия (ПЗ)	36	18	18
Лабораторные работы (ЛР)	36	18	18
Курсовая работа/курсовой проект	-	-	-
Самостоятельная работа студентов (СРС), в том числе:	108	54	54
Подготовка к лекциям	16	8	8
Подготовка к лабораторным работам	16	8	8
Подготовка к практическим занятиям / семинарам	16	8	8
Выполнение курсовой работы / проекта	-	-	-
Расчетно-графическая работа (РГР)	-	-	-
Реферат (индивидуальное задание)	-	-	-
Домашнее задание	-	-	-
Подготовка к контрольной работе	8	4	4
Подготовка к коллоквиуму (защита лабораторных работ)	36	18	18
Аналитический информационный поиск	-	-	-
Работа в библиотеке	-	-	-
Подготовка к зачету (экзамену)	16	8	8
Промежуточная аттестация – зачет (3), экзамен (Э)	3, Э	3	Э
Общая трудоемкость дисц	иплины		
ак.ч.	216	108	108
3.e.	6	3	3

5 Содержание дисциплины

С целью освоения компетенции, приведенной в п.3 дисциплина разбита на 8 mem:

- тема 1 (Пассивные элементы электронных устройств).
- *тема 2* (Полупроводники);
- *тема 3* (Диоды);
- тема 4 (Биполярные транзисторы);
- *− тема 5* (Тиристоры);
- − тема 6 (Полевые транзисторы);
- тема 7 (Аналоговые элементы и устройства.);
- тема 8 (Цифровые элементы и устройства);

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 3 и 4 соответственно.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемк ость в ак.ч.	Темы практических занятий	Трудоемк ость в ак.ч.	Тема лабораторных занятий	Трудоемк ость в ак.ч.
	Диодинины	4-ì	і семестр	Julii	D WK II	54413111111	D WICH
1	Пассивные элементы электронных устройств	Пассивные элементы электронных устройств (резисторы, конденсаторы, катушки индуктивности, трансформаторы электронной аппаратуры), основные их параметры.	4	Практическая работа №1 Расчет схем с пассивными элементами»	6	Лабораторная работа №1 «Изучение пассивных элементов электронных устройств»	6
2	Полупроводники	Электрофизические свойства полупроводников. Основные свойства и характеристики полупроводников. Электрические переходы. Особенности реальных p-n-переходов.	2				
3	Диоды	Полупроводниковые диоды, их основные свойства и характеристики, разновидности по областям применения. Импульсные диоды. Стабилитроны. Варикапы. Диоды Шоттки.	4	<i>Практическая</i> <i>работа №2</i> Расчет схем с диодами»	6	Лабораторная работа №2 «Изучение полупроводниковых диодов»	6
4	Биполярные транзисторы	Биполярные транзисторы, их устройство, принцип работы, характеристики, области применения.	4				
5	Полевые транзисторы	Полевые транзисторы, их устройство, принцип работы, характеристики, области применения	2	Практическая работа № 3 «Расчет схем с транзисторами»	6	Лабораторная работа №3 «Изучение транзисторов»	6
6	Тиристоры	Биполярные транзисторы с инжекционным питание, особенности структуры, области применения. Тиристоры, принцип работы, характеристики, разновидности, области применения.	2				

~

∞

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемк ость в ак.ч.	Темы практических занятий	Трудоемк ость в ак.ч.	Тема лабораторных занятий	Трудоемк ость в ак.ч.
		5-1	й семестр				
7	Аналоговые элементы и устройства.	Операционные усилители, классификация, устройство и принцип работы. Основные схемы на операционных усилителях.	4	Практическая работа №1 Расчет схем с операционными усилителями»	6	Лабораторная работа №1 «Изучение операционных усилителей»	6
8	Цифровые элементы и устройства	Логические функции и логические схемы.	2				
9	Цифровые элементы и устройства	Триггеры RS, D, T, JK-типа	4	Практическая работа №2 Построение цифровых схем на логических элементах и триггеррах»	6	Лабораторная работа №2 «Изучение логических элементов и тригтеров»	6
10	Цифровые элементы и устройства	Регистры, параллельный и последовательный. Счетчики импульсов.	2				
11	Цифровые элементы и устройства	Дешифраторы. Шифраторы. Мультиплексоры. Демультиплексоры. Распределитель. Сумматор.	4	Практическая работа №3 Построение цифровых схем на дешифраторах, шифраторах и мультиплексорах»	6	Лабораторная работа №3 «Изучение регистров, дешифраторов, шифраторов, мультиплексоры, демультиплексоров»	6
12	Цифровые элементы и устройства	Цифроаналоговый и аналогово- цифровой преобразователи.	2				
	Всего а	удиторных часов	36		36		36

