Документ подписан простой электронной подписью

Форма обучения

Информация о владельце:

ФИО: Вишневский Дмитрий Александрович

Должность: Ремуннистерство науки и высшего образования российской федерации Дата подписания: 17.10.2025 15:06:46

Уникальный программный ключ:

(МИНОБРНАУКИ РОССИИ)

03474917c4d012283e5ad996a48a5e70ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

> Факультет информационных технологий и автоматизации производственных процессов Кафедра интеллектуальных систем и информационной безопасности о учебной работе Д.В. Мулов РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Анализ больших данных (наименование дисциплины) 09.04.01 Информатика и вычислительная техника (код, наименование специальности) Искусственный интеллект и цифровые двойники предприятий (магистерская программа) Квалификация магистр (бакалавр/специалист/магистр)

> > очная (очная, очно-заочная, заочная)

1 Цели и задачи изучения дисциплины

Цели дисциплины. Целью изучения дисциплины «Анализ больших данных» является изучение основных методов и моделей для анализа больших данных.

Задачи изучения дисциплины:

- приобретение студентами знаний о технологиях подготовки, хранения, обработки и анализа больших данных;
- приобретение практических навыков работы большими данными.
 Дисциплина направлена на формирование общепрофессиональной (ОПК-3) и профессиональной (ПК-4) компетенции выпускника.

2 Место дисциплины в структуре образовательной программы

Логико-структурный анализ дисциплины — курс входит обязательную часть БЛОКА 1 «Дисциплины (модули)» подготовки студентов по специальности 09.04.01 Информатика и вычислительная техника (Искусственный интеллект и цифровые двойники предприятий).

Дисциплина реализуется кафедрой интеллектуальных систем и информационной безопасности. Основывается на базе дисциплин: «Высшая математика», «Методы анализа данных», изученных обучающимися при прохождении подготовки по программе бакалавриата (специалитета).

Является основой для изучения следующих дисциплин: «Инжиниринг данных», «Выполнение и защита выпускной квалификационной работы».

Для изучения дисциплины необходимы компетенции, сформированные у студента для решения профессиональных задач деятельности, связанных с научно-исследовательской работы.

Курс является фундаментом для ориентации студентов в сфере научных исследований.

Общая трудоемкость освоения дисциплины составляет 5 зачетных единиц, 180 ак.ч. Программой дисциплины предусмотрены лекционные (36 ч.), практические (36 ч.) занятия и самостоятельная работа студента (108 ч.).

Дисциплина изучается на 1 курсе в 1 семестре. Форма промежуточной аттестации – экзамен.

3 Перечень результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины «Анализ больших данных» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание	Код	Код и наименование индикатора
компетенции	компетенции	достижения компетенции
Способен анали	ОПК-3	ОПК-3.3. Готовит научные доклады, публи кации
зировать профессио		и аналитические обзоры с обоснован ными
нальную		выводами и рекомендациями
информацию,		•
выделять в ней		
главное,		
структурировать,		
оформлять и		
представ лять в		
виде аналитиче		
ских обзоров с		
обосно ванными		
выводами и		
рекомендациями		
Способен	ПК-4	ПК-4.2. Применяет варианты использования
руководить		больших данных, определений, словарей и
проектами по		эталонной архитектуры больших данных при
созданию		руководстве проектами по построению
комплексных		комплексных систем на основе аналитики
систем на основе		больших данных в различных отраслях.
аналитики больших		
данных в различных		
отраслях		

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 5 зачётных единиц, 180 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим занятиям, текущему контролю, выполнение индивидуального задания, самостоятельное изучение материала, выполнение курсовой работы и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семест рам
Аудиторная работа, в том числе:	72	72
Лекции (Л)	36	36
Практические занятия (ПЗ)	ı	-
Лабораторные работы (ЛР)	36	36
Курсовая работа/курсовой проект	1	-
Самостоятельная работа студентов (СРС), в том числе:	108	108
Подготовка к лекциям	9	9
Подготовка к лабораторным работам	18	18
Подготовка к практическим занятиям / семинарам	ı	-
Выполнение курсовой работы / проекта	20	20
Расчетно-графическая работа (РГР)	-	-
Реферат (индивидуальное задание)	-	-
Домашнее задание	-	-
Подготовка к контрольным работам	-	-
Подготовка к коллоквиуму	-	-
Аналитический информационный поиск	10	10
Работа в библиотеке	15	15
Подготовка к экзамену (диф.зачету)	36	36
Промежуточная аттестация – экзамен (Э), дифзачет (Д/з)	Э, Д/з	Э, Д/з
Общая трудоемкость дисциплины		
ак.ч.	180	180
3.e.	5	5

