Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Вишневский Дмитрий Александрович

Должность: Ректор МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Дата подписания: 17.10.2025 15:06:46

Уникальный программный ключ:

(МИНОБРНАУКИ РОССИИ)

03474917c4d012283e5ad996a48a5e70bf8da05 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ
ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ
«ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
(ФГБОУ ВО «ДонГТУ»)

Факультет информационных технологий и автоматизации производственных процессов Кафедра электроники и радиофизики **УТВЕРЖДАЮ** И о проректора по учебной работе Д.В. Мулов РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Методы статистической обработки сигналов (наименование дисциплины) 03.04.03 Радиофизика (код, наименование направления) Инженерно-физические технологии в промышленности (магистерская программа) Квалификация магистр (бакалавр/специалист/магистр) Форма обучения очная, очно-заочная

(очная, очно-заочная, заочная)

1 Цели и задачи изучения дисциплины

Цели дисциплины. Целью изучения дисциплины «Методы статистической обработки сигналов» является систематическое овладение знаниями в области анализа случайных процессов в линейных и нелинейных системах, овладения методами обработки сигналов и их выделения на фоне шумов и получение сведений об основных положениях теории информации и помехоустойчивого кодирования для овладения современными методами передачи и приема информации.

Задачи изучения дисциплины:

– получить представления о методах описания и преобразования случайных процессов в радиотехнических и радиофизических системах, природе шумов и флуктуаций, возможностях теории информации для помехоустойчивого кодирования.

Дисциплина направлена на формирование профессиональной (ПК-2) компетенций выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины — курс входит в элективные дисциплины (модули) блока 1 подготовки обучающихся по направлению 03.04.03 «Радиофизика» (магистерская программа «Инженерно-физические технологии в промышленности»).

Дисциплина реализуется кафедрой электроники и радиофизики.

Основывается на базе дисциплин: «Информатика». «Уравнения математической физики», «Радиоэлектроника», «Квантовая радиофизика. Квантовые приборы», «Теория колебаний».

Является основой для изучения следующих дисциплин: «Квантовые и оптические технологии, «Современные радиофизические методы диагностики».

Дисциплина способствует углубленной подготовке к решению специальных практических профессиональных задач и формированию необходимых компетенций.

Общая трудоемкость освоения дисциплины составляет 3 зачетные единицы, 108 ак.ч. Программой дисциплины предусмотрены лекционные (18 ак.ч.), практические (18 ак.ч.) занятия и самостоятельная работа студента (72 ч.). Дисциплина изучается во 3 семестре.

Для очно-заочной формы обучения программой дисциплины предусмотрены лекционные (12 ак.ч.), практические (12 ак.ч.) занятия и самостоятельная работа студента (84 ак.ч.). Дисциплина изучается на в 4 семестре.

Форма промежуточной аттестации – зачет.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Методы статистической обработки сигналов» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание компетенции	Код	Код и наименование индикатора
	компетенции	достижения компетенции
Способен критически анализи-	ПК-2	ПК-2.3. Владеет навыками критического
ровать современные инженерно-		анализа современных проблем техниче-
физические проблемы, ставить		ской физики; навыками проведения фи-
задачи и разрабатывать про-		зико-технических научных исследова-
грамму исследования, выбирать		ний, а также применения методов и
адекватные способы и методы		средств планирования, организации,
решения экспериментальных и		проведения и внедрения научных иссле-
теоретических задач, анализиро-		дований и опытно-конструкторских раз-
вать, обобщать и применять по-		работок.
лученные результаты.		