Таблица 4 –Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

№ п/п	Наименование раздела дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
			6-й семе	стр			
1	Пассивные элементы электронных устройств. Полупроводники.	Резисторы, конденсаторы, катушки индуктивности, трансформаторы электронной аппаратуры. Диоды. Транзисторы. Тиристоры.	4	Практическая работа №1 Расчет схем с пассивными элементами»	4	Лабораторная работа №1 «Изучение Пассивных элементы электронных устройств»	4
			7-й семе	стр			_
2	Аналоговые и цифровые элементы и устройства	Операционные усилители. логические элементы. Триггеры. Регистры. Счетчики. Дешифраторы. Шифраторы. Мультиплексоры. Цифроаналоговый и аналогово-цифровой преобразователи.	4	Практическая работа №1 Построение цифровых схем на логических элементах и триггерах»	4	Лабораторная работа №1 «Изучение логических элементов и триггеров»	4
	Всего ауд	циторных часов	8		8		8

9

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license-certificate/polog-kred-modulpdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
ОПК-9	Зачет Экзамен	Комплект контролирующих материалов для зачета и экзамена

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- выполнение и защита лабораторных работ всего 25 баллов;
- выполнение практических работ всего 25 баллов;
- выполнение контрольных работ (тестирование) всего 50 баллов.

Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Зачет в 4-м семестре и экзамен в 5-ом семестре по дисциплине «Электроника и схемотехника» проводятся по результатам работы в семестрах и могут быть проставлены автоматически, если студент набрал в течении каждого семестра не менее 60 баллов и отчитался за каждую контрольную точку. В случае если полученные в семестрах суммы баллов не устраивают студента, то студент имеет право повысить итоговые оценки в виде устного опроса по приведенным ниже вопросам (п.п. 6.4 и 6.6) на зачете и экзамене.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашнее задание

Домашнее задание по дисциплине не предусмотрено.

6.3 Индивидуальное задание

Индивидуальное задание по дисциплине не предусмотрено.

6.4 Оценочные средства для самостоятельной работы при подготовке к защите лабораторных работ (контрольные задания по лекционным темам)

Тема 1.

- 1. Назначение резистора в электрической цепи.
- 2. Резистор как преобразователь энергии.
- 3. Назначение и устройство подстроечных и переменных резисторов.
- 4. Преимущества и недостатки проволочных сопротивлений.
- 5. Разновидности групп непроволочных сопротивлений (резисторов).
- 6. Причина появления собственных шумов в резисторе.
- 7. Особенности температурной вольт-амперной характеристик терморезистора.
 - 8. Области применения терморезисторов.
 - 9. Разновидности варисторов и их особенности.
 - 10. Назначение конденсатора в электрической схеме.
 - 11. Разновидности конденсаторов и области их применения.
 - 12. Что такое тангенс угла потерь?
 - 13. Разновидности эквивалентных схем конденсаторов.
 - 14. Области применения переменных и подстроечных конденсаторов.
 - 15 Охарактеризовать свойства варикондов.
 - 16. Построить график зависимости $Xc = f(\omega)$.
 - 17. Разновидности диэлектриков в конденсаторах.
 - 18. Причина появления тока утечки в конденсаторах.
 - 19. Назначение катушек индуктивности в электрических цепях.
 - 20. Определение добротности катушки индуктивности.
 - 21. Роль магнитопровода в катушках индуктивности.
 - 22. Что такое температурный коэффициент индуктивности (ТКL)?

- 23. Определение температурного коэффициента добротности индуктивности.
 - 24. Отличие дросселя от катушки индуктивности.
 - 25. Способ подстройки величины индуктивности в катушке.
 - 26. Устройство и принцип работы трансформатора.
 - 27. Классификация трансформаторов.
- 28. Разновидности магнитопроводов трансформаторов, их краткая характеристика.
- 29. Особенности конструкции пьезотрансформаторов и принцип их работы.
- 30. Причины искажения формы прямоугольного импульса, прошедшего че-

рез трансформатор.

Тема 2.

- 1. Дать характеристику энергетических зон проводника, диэлектрика, полупроводника.
 - 2. Как изменить ширину запретной зоны в полупроводнике?
 - 3. Что такое электронная и дырочная проводимость?
 - 4. Каким образом получают полупроводники р- и п-типов?
- 5. Какая структура р-п-перехода: а) в равновесном состоянии; б) при прямом

внешнем напряжении; в) при обратном внешнем напряжении?

