Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Вишневский Дмитрий Александрович

Должность: РАИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Дата подписания: 17.10.2025 15:06:46

(МИНОБРНАУКИ РОССИИ)

Уникальный программный ключ:

03474917c4d012283e5ad996a48a5e**РЕДЕРАЛЬН**ОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

(ФГБОУ ВО «ДонГТУ»)

Факультет

информационных технологий и автоматизации

производственных процессов

Кафедра

электромеханики им. А. Б. Зеленова

ТВЕРЖДАЮ 1. о, проректора по учебной работе Д. В. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Моделирование электромеханических систем

(наименование дисциплины)

13.03.02 Электроэнергетика и электротехника

(код, наименование направления)

Электрические машины и аппараты

(профиль подготовки)

Квалификация

бакалавр

(бакалавр/специалист/магистр)

Форма обучения

очная, заочная

(очная, очно-заочная, заочная)

1Цели и задачи изучения дисциплины

Цель дисциплины: формирование навыков использования методов математического моделирования для описания основных электромеханических объектов и систем, а также использования пакетов прикладных математических программ для решения научных и инженерных задач, формирование основных научно-практических, общесистемных знаний в области моделирования электромеханических систем.

Задачи изучения дисциплины: формирование базы знаний в области разработки моделей электромеханических систем, создание условий, обеспечивающих овладение студентами навыками, умениями и приобретение ими опыта при создании и анализе математических моделей систем, изучение вопросов применения различных способов и средств моделирования электротехнических комплексов и систем.

Дисциплина направлена на формирование компетенций ОПК-1, ОПК-4, ПК-1 выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины: курс входит в БЛОК 1 «Дисциплины (модули)», часть блока «Элективные дисциплины (модули)» подготовки студентов по направлению 13.03.02 Электроэнергетика и электротехника (профиль «электрические машины и аппараты»).

Дисциплина основывается на базе дисциплин: «Информатика», «Высшая математика», «Теоретические основы электротехники».

Является основой для изучения следующих дисциплин: «Научноисследовательская работа», выпускная квалификационная работа.

Для изучения дисциплины необходимы компетенции, сформированные у студента для решения профессиональных задач деятельности, связанных с применением вычислительной техники и программного обеспечения в различных сферах деятельности.

Курс является фундаментом для формирования навыков и умений по моделированию электромеханических систем.

Общая трудоемкость освоения дисциплины составляет 5 зачетных единиц, 180 ак. ч. Программой дисциплины предусмотрены лекционные (48 ак.ч. для групп ЭМА, 8 ак.ч. для группы ЭМА-з), лабораторные занятия (48 ак.ч. для групп ЭМА, 8 ак.ч. для группы ЭМА-з) и самостоятельная работа студента (84 ак.ч. для групп ЭМА, 164 ак.ч. для группы ЭМА-з).

Дисциплина изучается на 4 курсе в 8 семестре для группы ЭМА и на 5 курсе в 10 семестре для группы ЭМА-з. Форма промежуточной аттестации – экзамен в 8 семестре ЭМА, экзамен в 10 семестре для группы ЭМА-з.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Моделирование электромеханических систем» направлен на формирование компетенций, представленных в таблице 3.1.

Таблица 3.1 – Компетенции, обязательные к освоению

Содержание компетенции	Код компетенции	Код и наименование индикатора достижения компетенции
Способен применять соответствующий физико- математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач	ОПК-3	ОПК-3.1. Применяет соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач
Способен: — использовать методы анализа, расчета и моделирования электромеханических преобразователей энергии, электромеханических систем и их элементов; — проектировать электромеханические и электромагнитные преобразователи энергии, электромеханические системы и их элементы в соответствии с техническим заданием, стандартами и нормативными требованиями, в том числе с использованием современных средств проектирования; — участвовать в проектировании объектов профессиональной деятельности, их энергоснабжении, в проектировании элементов систем управления; — применять методы автоматического управления при разработке электромеханических системам	ПК-1	ПК-1.3. Рассчитывает и моделирует электромеханические системы и их элементы на базе стандартных пакетов прикладных программ. Подготавливает разделы предпроектной документации на основе типовых технических решений, оформляет результаты проектных работ в соответствии с техническим заданием, стандартами, техническими условиями и другим нормативным документами

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 5 зачётных единицы, 180 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к лабораторным работам, текущему контролю, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 4.1.

