Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Вишневский Дмитрий Александрович

Должность: Ректор

Дата подписания: 17.10.2025 15:06:46 Уникальный программный ключ:

03474917c4d012283e5ad996a48a5e70bf8da057

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

 Факультет
 информационных технологий и автоматизации производственных процессов

 Кафедра
 электромеханики им. А. Б. Зеленова

УТВЕРЖДАЮ И. о. проректора по учебной работе

🖊 Д. В. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

	(наименование дисциплины)
13.03.02	Электроэнергетика и электротехника
	(код, наименование направления)
Электропривод	ц и автоматика промышленных установок и
1	гехнологических комплексов
	(профиль подготовки)

Квалификация бакалавр (бакалавр/специалист/магистр)
Форма обучения очная, заочная (очная, очно-заочная, заочная)

1 Цели и задачи изучения дисциплины

Цели дисциплины. Целью изучения дисциплины «Теория автоматического управления» является формирование комплексного представления о решении теоретических и практических задач в профессиональной деятельности, связанной с проектированием, испытанием и эксплуатацией систем автоматического управления.

Задачи изучения дисциплины:

- изучение принципов построения систем автоматического управления;
- изучение протекания процессов в системах автоматического управления;
- освоение методов изучения процессов в системах автоматического управления;
- изучение методов коррекции и синтеза дискретных и непрерывных систем автоматического управления;
- освоение методов изучения и проектирования нелинейных систем автоматического управления.

Дисциплина направлена на формирование компетенций ОПК-3 и ПК-1 выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины: курс входит в БЛОК 1 «Дисциплины (модули)», часть блока 1, формируемую участниками образовательных отношений подготовки студентов по направлению 13.03.02 Электроэнергетика и электротехника (профиль «Электропривод и автоматика промышленных установок и технологических комплексов»).

Дисциплина основывается на базе дисциплин: «Физика», «Высшая математика», «Теоретические основы электротехники», «Электрические машины», «Теоретическая механика».

Является основой для изучения следующих дисциплин: «Системы управления электроприводами», «Автоматизация типовых технологических процессов и производственных установок», «Производственная (технологическая) практика», «Производственная (преддипломная) практика», выпускная квалификационная работа.

Для изучения дисциплины необходимы компетенции, сформированные у студента для решения профессиональных задач деятельности, связанных с применением систем автоматического управления в различных сферах деятельности.

Курс является фундаментом для формирования навыков и умений по расчетам и проектированию систем автоматического управления и их применению в электроприводах.

Общая трудоемкость освоения дисциплины составляет 9.5 зачетных единиц, 342 ак. ч. Программой дисциплины предусмотрены лекционные (72 ак. ч. для группы ЭМС, 12 ак. ч. для группы ЭМС-з), лабораторные занятия (45 ак. ч. для группы ЭМС, 10 ак. ч. для группы ЭМС-з), практические занятия (54 ак. ч. для группы ЭМС, 10 ак. ч. для группы ЭМС-з), и самостоятельная работа студента (171 ак. ч. для группы ЭМС, 310 ак. ч. для группы ЭМС-з).

Дисциплина изучается на 3 курсе в 5 и 6 семестрах для групп ЭМС и ЭМС-з. Форма промежуточной аттестации – экзамены в каждом семестре.

По дисциплине предусмотрена курсовая работа трудоемкостью 1 зачетная единица, 36 ак. ч. Группы ЭМС выполняют курсовой проект в 6 семестре. В группе ЭМС предусмотрены практические занятия (9 ак. ч. для группы ЭМС и 4 ак. ч. для гр. ЭМС-з) и самостоятельная работа студента (27 ак. ч. для групп ЭМС и 32 ак.ч. для группы ЭМС-з).

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Теория автоматического управления» направлен на формирование компетенций, представленных в таблице 3.1.

Таблица 3.1 – Компетенции, обязательные к освоению

Содержание компетен- ции	Код компетен- ции	Код и наименование индикатора достижения компетенции
Способен применять со- ответствующий физико- математический аппарат, методы анализа и моде- лирования, теоретиче- ского и эксперименталь- ного исследования при решении профессиональ- ных задач	ОПК-3	ОПК-3.1. Применяет соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач
Способен участвовать в проектировании объектов профессиональной деятельности	ПК-1	ПК-1.1. Выполняет сбор и анализ данных для проектирования, составляет конкурентно-способные варианты технических решений. ПК-1.2. Обосновывает выбор проектного решения.