- 6. За счёт чего в р-п-переходе образуется потенциальный барьер?
- 7. Что происходит в р-п-переходе при приложении к нему прямого и обратного напряжений?
 - 8. Какие носители зарядов образуют прямой ток, а какие обратный?
 - 9. Основные отличия реального р-п-перехода от идеального.
 - 10. Что такое термогенерация, канальные токи и токи утечки?
 - 11. Причина появления барьерной ёмкости.
 - 12. Причина туннельного пробоя р-п- перехода.
 - 13. Чем вызывается лавинный пробой р-п-перехода?
 - 14. Объяснить причину проявления теплового пробоя р-п-перехода.

Тема 3.

- 1. Какие параметры характеризуют выпрямительные свойства и быстродействие универсальных и импульсных диодов?
- 2. Как по ВАХ-ке диода определить величину тока, протекающего через диод?
 - 3. В чём особенность ВАХ стабилитрона?
 - 4. Что такое варикап и область его применения?
 - 5. Основное отличие варактора от варикапа.
 - 6. Особенность структуры диода Шоттки, область его применения.
 - 7. Функциональные разновидности туннельных диодов.
 - 8. Разновидности резонанса в эквивалентной схеме туннельного диода.
 - 9. Особенность ВАХ туннельных и обращённых диодов.
 - 10. Режим работы диодов, используемых в генераторах шумов.

Тема 4.

- 1. Структура биполярного транзистора.
- 2. Принцип действия биполярных транзисторов.
- 3. Какие носители формируют ток в транзисторе р-п-р-типа и какие в транзисторе п-р-п-типа?
 - 4. Режимы работы биполярных транзисторов.
- 5. Разновидности схем включения транзисторов, их краткая характеристика.
 - 6. Что усиливает схема с ОБ: ток или напряжение? Объясните почему.
- 7. В каком случае в схеме с ОЭ наступает режим насыщения, и в каком отсечки?
 - 8. Почему схему с ОК называют эмиттерным повторителем?
- 9. Какие параметры характеризуют работу транзисторов на низких и высоких частотах?
- 10. Как, используя входную ВАХ и параметры транзистора, определить коэффициент усиления по току?
- 11. Как, используя выходную ВАХ транзистора, выбрать линейный режим усиления сигнала?
 - 12. Основные параметры биполярных транзисторов.
 - 13. Условные обозначения биполярных транзисторов.

Тема 5.

- 1. Что такое инжекторный транзистор и его условное обозначение?
- 2. Структура планарного транзистора с инжекторным питанием.
- 3. Достоинства и недостатки транзисторов с инжекторным питанием.
- 4. Объяснить особенность устройства многоэмиттерного транзистора.
- 5. Структура р-п-переходов у тиристора.
- 6. Особенности ВАХ тиристоров.
- 7. Отличие динистора от тиристора.
- 8. Разновидности динисторов.
- 9. Способы управления тиристором.
- 10. Области применения динисторов и тиристоров.
- 11. Что такое запирающее напряжение и отпирающий ток?
- 12. Основные параметры тиристоров.
- 13. условное обозначение тиристоров.
- 14. Рекомендации по использованию h-параметров и y-параметров при расчёте электронных устройств.

Тема 6.

- 1. Принципиальное отличие структуры р-п-переходов биполярных и полевых транзисторов.
- 2. Почему полевой транзистор по способу управления сравнивается с электронной лампой?
 - 3. Способ изменения типа проводимости у полевых транзисторов.
 - 4. Схемы включения полевых транзисторов.
- 5. Структура и принцип работы транзистора с управляющим р-п-переходом.

- 6. Структура и принцип работы транзистора с индуцированным затвором (каналом).
 - 7. Разница в структуре МДП- и МОП-транзисторов.
- 8. Особенности структуры транзисторов со встроенным и индуцированным каналом.
- 9. Почему в схеме с ОИ у полевых транзисторов высокое входное сопротивление?
- 10. Почему у транзисторов с индуцированным каналом управляющее напряжение однополярное, а с встроенным каналом как положительное, так и отрицательное?
 - 11. Преимущества полевых транзисторов перед биполярными.
 - 12. Основные параметры полевых транзисторов.
- 13. Какие из полевых транзисторов чаще всего применяются в интегральных микросхемах?

Тема 7.

