Документ подписан простой электронной подписью

Информация о владельце:

Дата подписания: 17.10.2025 15:06:46

Уникальный программный ключ:

ФИО: Вишневский Думитрий Арександровича УКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Должность: Ректор (МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

03474917c4d012283e5ad9%648355701834945ЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

(ФГБОУ ВО «ДонГТУ»)

Факультет

информационных технологий и автоматизации

производственных процессов

Кафедра

электромеханики им. А. Б. Зеленова

УТВЕРЖДАЮ И. о. проректора по учебной работе Д. В. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Моделирование тепловых процессов в электромеханике

(наименование дисциплины)

13.03.02 Электроэнергетика и электротехника

(код, наименование направления)

Электрические машины и аппараты

(профиль подготовки)

Квалификация

бакалавр

(бакалавр/специалист/магистр)

Форма обучения

очная, заочная

(очная, очно-заочная, заочная)

1Цели и задачи изучения дисциплины

Цель дисциплины: основных теоретических и научно-практических знаний в области математического моделирования тепловых процессов в электромеханике, а также использования пакетов прикладных математических программ для решения научных и инженерных задач, формирование основных научно-практических, общесистемных знаний в области моделирования.

Задачи изучения дисциплины: формирование базы знаний в области разработки моделей тепловых процессов, изучение вопросов применения различных способов и средств моделирования электротехнических комплексов и систем.

Дисциплина направлена на формирование компетенций ОПК-3, ПК-1 выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины: курс входит в БЛОК 1 «Дисциплины (модули)», часть блока «Элективные дисциплины (модули)» подготовки студентов по направлению 13.03.02 Электроэнергетика и электротехника (профиль «Электрические машины и аппараты»).

Дисциплина основывается на базе дисциплин: «Физика», «Информатика», «Высшая математика», «Теоретические основы электротехники».

Является основой для изучения следующих дисциплин: «Научноисследовательская работа», выпускная квалификационная работа.

Для изучения дисциплины необходимы компетенции, сформированные у студента для решения профессиональных задач деятельности, связанных с применением вычислительной техники и программного обеспечения в различных сферах деятельности.

Курс является фундаментом для формирования навыков и умений по моделированию электромеханических систем.

Общая трудоемкость освоения дисциплины составляет 5 зачетных единиц, 180 ак. ч. Программой дисциплины предусмотрены лекционные (48 ак.ч. для групп ЭМА, 8 ак.ч. для группы ЭМА-з), лабораторные занятия (48 ак.ч. для групп ЭМА, 8 ак.ч. для группы ЭМА-з) и самостоятельная работа студента (84 ак.ч. для групп ЭМА, 164 ак.ч. для группы ЭМА-з).

Дисциплина изучается на 4 курсе в 8 семестре для группы ЭМА и на 5 курсе в 10 семестре для группы ЭМА-з. Форма промежуточной аттестации – экзамен в 8 семестре ЭМА, экзамен в 10 семестре для группы ЭМА-з.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Моделирование электромеханических систем» направлен на формирование компетенций, представленных в таблице 3.1.

Таблица 3.1 – Компетенции, обязательные к освоению

Содержание компетенции	Код компетенции	Код и наименование индикатора достижения компетенции
Способен применять соответствующий физико- математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач	ОПК-3	ОПК-3.1. Применяет соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач
Способен: — использовать методы анализа, расчета и моделирования электромеханических преобразователей энергии, электромеханических систем и их элементов; — проектировать электромеханические и электромагнитные преобразователи энергии, электромеханические системы и их элементы в соответствии с техническим заданием, стандартами и нормативными требованиями, в том числе с использованием современных средств проектирования; — участвовать в проектировании объектов профессиональной деятельности, их энергоснабжении, в проектировании элементов систем управления; — применять методы автоматического управления при разработке электромеханических системам	ПК-1	ПК-1.3. Рассчитывает и моделирует электромеханические системы и их элементы на базе стандартных пакетов прикладных программ. Подготавливает разделы предпроектной документации на основе типовых технических решений, оформляет результаты проектных работ в соответствии с техническим заданием, стандартами, техническими условиями и другим нормативным документами

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 5 зачётных единицы, 180 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к лабораторным работам, текущему контролю, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 4.1.