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 9.5 зачётных единицы, 342 ак. ч. Трудоемкость курсовой работы составляет 1 зачетную единицу, 36 ак. ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к лабораторным работам, подготовку к практическим занятиям, текущему контролю, самостоятельное изучение материала и подготовку к экзаменам, выполнение курсового проекта.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 4.1.

Таблица 4.1 – Распределение бюджета времени на СРС

Description of any	Всего	Ак .ч. по с	семестрам
Вид учебной работы	ак. ч.	4	5
Аудиторная работа, в том числе:	171	99	72
Лекции (Л)	72	36	36
Практические занятия (ПЗ)	54	36	18
Лабораторные работы (ЛР)	45	27	18
Курсовая работа/курсовой проект	9	-	9
Самостоятельная работа студентов (СРС), в том числе:	171	81	90
Подготовка к лекциям	36	18	18
Подготовка к лабораторным работам	36	18	18
Подготовка к практическим занятиям / семинарам	27	18	9
Выполнение курсовой работы / проекта	36	-	36
Расчетно-графическая работа (РГР)	1	-	-
Реферат (индивидуальное задание)	-	1	-
Домашнее задание	18	18	-
Подготовка к контрольной работе	-	1	-
Подготовка к коллоквиумам	-	1	-
Аналитический информационный поиск	6	3	3
Работа в библиотеке	4	2	2
Подготовка к экзамену	8	4	4
Промежуточная аттестация – экзамен (Э)	Э	Э	Э
Общая трудоемкость дисциплины			
Ак. ч.	342	180	162
3. e.	9.5	5	4.5

5 Содержание дисциплины

С целью освоения компетенций, приведенных в п. 3 дисциплина разбита на 15 тем:

5-ый семестр

- тема 1 (Основные термины и понятия теории автоматического управления);
 - тема 2 (Математическое описание автоматических систем);
- тема 3 (Временные и частотные характеристики динамических звеньев);
- тема 4 (Алгебра передаточных функций и правила преобразования структурных схем);
- тема 5 (Критерии устойчивости линейных систем автоматического управления);
- тема 6 (Анализ качества линейных автоматических систем управления);
 - тема 7 (Синтез линейных систем автоматического регулирования);
 - тема 8 (Оптимизация простых контуров регулирования).

6-ой семестр

- тема 9 (Общие сведения о дискретных САУ);
- тема 10 (Общие сведения о дискретных САУ);
- тема 11 (Анализ импульсных систем автоматического управления);
- тема 12 (Синтез импульсных систем управления);
- тема 13 (Нелинейные автоматические системы);
- тема 14 (Устойчивость нелинейных систем);
- тема 15 (Анализ поведения систем на фазовой плоскости)

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 5.1 - 5.4 соответственно.

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 5.1-5.4 соответственно.

Таблица 5.1 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения, 5 семестр)

№ п/ п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
1	Основные термины и понятия теории автомати-	Классификация автоматических систем. Задачи теории автоматического управления.	2	Объект управления. Виды задающих и управляющих воздействий.	2	Вступительное занятие. Техника безопасности при проведении лабораторных работ в ауд. 319	2
1	нятия теории автоматического управления.	Виды систем управления: разомкнутые и замкнутые системы, системы стабилизации, системы программного управления, следящие и адаптивные системы	2	Применение операторного исчисления в ТАУ.	2	главного корпуса.	2
2	Математическое описание автоматических систем	Математическое описание автоматических систем. Примеры составления математических моделей простых динамических звеньев.	2	Составление функциональной и структурной схемы ДПТ с НВ.	2	Моделирование типовых воздействий в пакете Simulink программы Matlab.	2
	Временные и частотные	Переходная и импульсная переходная временные характеристики и средства их получения.	2	Пропорциональное и интегрирующее звенья	2	Методика снятия переходных и частотных характеристик линейных	
3	характеристики динамических звеньев.	Частотные характеристики динамических звеньев.	2	Дифференцирую- щее звено	2	динамических звеньев.	2
		Логарифмические частотные характери- стики	2	Колебательное звено	2		