5 Содержание дисциплины

С целью освоения компетенции, приведенной в п.3 дисциплина разбита на 6 тем:

- тема 1 (Введение в большие данные. Классификация задач анализа данных);
 - тема 2 (Жизненный цикл аналитики данных);
 - тема 3 (Высокопроизводительные вычисления);
 - тема 4 (Масштабирование и многоуровневое хранение данных);
 - тема 5 (Визуализация данных и результатов анализа);
 - тема 6 (Сложные методы аналитики).

Виды занятий по дисциплине и распределение аудиторных часов для очной формы приведены в таблице 3.

В таблице 4 приведено распределение видов занятий и распределение аудиторных часов для выполнения курсовой работы.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1	2	3	4	5	6	7	8
1	Введение в большие данные. Задачи анализа данных. Жизненный цикл аналитики данных	Перегрузка информацией и Data Mining. Типы закономерностей. Модели вместо законов Системы и модели. Модели информационноразвивающихся систем. Виды знаний и способы их представления. Классы систем Data Mining	2	_		Подбор наборов больших данных для анализа	4
2	Основы языка Python	Особенности языка. Синтаксис и базовые конструкции. Структуры данных. Модули. Ветвления и циклы. Элементы функционального программирования. Объектноориентированное программирование. Средства визуализации, библиотека matplotlib.	6	-		Основы Python	6

_1

Продолжение таблицы 3

1	2	3	4	5	6	7	8
3	Высокопроизводи тельные вычисления	Классификация архитектур вычислительных систем (по числу потоков команд и данных). Архитектурные свойства высокопроизводительных ВС. Показатели эффективности структуры ВС. Типовые структуры ВС. Вычислительные кластеры (computer cluster).	4	_	_	Библиотеки Python для анализа больших данных	6
4	Масштабирование и многоуровневое хранение данных	NoSQL. Масштабируемость. Репликация. САР – теорема. Основы NoSQL. СУБД, поддерживающие NoSQL.	8	_	_	Изучение технологии NoSQL	8
5	Визуализация данных и результатов анализа	Области использования визуализации. Типы и задачи визуализации. Требования к визуализации. Традиционные виды визуализации. Графики и диаграммы. Инфографика. Презентация и анализ данных. Интерактивный сторителлинг. Дашборды и бизнес аналитика. Визуализация в медицине и науке. Карты и картограммы. Облако тегов. Кластерграмма. Исторический поток. Пространственный поток. Известные решения в области визуализации.	8		-	Визуализация результатов обработки больших данных	6

 ∞

Окончание таблицы 3

1	2	3	4	5	6	7	8
6	Сложные методы аналитики	Методы матричного анализа. Оптимизация. Вероятность. Основные вероятностные формулы. Закон арксинуса. Математическая статистика как некорректная обратная задача теории вероятностей. Многомерный нормальный закон. Генерация случайных чисел. Метод наименьших квадратов в линейной модели измерений. Множественный регрессионный анализ. Главные компоненты и факторный анализ. Дискриминантный анализ. Анализ канонических корреляций. Дискриминантные информанты и классификация. Оценка вероятностей ошибочной классификации. Классификация на основе линейных дискриминантных форм. Кластеризация. Выбор метрики. Метод к средних. Метод опорных векторов.	6		-	Глубокий анализ больших данных	6
Всег	го аудиторных часов		36	-		36	

9

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации студентов по дисциплине

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
ОПК-3 ПК-4	Экзамен Дифференцированный зачет	Комплект контролирующих материалов для экзамена и дифзачета

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

– лабораторные работы – всего 100 баллов.

Экзаменационная оценка проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Экзамен по дисциплине «Анализ больших данных» проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время сессии студент имеет право повысить итоговую оценку либо в форме устного собеседования по приведенным ниже вопросам (п.п. 6.5), либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды учебной	Оценка по национальной шкале
деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашнее задание

Домашнее задание не предусмотрено.

6.3 Темы для рефератов (презентаций) – индивидуальное задание Реферат (индивидуальное задание) не предусмотрен.

6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Teмa 1 Введение в большие данные. Классификация задач анализа данных

- 1) Изложите краткую историю больших данных.
- 2) Опишите подходы в работе с данными.
- 3) Какова этика работы с данными?
- 4) Опишите прогресс нейронных сетей.
- 5) В чем связь анализа данных и искусственного интеллекта?