Таблица 4.1- Распределение бюджета времени на СРС

Вид учебной работы	Всего ак. ч.	Ак. ч. по се- местрам 8
Аудиторная работа, в том числе:	96	96
Лекции (Л)	48	48
Практические занятия (ПЗ)	_	_
Лабораторные работы (ЛР)	48	48
Курсовая работа/курсовой проект	_	_
Самостоятельная работа студентов (СРС), в том числе:	84	84
Подготовка к лекциям	34	34
Подготовка к лабораторным работам	34	34
Подготовка к практическим занятиям / семинарам	0	0
Выполнение курсовой работы / проекта	0	0
Расчетно-графическая работа (РГР)	0	0
Реферат (индивидуальное задание)	0	0
Домашнее задание	0	0
Подготовка к контрольной работе	0	0
Подготовка к коллоквиумам	8	8
Аналитический информационный поиск	0	0
Работа в библиотеке	0	0
Подготовка к экзамену	8	8
Промежуточная аттестация – экзамен (Э)	Э	Э
Общая трудоемкость дисциплины		
Ак. ч.	180	180
3. e.	5	5

5 Содержание дисциплины

С целью освоения компетенций, приведенных в п. 3 дисциплина разбита на 8 тем:

- тема 1 (Основные понятия, определения, возможности и виды моделирования электромеханических систем);
 - тема 2 (Классификация математических моделей);
 - тема 3 (Математические модели механических систем электроприводов);
 - тема 4 (Математическое моделирование электромеханических систем);
 - тема 5 (Моделирование на ЭВМ электромеханических систем);
- тема 6 (Обзор программных средств, используемых при моделировании электромеханических систем);
- тема 7 (Особенности математического описания и моделирования электромеханических систем);
 - тема 8 (Особенности моделирования преобразователей).

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблицах 5.1, 5.2 соответственно.

Таблица 5.1 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения, 8 семестр)

	таолица 3.1 — виды занятии по дисциплине и распределение аудиторных часов (очная форма обучения, в семестр)						
№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
1	Основные понятия, определения, возможности и виды моделирования электромеханических систем	Основные понятия, определения, возможности и виды моделирования электромеханических систем. Общие сведения о моделировании технических объектов и систем. Характеристика объектов моделирования. Требования, предъявляемые к математическим моделям	6	-	_	Пакет Matlab. Состав пакета. Интерфейс	4
2	Классификация математических моделей	Классификация математических моделей. Формы представления математических моделей. Взаимосвязь векторноматричной формы описания объекта с его передаточной функцией	6	_	_	Пакет Matlab. Построение графиков. Работа с векторами и матрицами	8
3	Математические модели механических систем электроприводов	Математические модели механических систем электроприводов. Математическая модель механической части электропривода в абсолютных единицах	6	-	_	Пакет Matlab. Создание моделей в среде «Simulink»	9
4	Математическое моде- лирование электромеха- нических систем	Математическое моделирование электромеханических систем. Основные методы, этапы и особенности моделирования на ЭВМ систем, математическое описание которых представлено в виде дифференциальных уравнений	6	_	_	Пакет Matlab. Модель ЭМС в «SimPowerSystem»	6