Продолжение таблицы 5.1

1100	одолжение таолицы 5.1						
№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
4	Алгебра передаточных функций и правила преобразования структурных схем.	Передаточные функции различных соединений звеньев. Типичные соединения динамических звеньев. Классификация обратных связей.	2	Передаточная функция эквивалентного соединения динамических звеньев.	2	Определение параметров типовых динамических звеньев по переходным характеристикам.	2
5	Критерии устойчивости линейных систем авто-	Определение устойчивости САУ по ал- гебраическим критериям Раусса и Гурвица	2	Алгебраические критерии Рауса и Гурвица.	2	Распределение корней и полюсов САУ	2
3	матического управления.	Определение устойчивости САУ по частотным критериям Найквиста и Михайлова.	2	Частотные критерии Найквиста, Михайлова.	2	ЛАЧХ и АФЧХ системы автоматического управления	2
	Анализ качества линей-	Показатели качества работы системы в установившемся режиме	2	Расчет коэффици- ентов ошибок в САУ. Астатизм	2	Исследование влияния коэффициента усиления на показатели качества	2
6	ных автоматических систем управления.	Показатели качества работы в переходном режиме.	2	Прямые и косвенные показатели качества в переходных режимах	2	Исследование влияния постоянных на показатели качества работы САУ	2
	Синтез линейных си-	Виды корректирующих устройств (КУ)	2	Параллельная кор- рекция САУ	2	Исследование переходных и установившихся	
7	стем автоматического регулирования.	Синтез желаемой ЛАЧХ	2	Построение желае- мой ЛАЧХ	2	режимов в системах с последовательной коррек-	3
		Синтез корректирующего устройства	2	Реализация КУ	2	цией.	

Продолжение таблицы 5.1

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
		Модульный и симметричный оптимумы	2	ЛАЧХ при различ- ной настройке	2	Получение располагаемой и желаемой ЛАЧХ	2
8	Оптимизация простых контуров регулирования.	Настройка регулятора тока на модульный оптимум	2	ПИ-регулятор	2	Моделирование контура тока	2
8	контуров регулирования.	Настройка регулятора скорости на модульный и симметричный оптимумы	2	П-регулятор	2	Моделирование контура скорости	2
		Настройка регулятора положения	2	Линейный регуля- тор	2	Моделирование контура положения	2
	Всего аудиторных часов			_	36	_	27

Таблица 5.2 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения, 6 семестр)

	таолица 3.2 — Виды занятии по дисциплине и распределение аудиторных часов (очная форма обучения, о семестр)						
№ п/ п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
9	Общие сведения о дис- кретных САУ.	Классификация дискретных систем по виду квантования Понятие о импульсных системах автоматического управления. Структурные схемы импульсных САУ.	2	Виды квантования. АИМ, ШИМ и ЧИМ	2	Исследование дискретной системы автоматического управления с экстраполятором нулевого порядка.	2
10	Модели линейных дискретных систем управ-	Решетчатые функции и разностные уравнения. Уравнения и импульсная передаточная функция разомкнутой импульсной системы.	2	Решетчатые функции. Импульсная передаточная функция импульсной системы.	2	Исследование дискретной системы автоматического управления с экстраполятором первого порядка	2
	ления.	Частотные характеристики импульсных систем.	2	Частотные характеристики импульсных систем.	2	Исследование дискретной САУ с экстраполятором второго порядка	2
11	Анализ импульсных систем автоматиче- ского управления.	Оценка точности импульсных САУ. Устойчивость импульсных систем.	2 2	Определение устойчивости импульсных САУ	2	Библиотека Discrete пакета Simulink программы Matlab	2
12	Синтез импульсных систем управления.	Требования к импульсным системам автоматического регулирования Получение частотных характеристик импульсных систем	2	Синтез непрерывных КУ импульсных САУ.	2	Исследование импульсных САУ с непрерывными КУ	2
		Синтез корректирующих устройств в импульсных системах	2	Синтез дискретных КУ.	2	Исследование дискрет- ных КУ	2

Продолжение таблицы 5.2

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
13	Нелинейные автомати- ческие системы.	Понятие нелинейного динамического звена Типичные нелинейности: насыщение, люфт, зона нечувствительности и т.д.	2	Виды нелинейностей и их математическое описание.	2	Виды нелинейностей пакета Simulink программы Matlab.	2
14	Устойчивость нелиней- ных систем.	І-й метод определения устойчивости нелинейных систем Ляпунова II-й метод определения устойчивости нелинейных систем Ляпунова Критерий абсолютной устойчивости Попова. Критерий Михайлова	2 2 2	Критерий абсо- лютной устойчи- вости Попова. Определение ус- тойчивости по Михайлову	2	Исследование частоты автоколебаний в нелинейной системе автоматического управления Исследование амплитуды автоколебаний в нелинейной САУ	2
15	Анализ поведения си- стем на фазовой плоско- сти.	Понятие фазовой плоскости Метод фазовой плоскости Получение фазовых портретов нелинейных систем	2 2 2	Определение устойчивости нелинейной системы по критерию Найквиста	2	Исследование влияния люфта на возникновение автоколебаний в нелинейной системе автоматического управления	2
	Всего аудиторных часов		36		18		18

