Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Вишневский Дмитрий Александрович

Должность: Ректор

Дата подписания: 30.04.2025 11:55:50

Уникальный программный к/**МИ**НИСТЕРСТВО НА УКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ 03474917c4d012283e5ad996a48a5e70bf8da057 (МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет информационных технологий и автоматизации производственных процессов

Кафедра электромеханики им. А. Б. Зеленова

УТВЕРЖДАЮ

И. о. проректора по учебной работе
Д. В. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

M	атематическое моделирование в мехатрон	IIIVA
1V1		ике
	(наименование дисциплины)	
1.	3.04.02 Электроэнергетика и электротехни	ика
	(код, наименование направления)	
Автоматизи	рованные электромеханические комплекс	сы и системы
	(наименование магистерской программы)	
Квалификация	магистр	
_	(бакалавр/специалист/магистр)	
Форма обущения	Onnsa ssonnsa	

(очная, очно-заочная, заочная)

1 Цели и задачи изучения дисциплины

Цель дисциплины: формирование навыков использования методов математического моделирования для описания мехатронных и робототехнических систем, а также использования пакетов прикладных математических программ для решения научных и инженерных задач, формирование основных научно-практических, общесистемных знаний в области моделирования мехатронных и робототехнических систем.

Задачи изучения дисциплины: формирование базы знаний в области разработки моделей мехатронных и робототехнических систем, создание условий, обеспечивающих овладение студентами навыками, умениями и приобретение ими опыта при создании и анализе математических моделей систем, изучение вопросов применения различных способов и средств моделирования мехатронных и робототехнических систем.

Дисциплина направлена на формирование компетенций ОПК-1, ОПК-2, ПК-2 выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины: курс входит в БЛОК 1 «Дисциплины (модули)», часть блока 1 «Элективные дисциплины» подготовки студентов по направлению 13.04.02 Электроэнергетика и электротехника (магистерская программа «Автоматизированные электромеханические комплексы и системы»).

Для изучения дисциплины необходимы компетенции, сформированные у студента в результате освоения дисциплин ООП подготовки бакалавра: «Информатика», «Моделирование электромеханических систем».

Приобретенные в процессе изучения дисциплины знания и практические навыки являются базой для изучения специальных дисциплин при подготовке специалиста по направлению 13.04.02 «Электроэнергетика и электротехника».

Общая трудоемкость освоения дисциплины составляет 5,5 зачетных единицы, 198 ак. ч. Программой дисциплины предусмотрены лекционные (54 ак.ч. для групп ЭМС, 6 ак. ч. для группы ЭМС-з), практические работы (36 ак.ч. для групп ЭМС, 6 ак. ч. для группы ЭМС-з) и самостоятельная работа студента (108 ак.ч. для групп ЭМС, 186 ак.ч. для группы ЭМС-з).

Дисциплина изучается на 2 курсе в 3 семестре для группы ЭМС и на 2 курсе в 4 семестре для группы ЭМС-з. Форма промежуточной аттестации – экзамен.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Математическое моделирование в мехатронике» направлен на формирование компетенций, представленных в таблице 3.1.

Таблица 3.1 – Компетенции, обязательные к освоению

Содержание компетенции	Код компетенции	Код и наименование индикатора достижения компетенции
Способен формулировать цели и задачи исследования, выявлять приоритеты решения задач, выбирать критерии оценки	ОПК-1	ОПК-1.1. Формирует цели и задачи исследования. ОПК-1.2. Определяет последовательность решения задач. ОПК-1.3. Формирует критерии принятия решения
Способен применять современные методы исследования, оценивать и представлять результаты выполненной работы	ОПК-2	ОПК-2.2 Проводит анализ полученных результатов; ОПК-2.3 Представляет результаты выполненной работы
Способен участвовать в проектировании объектов профессиональной деятельности	ПК-1	ПК-1.3. Демонстрирует понимание взаимосвязи задач проектирования и эксплуатации

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 5,5 зачётных единицы, 198 ак. ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к лабораторным работам, текущему контролю, самостоятельное изучение материала и подготовку к зачету.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 4.1.

Таблица 4.1 – Распределение бюджета времени на СРС

	1	
Вид учебной работы	Всего ак.	Ак .ч. по се- местрам
Аудиторная работа, в том числе:	90	81
Лекции (Л)	54	18
Практические занятия (ПЗ)	36	45
Лабораторные работы (ЛР)	_	18
Курсовая работа/курсовой проект	_	_
Самостоятельная работа студентов (СРС), в том числе:	108	45
Подготовка к лекциям	27	27
Подготовка к лабораторным работам	_	_
Подготовка к практическим занятиям / семинарам	18	18
Выполнение курсовой работы / проекта	_	_
Расчетно-графическая работа (РГР)	0	0
Реферат (индивидуальное задание)	0	0
Домашнее задание	0	0
Подготовка к контрольной работе	0	0
Подготовка к коллоквиумам	6	6
Аналитический информационный поиск	18	18
Работа в библиотеке	18	18
Подготовка к экзамену	21	21
Промежуточная аттестация – Экзамен (Э)	Э	Э
Общая трудоемкость дисциплины		
Ак. ч.	198	198
3. e.	7.5	7.5

5 Содержание дисциплины

С целью освоения компетенций, приведенных в п. 3 дисциплина разбита на 4 темы:

- тема 1 (Основные понятия, определения, возможности и виды моделирования мехатронных и робототехнических систем);
- тема 2 (Классификация математических моделей. Формы представления математических моделей);
- тема 3 (Математические модели мехатронных и робототехнических систем);
- тема 4 (Математическое моделирование мехатронных и робототехнических систем).