Тема 2 Жизненный цикл аналитики данных

- 1) Опишите принципы обработки больших данных.
- 2) Хранение и обработка структурированных данных. Базовые принципы.
- Каковы базовые принципы использования инструментов для обработки структурированных данных: Excel и SQL?
- 4) Как осуществляется хранение и обработка неструктурированных данных?
- 5) Какие Вы знаете технологии для обработки неструктурированных данных?
 - 6) Как производится кодировка категориальных данных?.

Тема 3 Высокопроизводительные вычисления

- 1) Что такое Business Intelligence и Data Science?
- 2) Каковы базовые принципы, общее, отличия технологий для обработки больших данных: Python, Apache Hadoop, Apache Spark, Apache Storm.

- 4) Какие Вы знаете нейросетевые архитектуры?
- 5) Что такое машинное обучение?

Тема 4 Масштабирование и многоуровневое хранение данных

- 1) Что такое майнинг данных?
- 2) Что такое Deep Learning?
- 3) Что такое нейросетевые архитектуры?
- 4) Что такое обучение с подкреплением?
- 5) Что такое сверточные нейронные сети?

Тема 5 Визуализация данных и результатов анализа

- 1) Как используется анализ больших данных в бизнесе?
- 2) Как используется анализ больших данных в медицинской информатике?
- 3) Как используется анализ больших данных в физике элементарных частиц?
- 4) Как используется анализ больших данных в цифровых изданиях и семантической разметке?
 - 5) Как используется анализ больших данных в компьютерном зрении? Тема 6 Сложные методы аналитики
 - 1) Что такое линейная регрессия: определение, формулы?
 - 2) Что такое логистическая регрессия: определение, формулы?
 - 3) Что такое решающие деревья: определение, схема?
 - 4) Как используется глубокое обучение в обработке текстов?
 - 5) Как используется машинное обучение в лингвистике?

6.5 Вопросы для подготовки к экзамену

- 1) Что означает термин «Big Data» в информационных технологиях?
- 2) Что является основной целью обработки Big Data?
- 3) Кто и в каком году впервые ввел термин «Big Data»?
- 4) Какие главные характеристики Big Data?
- 5) Какие данные занимают больше мировой памяти относительно остальных?
 - 6) Какие понятия содержит в себе принцип трех "V"?
 - 7) Что является примером квази-структурированных данных?
 - 8) Чем характеризуются "Большие данные"?
 - 9) Что является главным результатом процесса Business Intelligence?
- 10) Что означает термин «Business Intelligence» в информационных технологиях?
 - 11) Расшифруйте аббревиатуру OLAP.

- 12) Что относится к средствам предоставления информации в Business Intelligence?
 - 13) Что относится к средствам интеграции в «Business Intelligence»?
 - 14) Какие цели ставит перед собой Data Science?
 - 15) Что такое жизненный цикл аналитики данных?
 - 16) Дайте определение термину «предиктивное моделирование»?
 - 17) Что такое ETL?
 - 18) Какова роль ВІ-аналитика в проекте?
- 19) Что такое Apache Hadoop? В чем преимущества решений на базе Hadoop?
- 20) Что такое MapReduce? Какими достоинствами и недостатками обладает MapReduce?
- 21) Какому основному принципу следует HDFS? Какой размер блока по умолчанию в HDFS? Какие функции выполняет NameNode в HDFS?
- 22) Какой узел отвечает за репликацию данных в Hadoop? Какие компоненты содержит Slave узел в Hadoop? Какие компоненты содержит Master узел в Hadoop?
 - 23) Какие компоненты являются частями HDFS?
 - 24) Для чего используется автономный режим Hadoop?
- 25) Какой режим необходим для того, чтобы на локальной машине использовать Hadoop как кластер, состоящий из одного узла?
- 26) Что является отличительной особенностью NoSQL? В каком случае стоит применять NoSQL хранилища?
- 27) Что, согласно теореме САР, возможно обеспечить в любой реализации распределённых вычислений?
- 28) Какое свойство означает, что транзакции не нарушают согласованность данных, то есть они переводят базу данных из одного корректного состояния в другое?
 - 29) Какой способ хранения данных используется в MongoDB?
 - 30) Что относится к плюсам репликации?
 - 31) Что относится к преимуществам нереляционных БД?
 - 32) Что такое шардинг?
 - 33) Какие три свойства фигурируют в определении теоремы САР?
- 34) Для чего нужна визуализация? В чем состоят основные задачи визуализации?
 - 35) Какие традиционные виды визуализации Вы знаете?
 - 36) Что такое дедупликация данных?