Таблица 4.1- Распределение бюджета времени на СРС

Вид учебной работы	Всего ак. ч.	Ак. ч. по се- местрам 8
Аудиторная работа, в том числе:	96	96
Лекции (Л)	48	48
Практические занятия (ПЗ)	_	_
Лабораторные работы (ЛР)	48	48
Курсовая работа/курсовой проект	_	_
Самостоятельная работа студентов (СРС), в том числе:	84	84
Подготовка к лекциям	34	34
Подготовка к лабораторным работам	34	34
Подготовка к практическим занятиям / семинарам	0	0
Выполнение курсовой работы / проекта	0	0
Расчетно-графическая работа (РГР)	0	0
Реферат (индивидуальное задание)	0	0
Домашнее задание	0	0
Подготовка к контрольной работе	0	0
Подготовка к коллоквиумам	8	8
Аналитический информационный поиск	0	0
Работа в библиотеке	0	0
Подготовка к экзамену	8	8
Промежуточная аттестация – экзамен (Э)	Э	Э
Общая трудоемкость дисциплины		
Ак. ч.	180	180
3. e.	5	5

5 Содержание дисциплины

С целью освоения компетенций, приведенных в п. 3 дисциплина разбита на 4 темы:

- тема 1 (Роль и значение тепловых расчетов в электромеханике);
- тема 2 (Основы теплопередачи);
- тема 3 (Обзор методов теплового расчета и существующих моделей электрических машин);
- тема 4 (Конструктивные формы исполнения электрических машин и классификация систем охлаждения);

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблицах 5.1, 5.2 соответственно.

Таблица 5.1 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения, 8 семестр)

	иолици 3.1 - Виды запи	тип по днецивлите и распределение ау	•		-	7 - 1/	Ib B
№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость ак. ч.
1	Роль и значение тепловых расчетов в электромеханике	Тепловые расчеты электрических машин. Цель и задачи изучения дисциплины. Источники тепловыделения в электрических машинах. Требования к электрическим машинам по уровню нагрева. Нагревание и охлаждение однородного тела.	12	_	_	Применение численных методов расчета тепловых полей Математическое моделирование тепловых процессов в однофазном трансформаторе	16
	Основы теплопередачи	Основные понятия и определения. Теплопроводность. Теплоотдача. Теплопередача. Конвективный теплообмен, теплообмен излучением, закон Стефана-Больцмана. Поле температуры, его аналитическое и графическое представление.	8			Определение исходных данных для тепловой математической модели асинхронной машины	
2		Дифференциальное уравнение теплопроводности водности. Уравнение теплопроводности тела в трехмерном пространстве. Уравнение теплопроводности цилиндрического тела. Граничные и начальные условия при решении краевых задач теплопроводности.	8	_			8
3	Обзор методов теплового расчета и существующих моделей электрических машин	Основные группы методов тепловых расчетов: аналитические методы; методы аналогий; численные методы; приближенные методы тепловых расчетов	8	_	_	Математическое моделирование тепловых процессов в асинхронной машине Определение исходных	16
		Комбинированные методы тепловых расчетов электрических машин: тепловой	6			данных для тепловой ма-	

№ п/п	Наименование темы (раз- дела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
		расчет электрических машин методом эквивалентных тепловых схем; обобщенные тепловые схемы замещения; учет в тепловых задачах зависимости тепловых потерь в обмотках электрических машин от температуры				тематической модели генератора постоянного тока	
4	Конструктивные формы исполнения электрических машин и классификация систем охлаждения	Способы охлаждения электрических ма- шин: открытые и защищенные электриче- ские машины; машины с естественным охлаждением; машины с самовентиляци- ей; машины с независимым охлаждением; системы вентиляции электрических ма- шин	6	_	_	Математическое моделирование тепловых процессов в генераторе постоянного тока	8
	Всего аудиторных часов		48	_	_	-	48