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
5	Моделирование на ЭВМ электромеханических систем.	Моделирование на ЭВМ электромеханических систем. Понятие о численном интегрировании дифференциальных уравнений. Источники погрешностей численных методов интегрирования уравнений. Контроль и оценка точности моделирования	6	_	_	Пакет Matlab. Модель ЭМС в «SimPowerSystem»	
6	Обзор программных средств, используемых при моделировании электромеханических систем	Обзор программных средств, используемых при моделировании электромеханических систем. Преимущества и недостатки пакетов прикладных программ. Пакет моделирования MatLab. Работа с MatLab с использованием пакетов прикладных программ ControlSystemToolbox и Simulink	6			Пакет Matlab. Моделирование AM в «SimPowerSystem»	
7	Особенности математического описания и моделирования электромеханических систем	Особенности математического описания и моделирования электромеханических систем Математическое описание силовых взаимодействий в электромеханических системах. Способы получения обобщенных математических моделей электромеханических систем. Учет и определение эквивалентных параметров элементов электромеханических систем	6			Пакет Matlab. Моделирование СМ в «SimPowerSystem»	
8	Особенности моделиро- вания преобразователей	Особенности моделирования вентильных преобразователей. Особенности моделирования широтно-импульсных модуляторов и преобразователей. Моделирование электродвигателей постоянного тока с независимым возбуждением при управлении	6			Пакет Matlab. Моделирование ДПТ в «SimPowerSystem»	

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
		по цепи якоря. Особенности моделирования электродвигателей постоянного тока с последовательным возбуждением. Особенности моделирования электромеханических процессов в асинхронных электродвигателях. Особенности моделирования электромеханических процессов в синхронных электродвигателях.					
	Всего аудиторных часов		48	_	_	_	48

Таблица 5.2 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

№ п/п		Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
1	Основные понятия, определения, возможности и виды моделирования электромеханических систем.	Основные понятия, определения, возможности и виды моделирования электромеханических систем. Общие сведения о моделировании технических объектов и систем. Характеристика объектов моделирования.	8	_	_	Пакет Matlab. Состав пакета. Интерфейс	8
	Всего аудиторных часов		8	_	_	_	8

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала

(https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf).

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 6.1.

Таблица 6.1 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компе- тенции	Способ оценивания	Оценочное средство
ОПК-3, ПК-1	Экзамен	Комплект контролирующих материалов для экзамена

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- тестовый контроль или устный опрос на коллоквиумах (1 коллоквиум) – всего 40 баллов;
 - лабораторные работы всего 60 баллов.

Экзамен (зачет) проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Экзамен (зачет)по дисциплине «Моделирование электромеханических систем» проводятся по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время сессии студент имеет право повысить итоговую оценку либо в форме устного собеседования по приведенным ниже вопросам (п. 6.4), либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.2.

Таблица 6.2 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале	
учебной деятельности	зачёт/экзамен	
0-59	Не зачтено/неудовлетворительно	
60-73	Зачтено/удовлетворительно	
74-89	Зачтено/хорошо	
90-100	Зачтено/отлично	

6.2 Домашние задания

Для студентов очной формы обучения домашние задания не предусмотрены. Студены заочной формы обучения в каждом семестре выполняют контрольную работу по имеющимся методическим указаниям.

6.3 Темы рефератов

Написание рефератов при изучении дисциплины не предусмотрено.

6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Тема 1 Основные понятия, определения, возможности и виды моделирования электромеханических систем

- 1) Каковы особенности воспроизведения различных процессов с использованием компьютерных программ для имитации и визуализации динамических систем?
 - 2) Что включает в себя методология компьютерного моделирования?
 - 3) Каковы особенности имитационного моделирования?
 - 4) Как определяется эффективность функционирования объекта?
 - 5) Как осуществляется формализация объекта?
- 6) Каковы особенности проектирования реальных процессов с использованием специализированных компьютерных программ?

Тема 2Классификация математических моделей. Формы представления математических моделей. Взаимосвязь векторно-матричной формы описания объекта с его передаточной функцией

- 1) Какие основные критерии используются для классификации математических моделей?
 - 2) В каких формах могут быть представлены математические модели?

- 3) Как взаимосвязаны векторно-матричная форма описания объекта и его передаточная функция?
- 4) Какие преимущества и недостатки имеет векторно-матричная форма представления математических моделей?
- 5) Как передаточная функция объекта может быть получена из его векторно-матричного описания?

Тема 3Математические модели механических систем электроприводов. Математическая модель механической части электропривода в абсолютных единицах

- 1) Какие основные элементы включаются в математические модели механических систем электроприводов?
- 2) Как описывается математическая модель механической части электропривода в абсолютных единицах?
- 3) Какие физические величины учитываются при построении математической модели механической части электропривода?
- 4) Какие упрощения или допущения могут быть использованы при создании математической модели механической системы?
- 5) Как математическая модель механической части электропривода связана с динамическими характеристиками системы?