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 3 зачётные единицы, 108 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к лабораторным занятиям, текущему контролю, самостоятельное изучение материала и подготовку к зачету.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам
Аудиторная работа, в том числе:	36	36
Лекции (Л)	18	18
Практические занятия (ПЗ)	18	18
Лабораторные работы (ЛР)	-	-
Курсовая работа/курсовой проект	-	-
Самостоятельная работа студентов (СРС), в том числе:	72	72
Подготовка к лекциям	4	4
Подготовка к лабораторным работам	-	-
Подготовка к практическим занятиям / семинарам	9	9
Выполнение курсовой работы / проекта	-	-
Расчетно-графическая работа (РГР)	-	
Реферат (индивидуальное задание)	-	-
Домашнее задание (индивидуальное задание)	-	-
Подготовка к контрольной работе	-	-
Подготовка к коллоквиуму	9	9
Аналитический информационный поиск	14	14
Работа в библиотеке	18	18
Подготовка к зачету	18	18
Промежуточная аттестация – зачет	3	3
Общая трудоемкость дисциплины		
ак.ч.	108	108
3.e.	3	3

5 Содержание дисциплины

С целью освоения компетенций, приведенной в п.3 дисциплина разбита на 6 тем:

- тема 1 (Элементы теории случайных процессов);
- тема 2 (Спектрально-корреляционный анализ случайных процессов);
- тема 3 (Случайные процессы в линейных системах. Электрические шумы и флуктуации);
 - тема 4 (Обнаружение и измерение параметров сигналов в шумах);
 - тема 5 (Нелинейные преобразования случайных процессов);
 - тема 6 (Теория информации).

Виды занятий по дисциплине и распределение аудиторных часов приведены в таблицах 3 и 4.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		3-	й семестр				
1	Элементы теории случайных процессов	Законы распределения и моменты случайной функции одной переменной. Математическое ожидание, дисперсия, корреляционные функции случайных процессов. Гипотеза об эргодичности случайных функций. Непрерывность, дифференцируемость, интегрируемость в среднеквадратических случайных процессах. Гауссовские случайные процессы. Винеровский гауссовский случайный процесс. Белый гауссовский шум. Цепи Маркова с дискретным временем. Переходные вероятности. Классификация состояний цепи Маркова.	2	Вероятностные и энергетические характеристики случайных сигналов и процессов. Основные понятия теории случайных процессов	2	_	_
2	Спектрально-корреляционный анализ случайных процессов	Спек тральное разложение стационарных случайных процессов. Спектральная плотность стационарной случайной функции. Теорема Винера—Хинчина. Свойства спектральной плотности. Взаимная спектральная плотность стационарно связанных случайных процессов и ее свойства. Понятие о статистических ошибках. Оценки корреляционных функций. Определение оценок спектральных плотностей, на основе финитного преобразования Фурье реализаций процессов, заданных на конечном интервале	2	Автокорреляци- онная функция. Взаимно-корреля- ционная функция. Спектральное раз- ложение стацио- нарных случай- ных процессов. Общая форма три- гонометрического ряда Фурье, нахождение коэф- фициентов ряда. Теорема о неиска- женном воспроиз- ведении сигналов.	2	-	_

7

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
3	Случайные процессы в линейных системах. Электрические шумы и флуктуации	Связь физического и математического спектров. Тепловой шум. Токовый шум. Эквивалентные схемы с генераторами напряжения и тока, их взаимосвязь. Шум комплексного двухполюсника, физическая трактовка. Дробовой шум. Генерационно-рекомбинационный шум. Спектр шума и его зависимость от величины времени релаксации. Шум лавинообразования. Взрывной шум. Фликкерный шум. Взаимосвязь разных методов представления шумов.	4	Построение триго- нометрических ря- дов Фурье для не- которых модель- ных сигналов в среде МАТЛАБ. Электрические шумы и флуктуа- ции в радиотехни- ческих системах.	4	_	_
4	Обнаружение и измерение параметров сигналов в шумах	Общие сведения об устройствах приема и обработки радиосигналов. Шумовая чувствительность радиоприемных устройств. Статистическая модель канала связи. Оптимальное обнаружение, различение, измерение параметров, фильтрация сигналов. Обнаружение детерминированных полезных сигналов на фоне гауссовских помех. Модель сигналов и наблюдений. Случай обнаружения детерминированного сигнала на фоне белого гауссовского шума. Максимизация отношения сигнал/шум. Обнаружение радиосигнала со случайной начальной фазой.	4	Дискретизация аналоговых сигналов по времени и по амплитуде. АЦП и ЦАП.	4	_	_
5	Нелинейные пре- образования слу- чайных процессов	Линейные, однородные и неоднородные и нелинейные операторы. Производная СП и ее характеристики. Интегралы от СП и его характеристики. Комплексные СП и их характеристики. Математическое описание огибающей случайного процесса,	4	Применение вейвлетов для обработки изображений. Пропускная способность ка-	4	_	_