Таблица 5.2 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

		<u> </u>					
№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
1	Обзор методов теплового расчета и существующих моделей электрических машин	Тепловые расчеты электрических машин, цель и задачи изучения, источники тепловыделения в электрических машинах	4	_	_	Математическое моделирование тепловых процессов в асинхронной машине	4
		Основные и комбинированные группы методов тепловых расчетов	4			Математическое моделирование тепловых процессов в генераторе постоянного тока	4
	Всего аудиторных часов			_	_	_	8

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала

(https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf).

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 6.1.

Таблица 6.1 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компе- тенции	Способ оценивания	Оценочное средство
ОПК-3, ПК-1	Экзамен	Комплект контролирующих материалов для экзамена

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- тестовый контроль или устный опрос на коллоквиумах (1 коллоквиум) – всего 40 баллов;
 - лабораторные работы всего 60 баллов.

Экзамен (зачет) проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Экзамен (зачет)по дисциплине «Моделирование электромеханических систем» проводятся по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время сессии студент имеет право повысить итоговую оценку либо в форме устного собеседования по приведенным ниже вопросам (п. 6.4), либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.2.

Таблица 6.2 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале	
учебной деятельности	зачёт/экзамен	
0-59	Не зачтено/неудовлетворительно	
60-73	Зачтено/удовлетворительно	
74-89	Зачтено/хорошо	
90-100	Зачтено/отлично	

6.2 Домашние задания

Для студентов очной формы обучения домашние задания не предусмотрены. Студены заочной формы обучения в каждом семестре выполняют контрольную работу по имеющимся методическим указаниям.

6.3 Темы рефератов

Написание рефератов при изучении дисциплины не предусмотрено.

6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Коллоквиум №1. Основы теплопередачи в электрических машинах

- 1. Какие существуют источники тепловыделения в электрических машинах?
- 2. Какие требования предъявляются к электрическим машинам по уровню нагрева, и чем они обусловлены?
 - 3. Как происходит процесс нагревания и охлаждения однородных тел?
- 4. Что такое теплопроводность, и от каких факторов зависит ее величина?
- 5. Что такое теплоотдача, и какова ее роль в тепловой нагрузке электрических машин?
 - 6. Какие механизмы лежат в основе теплопередачи?
 - 7. В чем заключается суть конвективного теплообмена?
- 8. Как происходит теплообмен излучением, и что описывает закон Стефана-Больцмана?
- 9. Что такое поле температуры, и как его можно представить аналитически и графически?

- 10. Как выглядит уравнение теплопроводности для тела в трехмерном пространстве?
- 11. Какое уравнение описывает теплопроводность цилиндрического тела?
- 12. Какие граничные и начальные условия учитываются при решении краевых задач теплопроводности?

Коллоквиум №2. Методы теплового расчета и существующие модели электрических машин

- 13. Какие аналитические методы используются для тепловых расчетов?
- 14. Как применяются методы аналогий в тепловых расчетах?
- 15. Какие численные методы применяются для тепловых расчетов?
- 16. Какие приближенные методы используются в тепловых расчетах?
- 17. Как проводится тепловой расчет электрических машин с использованием метода эквивалентных тепловых схем?
- 18. Что представляют собой обобщенные тепловые схемы замещения и как они применяются?
- 19. Как учитывается зависимость тепловых потерь в обмотках электрических машин от температуры в тепловых задачах?
- 20. В чем различие между открытыми и защищенными электрическими машинами?
- 21. Каковы особенности теплового режима машин с естественным охлаждением?
 - 22. Как работает система охлаждения машин с самовентиляцией?
- 23. Каковы преимущества и особенности машин с независимым охлаждением?
- 24. Какие системы вентиляции применяются в электрических машинах и как они влияют на тепловой режим?