Таблица 5.3 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения, 5 семестр)

		1 1					
№ п/ п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
1	Основные термины и понятия теории автоматического управления.	Виды систем управления: разомкнутые и замкнутые системы, системы стабилизации, системы программного управления, следящие и адаптивные системы	2	Объект управления. Виды задающих и управляющих воздействий.	2	Вступительное занятие. Техника безопасности при проведении лабораторных работ.	2
2	Временные и частотные характеристики динами- ческих звеньев.	Переходная и импульсная переходная временные характеристики и средства их получения.	2	Пропорциональное и интегрирующее звенья	2	Методика снятия переходных и частотных характеристик линейных динамических звеньев.	2
3	Анализ качества линей- ных автоматических си- стем управления.	Показатели качества работы системы в установившемся и переходном режиме	2	Метод коэффи- циентов ошибок	2	Исследование влияния коэффициента усиления на показатели качества	2
	Всего	аудиторных часов	6	_	6	_	6

Таблица 5.3 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения, 6 семестр)

№ п/ п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
1	Модели линейных дис- кретных систем управ- ления	Уравнения и импульсная передаточная функция разомкнутой импульсной системы.	2	Решетчатые функции. Импульсная	2	Исследование дискретной системы автомати-	
2	Анализ импульсных систем автоматиче- ского управления.	Оценка точности и устойчивости им- пульсных САУ	2	передаточная функция импульсной системы	2	ческого управления с экстраполятором первого порядка	2
3	Устойчивость нелиней- ных систем.	Критерий абсолютной устойчивости По- пова. Критерий Михайлова	2	Определение устойчивости по Михайлову	2	Исследование амплитуды автоколебаний в нелинейной САУ	2
	Всего	аудиторных часов	6	_	4	_	4

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала

(https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf).

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 6.1.

Таблица 6.1 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование ком- петенции	Способ оценивания	Оценочное средство
ОПК-3, ПК-1	Экзамен	Комплект контролирующих материалов для экзамена
ОПК-3, ПК-1	Дифференциро- ванный зачет	Комплект контролирующих материалов для защиты курсового проекта

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

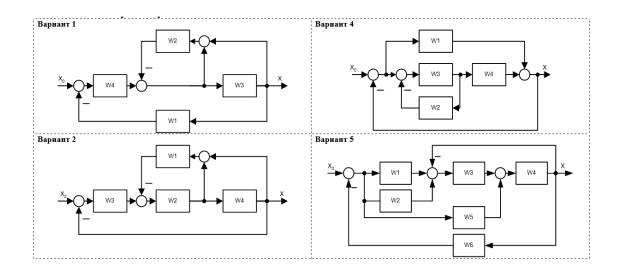
- лабораторные работы всего 40 баллов (5 семестр);
- практические работы всего 60 баллов (5 семестр);
- лабораторные работы всего 40 баллов (6 семестр);
- практические работы всего 60 баллов (6 семестр);

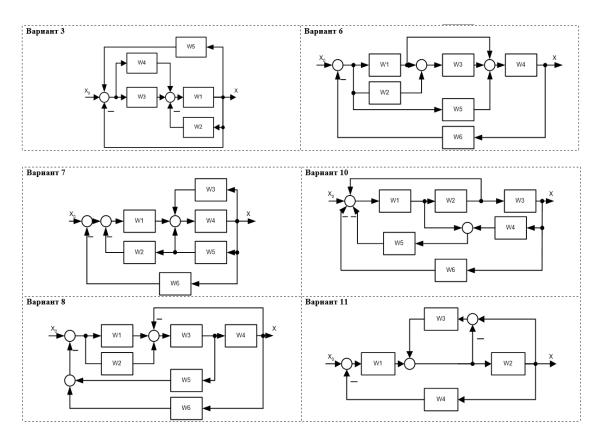
Экзамен проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60 % от максимального.