Тема 4Математическое моделирование электромеханических систем. Основные методы, этапы и особенности моделирования на ЭВМ систем, математическое описание которых представлено в виде дифференциальных уравнений

- 1) Какие основные методы используются при математическом моделировании электромеханических систем?
- 2) Какие этапы включает процесс моделирования систем с математическим описанием в виде дифференциальных уравнений?
- 3) Какие особенности необходимо учитывать при моделировании электромеханических систем на ЭВМ?
- 4) Как дифференциальные уравнения применяются для математического описания электромеханических систем?
- 5) Какие инструменты или программные средства наиболее эффективны для моделирования систем с дифференциальными уравнениями на ЭВМ?

Тема 5Моделирование на ЭВМ электромеханических систем. Понятие о численном интегрировании дифференциальных уравнений. Источники погрешностей численных методов интегрирования уравнений. Контроль и оценка точности моделирования

1) Какие основные этапы включает моделирование электромеханиче-

ских систем на ЭВМ?

- 2) В чем заключается суть численного интегрирования дифференциальных уравнений при моделировании систем?
- 3) Какие источники погрешностей возникают при использовании численных методов интегрирования?
- 4) Как осуществляется контроль точности моделирования электромеханических систем?
- 5) Какие методы оценки точности численного интегрирования дифференциальных уравнений наиболее эффективны?

Тема 6 Обзор программных средств, используемых при моделировании электромеханических систем. Преимущества и недостатки пакетов прикладных программ. Пакет моделирования MatLab. Paбoma c MatLab c использованием пакетов прикладных программ ControlSystemToolbox и Simulink.

- 1) Какие программные средства наиболее часто используются для моделирования электромеханических систем?
- 2) Какие преимущества и недостатки имеют пакеты прикладных программ для моделирования, такие как MatLab?
- 3) Как пакет MatLab применяется для моделирования электромеханических систем?
- 4) Какие возможности предоставляют пакеты прикладных программ ControlSystemToolbox и Simulink в MatLab?
- 5) Как работа с Simulink и ControlSystemToolbox упрощает процесс моделирования и анализа электромеханических систем?
- Тема 7 Особенности математического описания и моделирования электромеханических систем
- 1) Какие особенности математического описания характерны для электромеханических систем?
- 2) Какие методы используются для моделирования электромеханических систем?
- 3) Какие физические процессы учитываются при математическом описании электромеханических систем?
- 4) Какие трудности могут возникнуть при моделировании электромеханических систем?
- 5) Как выбор математической модели влияет на точность и адекватность описания электромеханических систем?

Тема 8 Особенности моделирования преобразователей.

1) Какие особенности необходимо учитывать при моделировании тран-

зисторных преобразователей?

- 2) Чем отличается моделирование вентильных преобразователей от моделирования транзисторных?
- 3) Какие методы используются для моделирования вентильных преобразователей?
- 4) Какие параметры и характеристики наиболее важны при моделировании транзисторных и вентильных преобразователей?
- 5) Какие трудности могут возникнуть при моделировании транзисторных и вентильных преобразователей, и как их можно преодолеть?

6.5 Вопросы для подготовки к экзаменам

- 1) Каковы особенности воспроизведения различных процессов с использованием компьютерных программ для имитации и визуализации динамических систем?
 - 2) Что включает в себя методология компьютерного моделирования?
 - 3) Каковы особенности имитационного моделирования?
 - 4) Как определяется эффективность функционирования объекта?
 - 5) Как осуществляется формализация объекта?
- 6) Каковы особенности проектирования реальных процессов с использованием специализированных компьютерных программ?
- 7) Как реализуется и используется модель на практике? Каковы особенности применения результатов моделирования?
- 8) Как разработать моделирующий алгоритм для среды Simulink и спланировать вычислительный эксперимент?
- 9) Как используются Simulink и MatLab для создания динамических систем?
- 10) Каковы общие подходы к математическому моделированию? Какие существуют виды моделей? Какие требования и допущения применяются при моделировании? Как описываются типовые линейные и нелинейные звенья?
- 11) Какое современное программное обеспечение используется для моделирования электроприводов?
- 12) Как реализуются линеаризованные модели двигателей постоянного и переменного тока с использованием современных программных средств?
- 13) Как проводится математическое моделирование разомкнутой системы автоматического управления двигателем постоянного тока в функции времени, скорости и тока?
 - 14) Как осуществляется математическое моделирование замкнутых си-

стем электропривода постоянного тока?