6.5 Вопросы для подготовки к экзаменам

- 1. Какие существуют источники тепловыделения в электрических машинах?
- 2. Какие требования предъявляются к электрическим машинам по уровню нагрева, и чем они обусловлены?
 - 3. Как происходит процесс нагревания и охлаждения однородных тел?
- 4. Что такое теплопроводность, и от каких факторов зависит ее величина?

- 5. Что такое теплоотдача, и какова ее роль в тепловой нагрузке электрических машин?
 - 6. Какие механизмы лежат в основе теплопередачи?
 - 7. В чем заключается суть конвективного теплообмена?
- 8. Как происходит теплообмен излучением, и что описывает закон Стефана-Больцмана?
- 9. Что такое поле температуры, и как его можно представить аналитически и графически?
- 10. Как выглядит уравнение теплопроводности для тела в трехмерном пространстве?
- 11. Какое уравнение описывает теплопроводность цилиндрического тела?
- 12. Какие граничные и начальные условия учитываются при решении краевых задач теплопроводности?
 - 25. Какие аналитические методы используются для тепловых расчетов?
 - 26. Как применяются методы аналогий в тепловых расчетах?
 - 27. Какие численные методы применяются для тепловых расчетов?
 - 28. Какие приближенные методы используются в тепловых расчетах?
- 29. Как проводится тепловой расчет электрических машин с использованием метода эквивалентных тепловых схем?
- 30. Что представляют собой обобщенные тепловые схемы замещения и как они применяются?
- 31. Как учитывается зависимость тепловых потерь в обмотках электрических машин от температуры в тепловых задачах?
- 32. В чем различие между открытыми и защищенными электрическими машинами?
- 33. Каковы особенности теплового режима машин с естественным охлаждением?
 - 34. Как работает система охлаждения машин с самовентиляцией?
- 35. Каковы преимущества и особенности машин с независимым охлаждением?
- 36. Какие системы вентиляции применяются в электрических машинах и как они влияют на тепловой режим?

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

1. Дьяконов В. П.. МАТLAВ [Электронный ресурс]:Полный самоучитель. - Саратов: Профобразование, 2019. - 768 с. — Режим доступа: http://www.iprbookshop.ru/87981.html (дата обращения: 20.08.2024).

Дополнительная литература

- 1. Костенко, М.П. Электрические машины [Текст]: учеб. для вузов в 2-х частях. Ч.1 Машины постоянного тока. Трансформаторы / М.П. Костенко, Л.М. Пиотровский. Л.: Энергия, 1972. 544 с. Режим доступа: https://m.booksee.org/book/652789 (дата обращения: 20.08.2024).
- 2. Костенко, М.П. Электрические машины [Текст] : учеб. для вузов в 2-х частях. Ч.2 Машины переменного тока / М.П. Костенко, Л.М. Пиотровский. Л. : Энергия, 1973.-648 с. Режим доступа: https://m.booksee.org/book/652789 (дата обращения: 20.08.2024).
- 3. Вольдек А. И. Электрические машины: Введение в электромеханику. Машины постоянного тока и трансформаторы: учебник для вузов / А. И. Вольдек, В. В. Попов. СПб. : Питер, 2008. 320 с. : ил. (Учебник для вузов). ISBN 978-5-469-01380-8 : 344-00. Режим доступа: https://www.elec.ru/library/nauchnaya-i-tehnicheskaya-literatura/elektricheskiemashiny-voldek/ (дата обращения: 20.08.2024).
- 4. Гуревич Э.И., Рыбин Ю.Л. Переходные тепловые процессы в электрических машинах / Л.: Энергоатомиздат 1983. Режим доступа: https://openbooks.itmo.ru/ru/lib_book/36604/36604.pdf (дата обращения: 20.08.2024).
- 5. Беспалов, В.Я. Нестационарные тепловые расчеты в электрических машинах / В.Я. Беспалов, Е.А. Дунайкина, Ю.А. Мощинский; под ред. Б.К. Клокова. М.: МЭИ, 1987. 72 с.
- 6. Борисенко, А.И. Аэродинамика и теплопередача в электрических машинах. / А.И. Борисенко, В.Г. Данько, А.И. Яковлев. М.: Энергия, 1974. 560 с. Режим доступа: https://studfile.net/preview/19369802/ (дата обращения: 20.08.2024).
- 7. Борисенко, А.И. Охлаждение промышленных электрических машин. / А.И. Борисенко, О.Н. Костиков, А.И. Яковлев. М.: Энергоатомиздат, 1983.-