- 1. Какие усилители называют операционными? Обозначение на схемах, понятие идеального ОУ.
- 2. Перечислите основные характеристики операционного усилителя и методы их измерения. Порядки величин основных параметров.
- 3. Приведите схемы масштабных преобразователей на основе ОУ и выражения для расчета коэффициента передачи.
- 4. Какова разность фаз между входным и выходным сигналами инвертирующего усилителя на ОУ? Почему?
- 5. Какова разность фаз между входным и выходным сигналами неинвертирующего усилителя на ОУ? Почему?
- 6. Чем определяется постоянная составляющая выходного напряжения усилителя на ОУ?
 - 7. Приведите схему сумматора аналоговых сигналов.
- 8. Приведите схему интегратора напряжения и временные диаграммы сигналов на входе и выходе.
 - 9. Как рассчитать скорость изменения сигнала на выходе интегратора?
- 10. Приведите схему дифференциатора напряжения и расчетные соотношения для выходного сигнала.
- 11. Как зависит напряжение на выходе дифференциатора от скорости изменения входного напряжения?
 - 12 . Чем схема компаратора отличается от схемы усилителя?
- 13. Какие выходные напряжения могут формироваться на выходе компаратора?
 - 14. Что такое компараторный режим работы ОУ?
- 15. Чем объясняется ошибка схемы сравнения, и каким образом ее можно уменьшить в однопороговом компараторе.
- 16. Какую передаточную характеристику имеет гистерезисный компаратор?
- 17. Как можно изменить порог срабатывания однопорогового компаратора?

- 18. Как задается смещение передаточной характеристики в гистерезисных компараторах?
- 19. Какими преимуществами обладает гистерезисный компаратор по сравнению с однопороговым?

Тема 8.

- 1. Понятие алгебры логики. Логические переменные. Логические функции.
 - 2. Способы описания логических функций.
 - 3 Логическая функция «НЕ», «И», «ИЛИ», «Исключающее ИЛИ»
- 4. Правила логического умножения логической переменной на 0, на 1, на саму переменную, на инверсное значение переменной.
- 5. Правила логического сложения логической переменной с 0, с 1, с самой переменной, с инверсным значением переменной.
 - 6. Определение логических элементов.
 - 7. Логические элементы «НЕ», «И», «ИЛИ», «И-НЕ», «ИЛИ-НЕ».
 - 8. Комбинированные логические элементы.
 - 9. Основные параметры логических элементов.
- 10. Нагрузочная способность, быстродействие, потребляемая мощность и помехоустойчивость логических элементов.
 - 11. Дешифраторы. Шифраторы.
 - 12. Мультиплексоры. Демультиплексоры.
 - 13. Определение триггера.
 - 14. Асинхронные и синхронные RS-триггеры.
 - 15. D-триггеры, Т-триггеры, ЈК-триггеры.
 - 16. Параллельные и последовательные регистры.
 - 17. Асинхронные и синхронные двоичные счетчики импульсов.
 - 18. Реверсивные счетчики импульсов.
 - 19. Десятичные счетчики импульсов.
 - 20. Аналого-цифровые преобразователи.
 - 21. Цифро-аналоговые преобразователи.

6.5 Оценочные средства (тесты) для текущего контроля успеваемости в 4 семестре

- 1. Компонент электронной аппаратуры, с помощью которого осуществляется регулирование и распределение электрической энергии между цепями и элементами схем
 - А) резистор
 - Б) конденсатор
 - В) катушка индуктивности
 - Г) транзистор

2. При последовательном соединении двух резисторов

А) значения их сопротивлений складываются, а общее сопротивление

увеличивается

- Б) значения их проводимостей складываются, а общее сопротивление уменьшается
- В) значения их сопротивлений умножаются, а общее сопротивление увеличивается
- Г) значения их сопротивлений делятся на два, а общее сопротивление уменьшается

3. При параллельном соединении двух резисторов

- А) значения их проводимостей складываются, а общее сопротивление уменьшается
- Б) значения их сопротивлений складываются, а общее сопротивление увеличивается
- В) значения их сопротивлений умножаются, а общее сопротивление увеличивается
- Г) значения их проводимостей делятся на два, а общее сопротивление уменьшается

4. От чего зависит форма ВАХ терморезистора

- А) от температуры окружающей среды и условий теплообмена
- Б) от напряжения и тока
- В) от мощности и напряжения
- Γ) от температурного сопротивления

5. Основное применение терморезисторов

- А) параметрическая термостабилизация электронных цепей
- Б) измерение температуры
- В) регулирование напряжения
- Г) компенсация температурного сопротивления

6. Устройство способное накапливать и длительное время удерживать электрический заряд

- А) конденсатор
- Б) резистор
- В) катушка индуктивности
- Г) транзистор

7. С энергетической точки зрения конденсатор характеризуется

- А) преобразованием электрической энергии в энергию электрического поля и обратным преобразование энергии электрического поля в энергию электрического тока
- Б) преобразованием электрической энергии в энергию магнитного поля и обратным преобразование энергии магнитного поля в энергию электрического тока
 - В) преобразованием электрической энергии в энергию магнитного поля

и обратным преобразование энергии электрического поля в энергию магнитного тока

Г) преобразованием энергии магнитного поля в энергию электрического поля и обратным преобразование энергии электрического поля в энергию магнитного тока