- 15) Как моделируется мягкий пуск и остановка двигателя переменного тока?
 - 16) Какие методы используются для моделирования электропривода?
- 17) Как моделируются электромеханические преобразователи в электроприводе?
- 18) Каковы общие законы электромеханического преобразования электрической энергии?
- 19) Как математически описываются физические процессы в двигателе постоянного тока независимого возбуждения (ДПТ НВ)?
 - 20) Каковы полная и упрощенная структурные модели ДПТ НВ?
- 21) Как выглядит линеаризированная структурная схема двигателя при двухзонном регулировании?
- 22) Как математически представляются тиристорные, транзисторные широтно-импульсные и частотные преобразователи?
- 23) Как используются датчики скорости, тока, напряжения и угла поворота при разработке математических моделей электроприводов?
- 24) Как моделируются физические процессы в асинхронном двигателе (АД)? Какова структурная модель электромеханического преобразования в АД?
- 25) Как моделируются физические процессы в синхронном двигателе? Какова его структурная модель?
- 26) Как моделируются регулируемые источники электрической энергии?
- 27) Каковы математические модели тиристорного преобразователя постоянного тока? Как выбирается математическая модель тиристорного преобразователя?
 - 28) Каковы математические модели преобразователей частоты?
- 29) Как моделируются датчики в системах управления электроприводов?
- 30) Каковы математические модели датчиков угловой скорости, постоянного и переменного тока, магнитного потока?
- 31) Какое специальное программное обеспечение используется для решения задач моделирования систем на ЦВМ?
- 32) Как рассчитываются и моделируются переходные процессы в электромеханических системах?
 - 33) Какие существуют способы моделирования СИФУ?
 - 34) Каково назначение основных функциональных блоков ШИП? Как

моделируются ШИП (математическая и имитационная модели)?

- 35) Какие допущения применяются при различных способах моделирования тиристорного преобразователя и других полупроводниковых преобразователей?
- 36) Какие допущения используются при моделировании двигателя постоянного тока независимого возбуждения и асинхронного двигателя?
- 37) Какие допущения применяются при моделировании датчика положения ротора синхронной машины? Как сравниваются результаты моделирования синхронной машины в различных системах осей?

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Дьяконов В. П.. МАТLAВ [Электронный ресурс]:Полный самоучитель. Саратов: Профобразование, 2019. 768 с. Режим доступа: http://www.iprbookshop.ru/87981.html (дата обращения: 20.08.2024).
- 2. Миловзоров, О. В. Электроника: учебник для вузов / О. В. Миловзоров, И. Г. Панков. 8-е изд., перераб. и доп. Москва: Издательство Юрайт, 2025. 397 с. (Высшее образование). ISBN 9785534186048. URL: https://urait.ru/bcode/559878 (дата обращения: 20.08.2024).

Дополнительная литература

- 1. Лазарева Н. М., Яров В. М., Белов Г. А.. Компьютерное моделирование. SimPowerSystems:практикум [для 2 курса по специальности "Промышленная электроника"]. Чебоксары: Изд-во Чуваш. ун-та, 2016. 67с.
- 2. Фролов В. Я., Смородинов В. В.. Устройства силовой электроники и преобразовательной техники с разомкнутыми и замкнутыми системами управления в среде Matlab Simulink [Электронный ресурс]:учебное пособие. Санкт-Петербург: Лань, 2018. 332 с. Режим доступа: https://e.lanbook.com/book/106890. (дата обращения: 20.08.2024).
- 3. Семенова Т. И., Шакин В. Н., Юсков И. О., Юскова И. Б.. Введение в математический пакет Matlab [Электронный ресурс]:Учебно-методическое пособие. Москва: Московский технический университет связи и информатики, 2016. 88 с. Режим доступа: http://www.iprbookshop.ru/61469.html(дата обращения: 20.08.2024)
- 4. Компьютерное моделирование электромеханических систем постоянного и переменного тока в среде MATLAB Simulink : учебное пособие / Ю. Н. Дементьев, В. Б. Терехин, И. Г. Однокопылов, В. М. Рулевский. Томск : Томский политехнический университет, 2018. 497 с. ISBN 978-5-4387-0819-3. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/98983.html (дата обращения: 20.05.2024).