- 269с. Режим доступа: https://ru.z-lib.fm/book/2958478/2d8e31/Охлаждение-пр (дата обращения: 20.08.2024).
- 8. Сипайлов, Г.А. Тепловые, гидравлические и аэродинамические расчеты в электрических машинах : учеб. для вузов. / Г.А. Сипайлов, Д.И. Санников, В.А. Жадан. М. : Высшая школа, 1989. 239 с. Режим доступа: https://www.elec.ru/library/nauchnaya-i-tehnicheskaya (дата обращения: 20.08.2024).

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт.— Алчевск. URL: <u>library.dstu.education</u>.— Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст : электронный.
- 3. Консультант студента :электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст : электронный.
- 4. Университетская библиотека онлайн :электронно-библиотечная система.— URL: http://biblioclub.ru/index.php?page=main_ub_red.— Текст : электронный.
- 5. IPR BOOKS :электронно-библиотечная система.—Красногорск. URL: http://www.iprbookshop.ru/. —Текст : электронный.
- 6. Федеральная служба по экологическому, технологическому и атомному надзору (Ростехнадзор) : официальный сайт. Москва. https://www.gosnadzor.ru/. —Текст : электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям $\Phi\Gamma$ OC BO.

Материально-техническое обеспечение представлено в таблице 8.1.

Таблица 8.1 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местополо- жение) учебных кабинетов
Лаборатория моделирования электромеханических процессов	ауд. <u>1229</u>
кафедры электромеханики им. А.Б. ЗеленоваДонГТУ(25 посадоч-	иуд. <u>122)</u>
ных мест), оборудованный учебной мебелью, компьютерами с	
неограниченным доступом к сети Интернет, включая доступ к	
ЭБС:	
- Компьютер Intel Celeron 2,8 GHz;	
- Компьютер НЕДУ;	
- Компьютер 80386DX;	
- Компьютер Intel Celeron 600 MHz;	
- КомпьютерIntelCeleron 2.66 Ghz;	
- КомпьютерIntelCeleron 1,3 Ghz.	
- КомпьютерAthlonXP 1.92 Ghz;	
- КомпьютерAMDDuron 1.79 Hhz;	
- КомпьютерAMDAthlon 3200 Mhz;	
- Компьютер Intel Celeron 420 1.66 Ghz;	
- Компьютер Intel Celeron 420 1.66 Ghz;	
- Компьютер Intel Celeron 420 1.66 Ghz;	
- Компьютер AMD Athlon 64 x2 Dual Core Processor 400+.	
Доска аудиторная– 1 шт.	

Лист согласования РПД

Разработал доц. кафедры электромеханики им. А. Б. Зеленова (должность)	Десенту (подпись)	<u>Д. И. Морозов</u> (Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
И.о. зав. кафедрой	(подпиев)	<u>Д. И. Морозов</u> (Ф.И.О.)
Протокол № 1 заседания кафедры электромеханики им. А.Б. Зеленова от 22	2.08.2024 г.	
И.о. декана факультета ИТиАПП	(подпись)	В. В. Дьячкова (Ф.И.О.)
Согласовано		
Председатель методической комиссии по направлению подготовки 13.04.02 Электроэнергетика и электротехника	<u>Логе</u> (подиись)	Л. Н. Комаревцева (Ф.И.О.)
Начальник учебно-методического центра	а (подпись)	<u> О. А. Коваленко</u> (Ф.И.О.)

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения			
изменений			
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:		
Основ	зание:		
Подпись лица, ответственного за внесение изменений			