8. Значение номинальной емкости конденсатора

- А) это значение емкости, которое указывается на его маркировке в документации
- Б) это значение емкости, измеренное при данной температуре и определенной частоте
 - В) это значение емкости, измеренное под напряжением
 - Г) это значение емкости, указывается при номинальной мощности

9. Значение фактической емкости конденсатора

- А) это значение емкости, измеренное при данной температуре и определенной частоте
- Б) это значение емкости, которое указывается на его маркировке в документации
 - В) это значение емкости, измеренное под напряжением
 - Г) это значение емкости, указывается при номинальной мощности

10. При последовательном соединении двух конденсаторов

- А) значения их реактивных емкостных проводимостей складываются, а общая емкость уменьшается
- Б) значения их реактивных емкостных проводимостей вычитаются, а общая емкость увеличивается
- В) значения их реактивных емкостных проводимостей умножаются, а общая емкость увеличивается
 - Г) значения их емкостей складываются, а общая емкость увеличивается

11. При параллельном соединении двух конденсаторов

- А) значения их емкостей складываются, а общая емкость увеличивается
- Б) значения их реактивных емкостных проводимостей вычитаются, а общая емкость увеличивается
- В) значения их реактивных емкостных проводимостей умножаются, а общая емкость увеличивается
- Γ) значения их реактивных емкостных проводимостей складываются, а общая емкость уменьшается

12. Для увеличения значения индуктивности и повышения их добротности

- А) применяют магнитопроводы с постоянными или регулируемыми параметрами
 - Б) применяют последовательное соединение катушек
 - В) применяют последовательное соединение катушек с

магнитопроводами

Г) применяют параллельное соединение катушек

13. Важнейшим параметром катушки индуктивности является

- А) добротность
- Б) магнитопровод
- В) реактивное сопротивление
- Г) частота

14. Основное назначение дросселя является

- А) обеспечение большого сопротивления для переменного тока и малое для постоянного и низкочастотных токов
- Б) обеспечение малого сопротивления для переменного тока и большое для постоянного и низкочастотных токов
- В) обеспечение большого сопротивления для постоянного тока и малое для переменного и высокочастотных токов
- $\hat{\Gamma}$) обеспечение большого сопротивления для постоянного тока и малое для переменного и низкочастотных токов

15. Устройством, обеспечивающее преобразование параметров переменных напряжений и токов называется

- А) трансформатор
- Б) дроссель
- В) конденсатор
- Г) транзистор

16. Принцип работы электромагнитного трансформатора основан

- А) на преобразовании энергии электрического поля в энергию магнитного поля и обратном преобразовании энергию магнитного поля
- Б) на преобразовании энергии электрического поля в энергию электрического поля и обратном преобразовании энергию электрического поля
- В) на преобразовании энергии магнитного поля в энергию электрического поля и обратном преобразовании энергию электрического поля
- Г) на преобразовании энергии магнитного поля в энергию магнитного поля и обратном преобразовании энергию магнитного поля

17. Трансформаторы питания электронной аппаратуры, это маломощные трансформаторы

- А) предназначенные для преобразования напряжения электрической сети в напряжения, необходимые для питания электронных устройств
- Б) предназначенные для точной передачи, преобразования, а иногда и запоминания электрических сигналов
 - В) предназначенные для преобразования энергии магнитного поля в

энергию электрического поля и обратном преобразовании энергию электрического поля

Г) предназначенные для преобразования энергии магнитного поля в энергию магнитного поля большей мощности и обратном преобразовании энергию магнитного поля

18. Сигнальные трансформаторы, это трансформаторы малой мощности

- А) предназначенные для точной передачи, преобразования, а иногда и запоминания электрических сигналов
- Б) предназначенные для преобразования напряжения электрической сети в напряжения, необходимые для питания электронных устройств
- В) предназначенные для преобразования энергии магнитного поля в энергию электрического поля и обратном преобразовании энергию электрического поля
- Г) предназначенные для преобразования энергии магнитного поля в энергию магнитного поля большей мощности и обратном преобразовании энергию магнитного поля

19. Основными параметрами трансформаторов питания являются

- А) номинальное напряжение и ток первичной обмотки
- Б) номинальное напряжение и ток вторичной обмотки
- В) коэффициент трансформации
- Г) номинальная мощность

20. Вольт-амперная характеристика диода – это

- А) зависимость протекающего через диод тока от приложенного к нему напряжения
- Б) зависимость приложенного к диоду напряжения от протекающего через него тока
 - В) зависимость протекающего через диод тока от температуры
 - Г) зависимость приложенного к диоду напряжения от температуры