Учебно-методическое обеспечение

1. Методические указания к выполнению лабораторных работ по курсу «Моделирование электромеханических систем» : (для студ. напр. подготовки 13.03.02 «Электроэнергетика и электротехника») / сост. И.А. Карпук; Каф. электромеханики им. А.Б.Зеленова . — Алчевск : ФГБОУ ВО «ДонГТУ», 2024. —

 $64c. https://moodle.dstu.education/pluginfile.php/62432/mod_resource/content/1/M\\ V\%20MЭMC.pdf$

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт.— Алчевск. URL: <u>library.dstu.education</u>.— Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст : электронный.
- 3. Консультант студента :электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст : электронный.
- 4. Университетская библиотека онлайн :электронно-библиотечная система.— URL: http://biblioclub.ru/index.php?page=main_ub_red.— Текст : электронный.
- 5. IPR BOOKS :электронно-библиотечная система.—Красногорск. URL: http://www.iprbookshop.ru/. —Текст : электронный.
- 6. Федеральная служба по экологическому, технологическому и атомному надзору (Ростехнадзор) : официальный сайт. Москва. https://www.gosnadzor.ru/. —Текст : электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям $\Phi\Gamma$ OC BO.

Материально-техническое обеспечение представлено в таблице 8.1.

Таблица 8.1 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местополо- жение) учебных кабинетов
Лаборатория моделирования электромеханических процессов	ауд. <u>1229</u>
кафедры электромеханики им. А.Б. ЗеленоваДонГТУ(25 посадоч-	
ных мест), оборудованный учебной мебелью, компьютерами с	
неограниченным доступом к сети Интернет, включая доступ к	
ЭБС:	
- Компьютер Intel Celeron 2,8 GHz;	
- Компьютер НЕДУ;	
- Компьютер 80386DX;	
- Компьютер Intel Celeron 600 MHz;	
- КомпьютерIntelCeleron 2.66 Ghz;	
- КомпьютерIntelCeleron 1,3 Ghz.	
- КомпьютерAthlonXP 1.92 Ghz;	
- КомпьютерAMDDuron 1.79 Hhz;	
- КомпьютерAMDAthlon 3200 Mhz;	
- Компьютер Intel Celeron 420 1.66 Ghz;	
- Компьютер Intel Celeron 420 1.66 Ghz;	
- Компьютер Intel Celeron 420 1.66 Ghz;	
- Компьютер AMD Athlon 64 x2 Dual Core Processor 400+.	
Доска аудиторная– 1 шт.	

Лист согласования РПД

Разработал доц. кафедры электромеханики им. А. Б. Зеленова (должность)	Минет (подпись)	<u>Д. И. Морозов</u> (Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
		1
И.о. зав. кафедрой	(подпись)	<u>Д. И. Морозов</u> (Ф.И.О.)
Протокол № 1 заседания кафедры электромеханики им. А.Б. Зеленова от 2	2.08.2024 г.	
И.о. декана факультета ИТиАПП	(подпись)	В. В. Дьячкова (Ф.И.О.)
Согласовано		
Председатель методической комиссии по направлению подготовки 13.04.02 Электроэнергетика и электротехника	Koeep	Л. Н. Комаревцева
	(подпусь)	(Ф.И.О.)
Начальник учебно-методического центр	оа (подпись)	<u>О. А. Коваленко</u> (Ф.И.О.)

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения изменений					
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ: ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ					
Основ	вание:				
Подпись лица, ответственного за внесение изменений					