- 37) Какие требования предъявляются к визуализации? Какие типы визуализации Вы знаете?
- 38) Чем анализ больших данных отличается от традиционного анализа?
 - 39) Какие основные типы Data Mining Вы знаете?
- 40) Какие категории Web Mining можно выделить? В чем основная задача Web Content Mining?
- 41) В чем состоят основные задачи интеллектуального анализа текстов?
- 42) К каким алгоритмам классификации относится метод ближайших соседей?
 - 43) Что является целью кластеризации?
- 44) С помощью какого алгоритма можно найти ассоциативное правило?
 - 45) Что подразумевается под определением "статистический вывод"?
 - 46) Чем отличаются ошибки первого и второго рода?
 - 47) Что является результатом решения задачи регрессии?
 - 48) Что такое α-error?

6.6 Примерные темы курсовых работ

- 1) Методы сбора и обработки данных предприятия/производственного процесса.
 - 2) Анализ технико-экономических данных предприятия.
- 3) Прогнозные модели многомерных показателей предприятия на основе методов искусственного интеллекта.
- 4) Применение машинного обучения в настройке цифровых двойников технологических процессов производства.
 - 5) Интеллектуальная система прогнозирования износа оборудования.
- 6) Интеллектуальная система планирования текущего и профилактического ремонта оборудования.
- 7) Интеллектуальная система бизнес-аналитики для потребностей технолога предприятия.
 - 8) Интеллектуальные модели для промышленного интернета вещей.
 - 9) Советующая система поддержки принятия решений технолога.
- 10) Интеллектуальная система оптимизации режима работы производственного оборудования.
- 11) Система компьютерного зрения для контроля технологического процесса промышленного предприятия.

- 12) Интеллектуальные методы визуализации анализа качества продукции предприятия.
- 13) Разработка цифровых двойников участников образовательного процесса в ВУЗе.
 - 14) Модуль интеллектуального семантического анализа текста
- 15) Интеллектуальные методы и модели кластеризации больших данных.

Для каждой темы студент получает уточняющее задание: вид отрасли промышленности или конкретное предприятие. Числовые данные студент находит самостоятельно, используя открытые зарубежные и отечественные источники данных.

ЗАДАНИЕ

Создать программу для анализа больших данных с выводом результатов в виде приложения с многооконным интерфейсом. Особенности реализации:

- 1) Данные загружаются из файла (*.txt или *.xls или *.xml).
- 2) Полноценный интерфейс: главное меню, панель инструментов, строка состояния, несколько окон:
- а) ввод и редактирование данных (табличная форма), с возможностью сохранения измененных значений в новом файле;
 - б) отчет-таблица + текст;
 - в) отчет-график + текст;
 - г) о программе.
 - 3) Исходные данные и результаты сохранять в базе данных
- 4) Отчеты сохранять в виде файла *.html (текст, графики, таблицы) или *.pdf.
 - 5) Комментарии в программе обязательны!

По завершении работы предоставляется объяснительная записка в объеме 30-40 страниц в *печатном и электронном виде* в формате Word 2003, оформленная согласно ГОСТ, а также рабочая программа (*все* файлы проекта и скомпилированный ехе- ϕ айл).

Формулы в записке набирать в редакторе формул.

Сканированные рисунки не допускаются.

Ссылки на литературу обязательны. Количество источников – 3-5!

При использовании Python обязательным является создание оболочки, например, средствами Qt.

Структура пояснительной записки

Раздел	Приблизительное
	количество
	страниц
Титульный лист	1
Задание и календарный план	1
РЕФЕРАТ	1
ВВЕДЕНИЕ	1-2
1 АНАЛИЗ ЗАДАЧИ	
1.1 Теоретические сведения, необходимые для выполнения	5-6
работы	3-0
1.2 Описание исходного набора данных	2-3
1.3 Описание переменных и констант, функций,	6-8
используемых библиотек и программ	0-0
2 РАЗРАБОТКА СТРУКТУРЫ ПРОГРАММЫ	
2.1 Разработка структуры программы и алгоритмов расчетов	3-5
2.2 Разработка интерфейса пользователя	3-5
2.3 Разработка алгоритмов расчетов	5-7
3 РАЗРАБОТКА ПРОГРАММЫ	
3.1 Создание функций, реализующих алгоритмы расчетов	3-4
3.2 Реализация программного кода управления программой	2-3
3.3 Тестирование программы	1-2
ВЫВОДЫ	1
ПРИЛОЖЕНИЕ А ИСХОДНЫЕ ДАННЫЕ	1-2
ПРИЛОЖЕНИЕ Б ТЕХНИЧЕСКОЕ ЗАДАНИЕ	3-4
ПРИЛОЖЕНИЕ В ФОРМЫ ПРОГРАММЫ	2-4
ПРИЛОЖЕНИЕ Г ПРОГРАММНЫЙ КОД	15-20
ПРИЛОЖЕНИЕ Д ТЕСТОВЫЙ ПРИМЕР	2-4
ВСЕГО	60-80