21. Стабилитроны – это

- А) диоды, использующие участок BAX p-n-перехода, соответствующий обратному электрическому пробою
- Б) диоды, использующие участок BAX p-n-перехода, соответствующий прямому электрическому пробою
- В) транзисторы, использующие участок ВАХ р-n-перехода, соответствующий обратному электрическому пробою
- Г) транзисторы, использующие участок BAX p-n-перехода, соответствующий прямому электрическому пробою

22. Варикап – это

- А) диод, предназначенный для использования в качестве управляемой электрическим напряжением емкости
- Б) диод, использующий участок ВАХ p-n-перехода, соответствующий обратному электрическому пробою
- В) транзистор, предназначенный для использования в качестве управляемой электрическим напряжением емкости
- Г) транзистор, использующий участок BAX р-п-перехода, соответствующий прямому электрическому пробою

23. Основной отличительной особенностью характеристик диода Шоттки является

- A) значительно меньшее прямое напряжение по сравнению с диодами на основе p-n-перехода
- Б) значительно меньшее прямое напряжение по сравнению со стабилитронами на основе p-n-перехода
- В) значительно меньший прямой ток через него по сравнению с диодами на основе p-n-перехода
- Г) значительно меньший прямой ток через него по сравнению со стабилитронами на основе p-n-перехода

24. Биполярными транзисторами называют

- A) полупроводниковые приборы с двумя взаимодействующими электрическими p-n-переходами и тремя выводами
- Б) полупроводниковые приборы с двумя независимыми электрическими p-n-переходами и четырмя выводами
- В) полупроводниковые приборы с тремя независимыми электрическими р-п-переходами и тремя выводами
- Г) полупроводниковые приборы с двумя независимыми электрическими p-n-переходами и двумя выводами

25. В каких режимах работы транзистор может работать в зависимости от режима работы p-n-переходов

- А) активный режим
- Б) режим насыщения
- В) режим отсечки
- Г) инверсный режим

26. Активный режим работы биполярного транзистора это

- А) когда эмиттерный переход открыт, коллекторный закрыт, и он является усилительным режимом
- Б) когда оба переходы открыты, и он работает при относительно больших токов базы, а ток в цепи эмиттер-коллектор проходит в одном направлении
 - В) когда оба переходы закрыты, и он характеризуется очень малыми

токами через запертые переходы транзистора

Г) когда эмиттерный переход закрыт, коллекторный открыт, и он является усилительным режимом

27. Режим насыщения биполярного транзистора это

- А) когда оба переходы открыты, и он работает при относительно больших токов базы, а ток в цепи эмиттер-коллектор проходит в одном направлении
- Б) когда эмиттерный переход открыт, коллекторный закрыт, и он является усилительным режимом
- В) когда оба переходы закрыты, и он характеризуется очень малыми токами через запертые переходы транзистора
- Г) когда эмиттерный переход закрыт, коллекторный открыт, и он является усилительным режимом

28. Режим отсечки биполярного транзистора это

- А) когда оба переходы закрыты, и он характеризуется очень малыми токами через запертые переходы транзистора
- Б) когда эмиттерный переход открыт, коллекторный закрыт, и он является усилительным режимом
- В) когда оба переходы открыты, и он работает при относительно больших токов базы, а ток в цепи эмиттер-коллектор проходит в одном направлении
- Г) когда эмиттерный переход закрыт, коллекторный открыт, и он является усилительным режимом

29. Выходная характеристика транзистора – это

- А) зависимость выходного тока, тока коллектора, от падения напряжения между коллектором и эмиттером транзистора при постоянном токе базы
- Б) зависимость падения напряжения между коллектором и эмиттером транзистора, от выходного тока при постоянном токе базы
- В) зависимость входного тока от падения напряжения между коллектором и эмиттером транзистора, при постоянном токе базы
- Γ) зависимость выходного тока, тока коллектора, от входного тока базы при постоянном падения напряжения между коллектором и эмиттером транзистора

30. Входная характеристика транзистора – это

- А) зависимость входного тока, тока базы, от падения напряжения между базой и эмиттером транзистора при постоянном напряжении между коллектором и эмиттером транзистора
- Б) зависимость входного тока, тока коллектора, от падения напряжения между коллектором и эмиттером транзистора при постоянном токе базы
 - В) зависимость входного тока от падения напряжения между

коллектором и эмиттером транзистора, при постоянном токе коллектора

 Γ) зависимость входного тока, тока коллектора, от выходного тока базы при постоянном падения напряжения между коллектором и эмиттером транзистора

6.6 Оценочные средства для текущего контроля успеваемости в 5 семестре (контрольные вопросы на экзамен).