Экзамены по дисциплине «Теория автоматического управления» проводятся по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время сессии студент имеет право повысить итоговую оценку либо в форме устного собеседования по приведенным ниже вопросам (п. 6.4), либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации

приведена в таблице 6.


Таблица 6.2 – Шкала оценивания знаний


Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашние задания

В качестве домашнего задания студенты выполняют:

- определение (согласно варианта) по структурной схеме системы передаточной функции разомкнутой системы, передаточной функции системы по ошибке и передаточной функции по возмущению;
- проверку системы на устойчивость по заданному критерию устойчивости;
- определение показателей качества работы системы в установившемся режиме;
- определение прямых и косвенных показателей качества работы системы в переходном режиме;
 - оценку качества процесса управления.

6.3 Темы рефератов

Написание рефератов при изучении дисциплины не предусмотрено.

6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Тема 1. Основные термины и понятия теории автоматического управления.

- 1. Каковы термины и понятия теории автоматического управления?
- 2. Какова классификация автоматических систем?
- 3. Какова основная задача теории автоматического управления?
- 4. Для чего в ТАУ применяют преобразование Лапласа?
- 5. Какие есть характеристики задающих и возмущающих воздействий? Тема 2. Математическое описание автоматических систем.
- 1. Как математически описывают автоматические системы?
- 2. Как составить модель простых динамических звеньев?
- 3. Как составить структурную схему объекта управления по математической модели в форме системы дифференциальных уравнений?

Тема 3. Временные и частотные характеристики динамических звеньев.

- 1. Что такое переходная характеристика динамического звена? Как ее получить?
 - 2. Что такое импульсная переходная характеристика динамического

звена? Как ее получить?

- 3. Как получить частотные характеристики динамических звеньев? Для чего?
- 4. Как получить логарифмические частотные характеристики (ЛАЧХ и ЛФЧХ)? Что такое асимптотическая ЛАЧХ?
- Тема 4. Алгебра передаточных функций и правила преобразования структурных схем.
- 1. Чему равна передаточная функция САУ при последовательном соединении звеньев?
- 2. Чему равна передаточная функция САУ при параллельном соединении звеньев?
- 3. Чему равна передаточная функция САУ при встречно-параллельном соединении звеньев?
 - 4. Каковы правила преобразования структурных схем?
 - 5. Какова алгебра передаточных функций?
 - 6. Какие бывают обратные связи?
- *Тема 5. Критерии устойчивости линейных систем автоматического управления.*
- 1. Какие существуют критерии устойчивости линейных систем автоматического управления?
 - 2. Какова математическая трактовка устойчивости линейных систем?
 - 3. В чем заключаются алгебраические критерии Рауса и Гурвица?
 - 4. Частотные критерии Найквиста, Михайлова.
- 5. Чем различаются структурно-устойчивые и структурно-неустойчивые системы?

Тема 6. Анализ качества линейных автоматических систем управления.

- 1. Что такое запасы устойчивости? Как их определяют?
- 2. Каковы показатели качества работы системы в установившемся режиме?
 - 3. В чем заключается метод коэффициентов ошибок?
 - 4. Какие есть прямые показатели качества работы в переходном режиме?
- 5. Какие есть косвенные показатели качества работы в переходном режиме?

Тема 7. Синтез линейных систем автоматического регулирования.

- 1. Какие существуют виды корректирующих устройств?
- 2. Что такое последовательная и параллельная коррекция?
- 3. Как осуществляется синтез последовательного корректирующего устройства?

- 4. Что такое корректирующие устройства?
- 5. Как осуществляется синтез желаемой ЛАЧХ (низкочастотного, среднечастотного и высокочастотного участков)?

Тема 8. Оптимизация простых контуров регулирования.

- 1. Что предполагает настройка на модульный и симметричный оптимумы?
- 2. Как настроить регулятора тока на модульный оптимум? Почему регулятор тока настраивают именно на модульный оптимум?
- 3. Как настроить регулятор скорости на модульный и симметричный оптимумы?
 - 4. Как настраивается регулятор положения?

Тема 9. Общие сведения о дискретных САУ.

- 1. Какие существуют дискретные системы по виду квантования?
- 2. Что такое импульсные системы автоматического управления?
- 3. Как выглядят структурные схемы импульсных САУ?
- 4. Что такое фиксатор в импульсных системах?
- 5. Какие существуют виды квантования?
- 6. Что такое амплитудно-импульсная, широтно-импульсная и частотноимпульсная модуляция?

Тема 10. Модели линейных дискретных систем управления.