Примечания:

- 1. При использовании сторонних библиотек (не входящих стандартные пакеты) привести их полное описание в отдельном приложении (Приложение Е).
- 2. При описании программы руководствоваться ГОСТ 19.402-78 «Описание программы».

7. Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Келлехер, Д. Наука о данных: базовый курс: учебное пособие / Д. Келлехер. Москва: Альпина Паблишер, 2020. 224 с. URL: https://ugolok.vercel.app/books/ai_ds_bd/dzhon_kelleher_brendan_tirni_nauka_o_dannih_bazovii_kurs_alipina.pdf (Дата обращения 26.08.2024).
- 2. Уэс Маккинни. Python и анализ данных: Первичная обработка данных с применением pandas, NumPy и Jupiter / пер. с англ. А. А. Слинкина. 3-е изд. М.: МК Пресс, 2023. 536 с.: ил. URL: gstu.by/sites/default/files/files/resources/2021/09/makkini.pdf?ysclid=m0dp0a8sbk 386511381 (Дата обращения 26.08.2024).

Дополнительная литература

1. Белов, В.С. Информационно-аналитические системы: основы проектирования и применения: учебно-практическое пособие / В.С. Белов. – Москва: Евразийский открытый институт, 2010. – 111с. URL: https://shporal.do.am/ ld/2/255 - .pdf (Дата обращения 26.08.2024).

Учебно-методические материалы и пособия

1. Бизянов, Е.Е. Методы анализа данных: лабораторный практикум / Е.Е. Бизянов, А.С. Закутный ; Каф. Специализированных компьютерных систем. — Алчевск: ГОУ ВО ЛНР ДонГТИ, 2023. — 91 с. URL: https://library.dstu.education/download.php?rec=132246.

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт.— Алчевск. URL: library.dstu.education.— Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст : электронный.
- 3. Консультант студента : электронно-библиотечная система.— Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x.— Текст : электронный.
 - 4. Сайт кафедры ИСИБ http://scs.dstu.education

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 9.

Таблица 9 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местоположение) учебных кабинетов
Специальные помещения: Мультимедийная аудитория. (60 посадочных мест), оборудованная специализированной (учебной) мебелью (скамья учебная –20 шт., стол– 1 шт., доска аудиторная– 1 шт.), учебное ПК (монитор + системный блок), мультимедийная стойка с оборудованием – 1 шт., широкоформатный экран. Аудитории для проведения лекций:	ауд. <u>207</u> корп. <u>4</u>
Компьютерные классы (22 посадочных места), оборудованный учебной мебелью, компьютерами с неограниченным доступом к сети Интернет, включая доступ к ЭБС: ПК— 12 шт.; Доска — 1 шт.	ауд. <u>211</u> корп. <u>4</u>

Лист согласования рабочей программы дисциплины

Разработал

И.о. заведующего кафедрой интеллектуальных систем и информационной безопасности (должность)

(под**умя**)

<u>Е.Е. Бизянов</u> (Ф.И.О.)

И.о. заведующего кафедрой интеллектуальных систем и информационной безопасности (наименование кафедры)

(подинеь)

Е.Е. Бизянов (Ф.И.О.)

Протокол № <u>1</u> заседания кафедры интеллектуальных систем и информационной безопасности

от 27.08.20 24 г.

И.о. декана факультета информационных технологий и автоматизации производственных процессов

(deptinger)

В.В Дьячкова Ф.И.О.)

Согласовано

Председатель методической комиссии по направлению подготовки 09.04.01 Информатика и вычислительная техника

(подация)

<u>Е.Е. Бизянов</u>

Начальник учебно-методического центра

(подпись

<u>О.А.Коваленко</u> Ф.И.О.)

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для		
внесения изменений		
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	
Основание:		
Подпись лица, ответственного за внесение изменений		