- 1. Какие усилители называют операционными? Обозначение на схемах, понятие идеального ОУ.
- 2. Перечислите основные характеристики операционного усилителя и методы их измерения. Порядки величин основных параметров.
- 3. Приведите схемы масштабных преобразователей на основе ОУ и выражения для расчета коэффициента передачи.
- 4. Какова разность фаз между входным и выходным сигналами инвертирующего усилителя на ОУ? Почему?
- 5. Какова разность фаз между входным и выходным сигналами неинвертирующего усилителя на ОУ? Почему?
- 6. Чем определяется постоянная составляющая выходного напряжения усилителя на ОУ?
 - 7. Приведите схему сумматора аналоговых сигналов.
- 8. Приведите схему интегратора напряжения и временные диаграммы сигналов на входе и выходе.
 - 9. Как рассчитать скорость изменения сигнала на выходе интегратора?
- 10. Приведите схему дифференциатора напряжения и расчетные соотношения для выходного сигнала.
- 11. Как зависит напряжение на выходе дифференциатора от скорости изменения входного напряжения?
 - 12 . Чем схема компаратора отличается от схемы усилителя?
- 13. Какие выходные напряжения могут формироваться на выходе компаратора?
 - 14. Что такое компараторный режим работы ОУ?
- 15. Чем объясняется ошибка схемы сравнения, и каким образом ее можно уменьшить в однопороговом компараторе.
- 16. Какую передаточную характеристику имеет гистерезисный компаратор?
- 17. Как можно изменить порог срабатывания однопорогового компаратора?
- 18. Как задается смещение передаточной характеристики в гистерезисных компараторах?
- 19. Какими преимуществами обладает гистерезисный компаратор по сравнению с однопороговым?
- 20. Понятие алгебры логики. Логические переменные. Логические функции.
 - 21. Способы описания логических функций.

- 22 Логическая функция «НЕ», «И», «ИЛИ», «Исключающее ИЛИ»
- 23. Правила логического умножения логической переменной на 0, на 1, на саму переменную, на инверсное значение переменной.
- 24. Правила логического сложения логической переменной с 0, с 1, с самой переменной, с инверсным значением переменной.
 - 25. Определение логических элементов.
 - 26. Логические элементы «НЕ», «И», «ИЛИ», «И-НЕ», «ИЛИ-НЕ».
 - 27. Комбинированные логические элементы.
 - 28. Основные параметры логических элементов.
- 29. Нагрузочная способность, быстродействие, потребляемая мощность и помехоустойчивость логических элементов.
 - 30. Дешифраторы. Шифраторы.
 - 31. Мультиплексоры. Демультиплексоры.
 - 32. Определение триггера.
 - 33. Асинхронные и синхронные RS-триггеры.
 - 34. D-триггеры, Т-триггеры, ЈК-триггеры.
 - 35. Параллельные и последовательные регистры.
 - 36. Асинхронные и синхронные двоичные счетчики импульсов.
 - 37. Реверсивные счетчики импульсов.
 - 38. Десятичные счетчики импульсов.
 - 39. Аналого-цифровые преобразователи.
 - 40. Цифро-аналоговые преобразователи.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Скаржепа, В.А. Электроника и микросхемотехника. Ч. 1. Электронные устройства информационной автоматики: Учебник / В.А. Скаржепа, А.Н. Луценко Под общ. ред. А.А. Краснопрошиной. К.: Выща шк. Головное издво, 1989. 431 с.
- 2. Забродин, Ю.С. Промышленная электроника. М.: Высш. школа, 1982. 496 с.
- 3. Руденко, В.С. Приборы и устройства промышленной электроники / В.С. Руденко, В.И. Сенько, В.В. Трифонюк. Тэхника, 1990. 368 с.
- 4. Горбачев, Г. Н. Промышленная электроника: Учебник для вузов / Г. Н. Горбачев, Е.Е. Чаплыгин, Под ред. В. А. Лабунцова. М.: Энергоатомиздат, 1988. 320 с.
- 5. Руденко В.С. Промышленная электроника / В.С. Руденко, В.И. Сенько, В.В. Трифонюк, К.К. Юдин. К.: Техника, 1979 503 с.
- 6. Гусев, В.Г. Электроника: Учеб. пособие для приборостроит. спец. -2-е изд., перераб. и доп. / В.Г. Гусев, Ю.М. Гусев. М.: Высш. шк. 1991. -622 с.