- 1. Что такое решетчатые функции?
- 2. Что такое разностные уравнения?
- 3. Как математически описывается идеальный импульсный элемент?
- 4. Как получить передаточную функцию разомкнутой импульсной системы?
 - 5. Что такое экстраполятор нулевого порядка?
 - 6. Что такое экстраполятор первого порядка?

Тема 11. Анализ импульсных систем автоматического управления.

- 1. Как определяют частотные характеристики импульсных систе?.
- 2. Как построить ЛАЧХ импульсных систем?
- 3. Как проводят анализ импульсных систем автоматического управления?
- 4. Как составить структурные схемы и передаточные функции замкнутых импульсных систем?
 - 5. Как оценить точность импульсных САУ в установившемся режиме.
 - 6. Как определить устойчивость импульсных систем?

Тема 12. Синтез импульсных систем управления.

1. Как осуществить синтез импульсных систем управления?

- 2. Как получить частотные характеристики?
- 3. Как синтезировать непрерывные корректирующие устройства?
- 4. Как синтезировать дискретные корректирующие устройства?

Тема 13. Нелинейные автоматические системы.

- 1. Что такое нелинейное динамическое звено?
- 2. Какие есть типичные нелинейности?
- 3. Что такое зона нечувствительности?
- 4. Что такое люфт?
- 5. Что такое насыщение?

Тема 14. Устойчивость нелинейных систем.

- 1. В чем заключается І-й метод определения устойчивости нелинейных систем Ляпунова?
- 2. В чем заключается II-й метод определения устойчивости нелинейных систем Ляпунова?
 - 3. В чем заключается критерий абсолютной устойчивости Попова?
 - 4. В чем заключается критерий Михайлова?

Тема 15. Анализ поведения систем на фазовой плоскости.

- 1. Что такое фазовая плоскость?
- 2. Для чего применяют метод фазовой плоскости?
- 3. Как получить фазовый портрет нелинейной системы?

6.5 Вопросы для подготовки к экзаменам

Вопросы для подготовки к экзамену за 5 семестр

- 1. Каковы термины и понятия теории автоматического управления?
- 2. Какова классификация автоматических систем?
- 3. Какова основная задача теории автоматического управления?
- 4. Для чего в ТАУ применяют преобразование Лапласа?
- 6. Как математически описывают автоматические системы?
- 7. Как составить модель простых динамических звеньев?
- 8. Как составить структурную схему объекта управления по математической модели в форме системы дифференциальных уравнений?
- 9. Что такое переходная характеристика динамического звена? Как ее получить?
- 10. Что такое импульсная переходная характеристика динамического звена? Как ее получить?
- 11. Как получить частотные характеристики динамических звеньев? Для чего?

- 12. Как получить логарифмические частотные характеристики (ЛАЧХ и ЛФЧХ)? Что такое асимптотическая ЛАЧХ?
- 13. Чему равна передаточная функция САУ при последовательном соединении звеньев?
- 14. Чему равна передаточная функция САУ при параллельном соединении звеньев?
- 15. Чему равна передаточная функция САУ при встречно-параллельном соединении звеньев?
 - 16. Каковы правила преобразования структурных схем?
 - 17. Какова алгебра передаточных функций?
 - 18. Какие бывают обратные связи?
- 19. Какие существуют критерии устойчивости линейных систем автоматического управления?
 - 20. Какова математическая трактовка устойчивости линейных систем?
 - 21. В чем заключаются алгебраические критерии Рауса и Гурвица?
 - 22. Частотные критерии Найквиста, Михайлова.
- 23. Чем различаются структурно-устойчивые и структурно-неустойчивые системы?
 - 24. Что такое запасы устойчивости? Как их определяют?
- 25. Каковы показатели качества работы системы в установившемся режиме?
 - 26. В чем заключается метод коэффициентов ошибок?
- 27. Какие есть прямые показатели качества работы в переходном режиме?
- 28. Какие есть косвенные показатели качества работы в переходном режиме?
 - 29. Какие существуют виды корректирующих устройств?
 - 30. Что такое последовательная и параллельная коррекция?
- 31. Как осуществляется синтез последовательного корректирующего устройства?
 - 32. Что такое корректирующие устройства?
- 33. Как осуществляется синтез желаемой ЛАЧХ (низкочастотного, среднечастотного и высокочастотного участков)?
- 34. Что предполагает настройка на модульный и симметричный оптимумы?
- 35. Как настроить регулятора тока на модульный оптимум? Почему регулятор тока настраивают именно на модульный оптимум?
 - 36.. Как настроить регулятор скорости на модульный и симметричный

оптимумы?