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		методы характеристической функции для определения корреляционной функции процесса после нелинейного преобразования. Преобразования случайных процессов при модуляции, детектировании, перемножении, выборе и квантовании. Представление функций распределения рядами.		нала связи Соб- ственная информа- ция и энтропия.			
6	Теория информа- ции	Формальное представление знаний. Виды информации. Способы измерения информации. Кодирование и декодирование информации. Сжатие информации. Передача информации, скорость передачи информации. Основные информационные характеристики системы передачи информации.	2	Очистки сигналов от шумов с использование вейвлетпреобразования	2	_	_
	Всего аудиторных ч	асов за 3-й семестр	18	18		_	-
	Всего аудиторных часов за семестр		18	18		-	_

Таблица 4 – Виды занятий по дисциплине и распределение аудиторных часов (очно-заочная форма обучения)

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч. й семестр	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1	Законы распределения и моменты случайной функции одной переменной. Математическое ожидание, дисперсия, корреляционные функции случайных процессов. Гипотеза об эргодичности случайных функций. Непрерывность, дифференцируемость, интегрируемость в среднеквадратических случайных процессы. Белый гауссовский случайный процесс. Белый гауссовский шум. Цепи Маркова с дискретным временем. Переходные вероятности. Классификация состояний цепи Маркова.	2	Вероятностные и энергетические характеристики случайных сигналов и процессов. Основ-	2	_	_	
		процессы. Винеровский гауссовский случайный процесс. Белый гауссовский шум. Цепи Маркова с дискретным временем. Пе-		процессов. Основные понятия теории случайных процессов			
2	Спектрально-корреляционный анализ случайных процессов	Спек тральное разложение стационарных случайных процессов. Спектральная плотность стационарной случайной функции. Теорема Винера—Хинчина. Свойства спектральной плотности. Взаимная спектральная плотность стационарно связанных случайных процессов и ее свойства. Понятие о статистических ошибках. Оценки корреляционных функций. Определение оценок спектральных плотностей, на основе финитного преобразования Фурье реализаций процессов, заданных на конечном интервале	2	Автокорреляци- онная функция. Взаимно-корреля- ционная функция. Спектральное раз- ложение стацио- нарных случай- ных процессов. Общая форма три- гонометрического ряда Фурье, нахождение коэф- фициентов ряда. Теорема о неиска- женном воспроиз- ведении сигналов.	2	_	_

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
3	Случайные процессы в линейных системах. Электрические шумы и флуктуации	Связь физического и математического спектров. Тепловой шум. Токовый шум. Эквивалентные схемы с генераторами напряжения и тока, их взаимосвязь. Шум комплексного двухполюсника, физическая трактовка. Дробовой шум. Генерационно—рекомбинационный шум. Спектр шума и его зависимость от величины времени релаксации. Шум лавинообразования. Взрывной шум. Фликкерный шум. Взаимосвязь разных методов представления шумов.	2	Построение триго- нометрических ря- дов Фурье для не- кото- рых модель- ных сигналов в среде МАТЛАБ. Электрические шумы и флуктуа- ции в радиотехни- ческих системах.	2	-	_
4	Обнаружение и измерение параметров сигналов в шумах	Общие сведения об устройствах приема и обработки радиосигналов. Шумовая чувствительность радиоприемных устройств. Статистическая модель канала связи. Оптимальное обнаружение, различение, измерение параметров, фильтрация сигналов. Обнаружение детерминированных полезных сигналов на фоне гауссовских помех. Модель сигналов и наблюдений. Случай обнаружения детерминированного сигнала на фоне белого гауссовского шума. Максимизация отношения сигнал/шум. Обнаружение радиосигнала со случайной начальной фазой.	2	Дискретизация аналоговых сигналов по времени и по амплитуде. АЦП и ЦАП.	2	_	_
5	Нелинейные пре- образования слу- чайных процессов	Линейные, однородные и неоднородные и нелинейные операторы. Производная СП и ее характеристики. Интегралы от СП и его характеристики. Комплексные СП и их характеристики. Математическое описание огибающей случайного процесса,	2	Применение вейвлетов для обработки изображений. Пропускная способность ка-	2	-	_