- 7. Основы промышленной электроники / Ю.А. Исаков, А.П. Платонов, В.С. Руденко идр. К.: Техника, 1976. 544 с.
- 8. Быстров, Ю.А. Электронные цепи и микросхемотехника: Учебник / Ю.А. Быстров, И. Г. Мироненко. М.: Высш. шк., 2002. 384 с.
- 9. Иванов-Цыганов А.И. Электро-преобразовательные устройства РЭС: Учеб для вузов по спец. «Радиотехника». 4-е изд., перераб. и доп. М.: Высш. шк.,1991. 272с
- 10. Расчет электронных схем. Примеры и задачи: Учеб. пособие для вузов по спец.электрон. техники / Г. И. Изъюрова, Г. В. Королев, В.А. Терехов и др. М.: Высш. шк., 1987. 335 с.
- 11. Прянишников, В. А. Электроника. Курс лекций: Учебник для высших и средних учебных заведений С.Пб.: КОРОНА принт, 1998. 400 с.
- 12. Гутников, В.С. Интегральная электроника в измерительных устройствах. Л.: Энергоатомиздат, 1988. 1988. 304 с.
- 13. Потемкин, И. С. Функциональные узлы цифровой автоматики. М.: Энергоатомиздат, 1988. 320 с.
- 14. Угрюмов, Е. П. Цифровая схемотехника. СПб.: БХВ Санкт Петербург, 2000.-528 с.

Дополнительная литература

- 1. Шило, В.Л. Популярные цифровые микросхемы: Справочник. М.: Металлургия, 1988. 352 с.
- 2. Зельдин, Е.А. Цифровые интегральные микросхемы в информационно-измерительной аппаратуре. Л.: Энергоатомиздат, 1986. 280 с.15
- 3. Зубчук, В.И. Справочник по цифровой схемотехнике / В.И. Зубчук, В.П. Сигорский, Шкуро А.Н. К.: Тэхника, 1990. 448 с.
- 4. Федорков, Б. Г. Микросхемы ЦАП и АЦП: функционирование, параметры, применение/ Б. Г. Федорков, В.А. Телец. Энергоатомиздат, 1990. $320~\rm c.$
- 5. Усатенко, С.Т. Выполнение электрических схем по ЕСКД: Справочник / С.Т. Усатенко, Т.К. Кравченко, М.В. Терехова. М.: Издательство стандартов, 1989. 325с.

Учебно-методическое обеспечение

- 1. Методические указания к выполнению лабораторных работ по дисциплине «Схемотехника» (для студентов специальности 15.03.04) / Сост. А.Н. Баранов. Алчевск: ДонГТУ, 2018. 65 с.
- 2. Методические указания к выполнению индивидуальных заданий по курсу «Схемотехника» (для студентов специальности 15.03.04) / Сост. А.Н. Баранов, Алчевск: ДонГТУ,2017. 49 с.

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт. Алчевск. –URL: <u>library.dstu.education</u>. Текст: электронный.
- 2. Научно-техническая библиотека БГТУим. Шухова: официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст: электронный.
- 3. Консультант студента :электронно-библиотечная система. Mockва. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст: электронный.
- 4. Университетская библиотека онлайн :электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст: электронный.
- 5. Учебно-методическая литература для учащихся и студентов. URL: http://www.studmed.ru

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местоположение) учебных кабинетов
Специальные помещения: Мультимедийная аудитория. (60 посадочных мест),	ауд. <u>220</u> корп. <u>1</u>
компьютер Intel Celeron E-3300; - мультимедийный проектор BENG M-5111; - демонстрационный экран; - посадочные места по количеству обучающихся; - рабочее место преподавателя. Аудитории для проведения лабораторных работ: Оборудование компьютерного класса каф. АУИТ: - ПК Intel Celeron 2.0, 256, 40-6 шт; - Микропроцессорная лаборатория Микролаб 907 – 5 шт; - настольный лабораторный стенд OpAmp – 4 шт настольный лабораторный стенд TIGGER – 2 шт настольный лабораторный стенд LOGIC – 2 шт учебно-отладочный стенд EV8031/AVR — 4 шт контроллер Констар К201 лабораторная мебель: столы, стулья для студентов (по количеству обучающихся), рабочее место преподавателя.	ауд. <u>209</u> корп. <u>1</u>

Лист согласования РПД

Разработал

управления и инновационных технолог	ий СРС Р	 Н. Саратовский
(должность)	(подпись)	(Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
И.о. заведующего кафедрой автоматизированного управления и инновационных технологий	(подпись)	<u>Е.В. Мова</u> (ф.и.о.)
Протокол № <u>1</u> заседания кафедры автоматизированного управления и		
инновационных технологий		от <u>09. 07</u> . 20 <u>24</u> г
Согласовано		
Председатель методической комиссии по направлению подго 15.03.04 Автоматизация технологическ процессов и производств	отовки (уюдиис	<u>Е.В. Мова</u> (Ф.И.О.)
	V	
Начальник учебно-методического цен-	гра 🦪	О.А. Ковален

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения изменений		
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	
Основание:		
Подпись лица, ответственного за внесение изменений		