37. Как настраивается регулятор положения?

Вопросы для подготовки к экзамену за 6 семестр

- 38. Какие существуют дискретные системы по виду квантования?
- 39. Что такое импульсные системы автоматического управления?
- 40. Как выглядят структурные схемы импульсных САУ?
- 41. Что такое фиксатор в импульсных системах?
- 42. Какие существуют виды квантования?
- 43. Что такое амплитудно-импульсная, широтно-импульсная и частотно-импульсная модуляция?
 - 44. Что такое решетчатые функции?
 - 45. Что такое разностные уравнения?
 - 46. Как математически описывается идеальный импульсный элемент?
- 47. Как получить передаточную функцию разомкнутой импульсной системы?
 - 48. Что такое экстраполятор нулевого порядка?
 - 49. Что такое экстраполятор первого порядка?
 - 50. Как определяют частотные характеристики импульсных систем?
 - 51. Как построить ЛАЧХ импульсных систем?
- 52. Как проводят анализ импульсных систем автоматического управления?
- 53. Как составить структурные схемы и передаточные функции замкнутых импульсных систем?
 - 54. Как оценить точность импульсных САУ в установившемся режиме.
 - 55. Как определить устойчивость импульсных систем?
 - 56. Как осуществить синтез импульсных систем управления?
 - 57. Как получить частотные характеристики?
 - 58. Как синтезировать непрерывные корректирующие устройства?
 - 59. Как синтезировать дискретные корректирующие устройства?

6.6 Примерная тематика курсовых работ (проектов)

По дисциплине предусмотрен курсовая работа на тему «Расчет и исследование системы стабилизации скорости вращения электродвигателя постоянного тока» трудоемкостью 1 зачетная единицы, 36 ак. ч. Группы ЭМС и ЭМС-3 выполняют курсовую работу в 6 семестре. В группе ЭМС предусмотрены практические занятия (9 ак. ч. для группы ЭМС и 4 ак. ч. для гр. ЭМС-3) и

самостоятельная работа студента (27 ак. ч. для групп ЭМС и 32 ак.ч. для группы ЭМС-з). Курсовая работа выполняется по методическим указаниям:

Методические указания к выполнению курсовой работы по дисциплине "Теория автоматического управления " (для студентов направления 13.03.02 Электроэнергетика и электротехника, профиль подготовки " Электропривод и автоматика промышленных установок и технологических комплексов ") / Сост. Сергиенко Н.Н. – Алчевск, ДонГТУ, 2024. – 41 с. https://moodle.dstu.education/pluginfile.php/56515/mod_resource/content/1/КП%20ЭА%20v14.pdf.

Кроме этого, используется литература, приведенная в разделе 7.1.

Курсовой проект состоит из расчетно-пояснительной записки объемом 35-40 страниц. В ней должны содержаться следующие разделы:

Введение;

Раздел 1. Анализ качества управления в исходной системе с пропорциональным регулятором скорости при единичной обратной связи

Раздел.2. Оптимизация контура регулирования скорости по модульному оптимуму.

Раздел 3. Моделирование спроектированной системы. Исследование влияния параметров системы электропривода на устойчивость и качество работы системы в переходном и установившемся режимах.

Выводы.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Коновалов, Б. И. Теория автоматического управления : учебное пособие для вузов / Б. И. Коновалов, Ю. М. Лебедев. 6-е изд., стер. Санкт-Петербург : Лань, 2022. 220 с. ISBN 978-5-507-44643-8. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/ book/238508 (дата обращения: 10.08.2024). Режим доступа: для авториз. пользователей. Текст : электронный
- 2. Федотов, А. В. Основы теории автоматического управления : учебное пособие / А. В. Федотов. 2-е изд. Саратов : Ай Пи Эр Медиа, 2019. 278 с. ISBN 978-5-4486-0570-3. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/83344.html (дата обращения: 10.08.2024). Режим доступа: для авториз. пользователей. Текст : электронный