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		методы характеристической функции для определения корреляционной функции процесса после нелинейного преобразования. Преобразования случайных процессов при модуляции, детектировании, перемножении, выборе и квантовании. Представление функций распределения рядами.		нала связи Собственная информация и энтропия.			
6	Теория информа- ции	Формальное представление знаний. Виды информации. Способы измерения информации. Кодирование и декодирование информации. Сжатие информации. Передача информации, скорость передачи информации. Основные информационные характеристики системы передачи информации.	,	Очистки сигналов от шумов с использование вейвлетпреобразования	2	_	_
	Всего аудиторных ч	асов за 4-й семестр	12	12		-	-
	Всего аудиторных часов за семестр		12	12		_	-

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценива- ния	Оценочное средство
ПК-2	Зачет	Комплект контролирующих материалов для зачета

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- тестовый контроль или устный опрос на коллоквиумах (2 коллоквиума) всего 60 баллов;
 - за выполнение практических работ всего 40 баллов.

Зачет проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Зачет по дисциплине проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время зачетной недели студент имеет право повысить итоговую оценку либо в форме устного собеседования, либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашнее задание

В качестве домашнего задания обучающиеся выполняют:

- проработка лекционного материала;
- выполнение практических заданий.

6.3 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

- 1. Каковы основные задачи статистической обработки сигналов?
- 2. В чем отличие детерминированных и случайных сигналов?
- 3. Какие основные характеристики случайных процессов используются при анализе сигналов?
 - 4. Как определяется функция корреляции случайного процесса?
- 5. Что такое эргодический процесс и каково его значение в обработке сигналов?
- 6. Какие вероятностные распределения наиболее часто используются для моделирования сигналов?
 - 7. Как описывается гауссовский случайный процесс?
 - 8. Что такое марковский процесс и где он применяется?
 - 9. Как моделируются импульсные помехи в системах связи?
 - 10. Каковы особенности нестационарных случайных процессов?
- 11. В чем отличие классического и статистического спектрального анализа?
- 12. Как оценивается спектральная плотность мощности случайного процесса?
- 13. Каковы преимущества и недостатки периодограммного метода оценки спектра?
 - 14. Как работает метод Уэлча для оценки спектральной плотности?
 - 15. Что такое параметрические методы спектрального анализа?

6.4 Вопросы для подготовки к зачету

1. Каковы основные задачи оптимальной фильтрации?

- 2. В чем суть критерия минимума среднеквадратической ошибки?
- 3. Как синтезируется фильтр Винера?
- 4. Каковы особенности адаптивной фильтрации сигналов?
- 5. Как работает алгоритм наименьших квадратов (LMS)?
- 6. В чем суть метода максимального правдоподобия?
- 7. Каковы свойства эффективных и состоятельных оценок?
- 8. Как определяется граница Крамера-Рао?
- 9. Каковы методы оценки временных задержек сигналов?
- 10. Как оцениваются частотные параметры сигналов?
- 11. В чем суть задачи обнаружения сигналов?
- 12. Как формулируется критерий Неймана-Пирсона?
- 13. Что такое оптимальный обнаружитель по критерию отношения правдоподобия?
- 14. Каковы особенности обнаружения сигналов на фоне коррелированных помех?
 - 15. Как осуществляется последовательное обнаружение сигналов?
 - 16. Каковы основные методы нелинейной фильтрации?
 - 17. В чем особенности медианной фильтрации?
 - 18. Как работают ранговые фильтры?
 - 19. Каковы методы обработки сигналов с импульсными помехами?
 - 20. Что такое вейвлет-преобразование и где оно применяется?
 - 21. Каковы принципы работы адаптивных фильтров?
 - 22. Как работает алгоритм рекурсивных наименьших квадратов (RLS)?
 - 23. В чем особенности калмановской фильтрации?
 - 24. Как применяются нейронные сети для обработки сигналов?
- 25. Каковы современные тенденции в машинном обучении для обработки сигналов?
- 26. Как методы статистической обработки применяются в радиолокашии?
 - 27. Каковы особенности обработки биомедицинских сигналов?
 - 28. Как статистические методы используются в системах связи?
- 29. Каковы современные программные средства для статистической обработки сигналов?
- 30. Каковы перспективные направления развития методов статистической обработки?