Дополнительная литература

- 1. Первозванский, А. А. Курс теории автоматического управления : учебное пособие / А. А. Первозванский. 3-е изд., стер. Санкт-Петербург : Лань, 2021. 624 с. ISBN 978-5-8114-0995-2. Текст : электронный // Лань : электроннобиблиотечная система. URL: https://e.lanbook.com/book/168873 (дата обращения: 07.08.2024). Режим доступа: для авториз. пользователей. Текст : электронный
- 2. Ивченко, В. Д. Теория автоматического управления : учебнометодическое пособие / В. Д. Ивченко, В. Н. Арбузов. Москва : РТУ МИРЭА, 2020. 275 с. Текст : электронный // Лань : электроннобиблиотечная система. URL: https://e.lanbook.com/book/167590 (дата обращения: 04.08.2024). Режим доступа: для авториз. пользователей. Текст : электронный
- 3. Певзнер, Л. Д. Теория автоматического управления. Задачи и решения : учебное пособие / Л. Д. Певзнер. Санкт-Петербург : Лань, 2021. 604 с. ISBN 978-5- 8114-2161-9. Текст : электронный // Лань : электроннобиблиотечная система. URL: https://e.lanbook.com/book/168937 (дата обращения: 03.08.2024). Режим доступа: для авториз. пользователей. Текст : электронный.

Учебно-методическое обеспечение

- 1. Методические указания к домашним заданиям по курсу «Теория автоматического управления» / Сост. Сергиенко Н.Н.. Алчевск: ДонГТУ, 2013. 54 с. URL: https://moodle.dstu.education/course/view.php?id=1369#section-5. Режим доступа: для авториз. пользователей. Текст : электронный.
- 3. Теория автоматического управления: Практикум. / Сост.: Н.Н. Сергиенко. Алчевск: ДонГТУ, 2015. 79 с. URL: https://moodle.dstu.education/course/view.php?id=1369#section-5. Режим доступа: для авториз. пользователей. Текст: электронный.

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Сайт дистанционного обучения ДонГТУ http://do.dstu.education
- 2. Научная библиотека ГОУ ВПО ЛНР «ДонГТУ» http://library.dstu.education
- 3. Электронно-библиотечная система ФГБОУ ВО «БГТУ им. В.Г. Шу-хова» http://ntb.bstu.ru
 - 4. ЭБС Издательства "ЛАНЬ" http://e.lanbook.com/
 - 5. http://electricalschool.info/elprivod
- 6. Университетская библиотека онлайн : электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст : электронный.
- 7. IPR BOOKS : электронно-библиотечная система. Красногорск. URL: http://www.iprbookshop.ru/. Текст : электронный.
- 8. Федеральная служба по экологическому, технологическому и атомному надзору (Ростехнадзор) : официальный сайт. Москва. https://www.gosnadzor.ru/. Текст : электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 7.

Таблица 8.1 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местополо- жение) учебных кабинетов
Специальные помещения:	
Компьютерный класс секции АЭМС кафедры ЭМ им. А.Б. Зеле-	ауд 319, главный
нова:	корп.
- ПТК AMD AthlonX2 255 (4 шт.);	
- С/б Sempron 140 2.71 (1 шт.), монитор Hanns'g (1 шт.);	
- ПТК Intel Ce1eron E3300 2,5 ГГц (3 шт.);	
- ПТК AMD Athlon 64×2 360 (1 шт.);	
- ПТК AMD Athlon (1 шт.);	
- ПТК Intel Ce1eron 1.60 GHz (1 шт.);	
- ПТК AMD Athlon 64×2 5200+ (1 шт.);	
- ПТК IntelCore 2Duo E7500 (1 шт.);	
- лабораторная мебель: столы, стулья для студентов (по количе-	
ству обучающихся), рабочее место преподавателя.	

Лист согласования РПД

Разработала		
доц. кафедры электромеханики		
им. А. Б. Зеленова	As	М.А. Ямковая
(должность)	(нодпись)	(Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
Заведующий кафедрой	(подпись)	<u>Д. И. Морозов</u>
Протокол № 1 заседания кафедры		
электромеханики им. А.Б. Зеленова	от 22.08.	2024 г.
Декан факультета	В. В	<u>Б. Дьячкова</u> (Ф.И.О.)
Согласовано		(2.11.6.)
Согласовано		
Председатель методической комиссии по направлению подготовки 13.03.02 Электроэнергетика и электротехника	<u>Коле</u> <u>Л</u>	<u>.Н. Комаревцева</u> (Ф.И.О.)
Начальник учебно-методического центра		О.А. Коваленко
	(полпись)	(ONO)

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения		
изменений		
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	
Основание:		
Подпись лица, ответственного за внесение изменений		