6.5 Примерная тематика курсовых работ

Курсовые работы не предусмотрены.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Статистическая радиотехника: учебное пособие / В. Б. Кашкин, А. А. Баскова, А. С. Пустошилов, Я. И. Сенченко [и др.]. Красноярск: Сиб. федер. ун-т, 2020. 152 с. ISBN 978-5-7638-4320-0. Текст: электронный. URL: https://znanium.com/catalog/product/1818795 (дата обращения: 24.03.2024).
- 2. Волкова, П. А. Статистическая обработка данных в учебноисследовательских работах: учебное пособие / П.А. Волкова, А.Б. Шипунов. — Москва: ФОРУМ: ИНФРА-М, 2022. — 96 с. — (Высшее образование: Бакалавриат). - ISBN 978-5-00091-710-7. - Текст: электронный. - URL: https://znanium.com/catalog/product/1862854 (дата обращения: 24.03.2024).

Дополнительная литература

- 1 Тисленко, В. И. Статистическая теория радиотехнических систем: учебное пособие / В. И. Тисленко. Томск: ФДО, ТУСУР, 2016. 160 с. Текст: электронный. URL: https://znanium.com/catalog/product/1850321 (дата обращения: 24.03.2024).
- 2. Карманов, Ф. И. Статистические методы обработки экспериментальных данных с использованием пакета MathCad: учебное пособие / Ф. И. Карманов, В. А. Острейковский. Москва: КУРС: ИНФРА-М, 2019. 208 с. ISBN 978-5-905554-96-4. Текст: электронный. URL: https://znanium.ru/catalog/product/1016017 (дата обращения: 24.03.2024).

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт. Алчевск. URL: https://library.dontu.ru. Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова: официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст: электронный.
- 3. Консультант студента: электронно-библиотечная система. Mockва. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст: электронный.
- 4. Университетская библиотека онлайн: электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст: электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям $\Phi\Gamma$ OC BO.

Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местополо- жение) учебных кабинетов
Аудитории для проведения лекционных и практических занятий, для самостоятельной работы:	
Компьютерный класс	ауд. <u>434</u> корп.
Персональные компьютеры, локальная сеть с выходом в Internet, проектор Epson, мультимедийный экран	<u>главный</u>

Лист согласования РПД

Разработал:		
Доцент кафедры электроники и радиофизики (должность)	(подпись)	<u>Р.Р. Пепенин</u> (Ф.И.О.)
И.о. заведующего кафедрой электроники и радиофизики	(подпись)	<u>А.М.Афанасьев</u> (Ф.И.О.)
Протокол № <u>/</u> заседания кафедры электроники и радиофизики от <u>/</u>	0. Ch <u>JOH4.</u>	
И.о. декана факультета информационных технологий и автоматизации производственных процессов	(подпись)	В.В. Дьячкова (Ф.И.О.)
Согласовано:		
Председатель методической комиссии по направлению подготовки 03.04.03 Радиофизика (магистерская программа «Инженерно-физ	вические . Л	
технологии в промышленности»)	(подпись)	<u>А.М.Афанасьев</u> (Ф.И.О.)
Начальник учебно-методического центра	(подпись)	<u>О.А. Коваленко</u> (Ф.И.О.)

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения изменений	
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:
Основание:	
Подпись лица, ответственного за внесение изменений	