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 5.1 - 5.2 соответственно.

Таблица 5.1 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ π/ π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
1	Основные понятия, определения, возможности и виды моделирования мехатронных и робототехнических систем	Основные понятия, определения, возможности и виды моделирования мехатронных и робототехнических систем. Общие сведения о моделировании технических объектов и систем. Характеристика объектов моделирования. Требования, предъявляемые к математическим моделям.	6	Структура блоков SimMechanics па- кета Simulink среды MATLAB	6	_	_
2	Классификация математических моделей. Формы представления математических моделей	Классификация математических моделей. Формы представления математических моделей. Взаимосвязь векторно-матричной формы описания объекта с его передаточной функцией	4	Моделирование работы плоских механизмов	10	_	
3	Математические модели механических систем электроприводов	Математические модели механических систем мехатронных и робототехнических систем. Математическая модель механической части манипулятора.	8	Моделирование пространственных механизмов	10	_	_
4	Математическое моде- лирование электромеха- нических систем	Математическое моделирование мехатронных и робототехнических систем. Основные методы, этапы и особенности моделирования на ЭВМ систем, математическое описание которых представлено в виде дифференциальных уравнений.	8	Моделирование работы двигателей в мехатронных системах	10	_	_

№ п/ п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
		Особенности математического описания и моделирования мехатронных и робототехнических систем. Математическое описание силовых взаимодействий в мехатронных и робототехнических систем. Способы получения обобщенных математических моделей мехатронных и робототехнических систем	12				
	Всего аудиторных часов		54	_	36	_	_

Таблица 5.2 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

№ п/ п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
1	Математическое моде- лирование электромеха- нических систем	Основные понятия, определения, возможности и виды моделирования мехатронных и робототехнических систем.	6	Структура блоков SimMechanics па- кета Simulink среды MATLAB	6	_	I
	Всего аудиторных часов		6	_	6	_	_

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала (https://www.dstu.education/images/structure/license_certificate/polog_kred_modult.pdf).

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 6.1.

Таблица 6.1 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
ОПК-1, ОПК-2, ПК-2	Экзамен	Комплект контролирующих материалов для экзамена

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- тестовый контроль или устный опрос на коллоквиумах (1 коллоквиум) всего 40 баллов;
 - практические работы всего 60 баллов.

Экзамен проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60 % от максимального.

Экзамен по дисциплине «Математическое моделирование в электроприводе» проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время сессии студент имеет право повысить итоговую оценку либо в форме устного собеседования по приведенным ниже вопросам (п. 6.4), либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.2.

Таблица 6.2 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашние задания

Для студентов очной формы обучения домашние задания не предусмотрены. Студены заочной формы обучения в каждом семестре выполняют контрольную работу по имеющимся методическим указаниям.

6.3 Темы рефератов

Написание рефератов при изучении дисциплины не предусмотрено.

6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Тема 1 Основные понятия, определения, возможности и виды моделирования мехатронных и робототехнических систем

- 1) Что понимается под моделированием мехатронных и робототехнических систем?
- 2) Какие возможности предоставляет моделирование для анализа и проектирования мехатронных систем?
- 3) Какие виды моделирования применяются для исследования робототехнических систем?
- 4) Какие характеристики объектов моделирования учитываются при построении математических моделей?
- 5) Какие требования предъявляются к математическим моделям мехатронных и робототехнических систем?
- 6) В чем заключается важность адекватности математической модели реальному объекту?
 - 7) Какие этапы включает процесс моделирования технических систем?
- 8) Какова роль моделирования в проектировании и оптимизации мехатронных и робототехнических систем?

Тема 2 Классификация математических моделей. Формы представления математических моделей

1) Как классифицируются математические модели в зависимости от их

свойств и характеристик?

- 2) Какие формы представления математических моделей наиболее часто используются в электромеханике?
- 3) Как связана векторно-матричная форма описания объекта с его передаточной функцией?
- 4) Какие преимущества имеет векторно-матричное представление математических моделей?
- 5) Как преобразовать дифференциальные уравнения системы в векторно-матричную форму?
- 6) Какие типы математических моделей применяются для описания динамических систем?
- 7) Как передаточная функция используется для анализа свойств системы?
- 8) Какие ограничения имеют линейные математические модели при описании нелинейных систем?
- Тема 3 Математические модели механических систем мехатронных и робототехнических систем
- 1) Каковы основные элементы математической модели механической части манипулятора?
- 2) Как строится математическая модель механической части робототехнической системы?
- 3) Какие параметры механической системы учитываются при построении математической модели?
- 4) Как учитываются силы трения и инерции в математической модели механической системы?
- 5) Какие упрощения допускаются при моделировании механической части манипулятора?
- 6) Как связаны механические и электрические параметры в модели мехатронной системы?
- 7) Какие методы используются для решения уравнений механической системы?
- 8) Как проверить адекватность математической модели механической части робототехнической системы?

Тема 4 Математическое моделирование мехатронных и робототехнических систем

1) Какие основные методы используются для моделирования систем, описываемых дифференциальными уравнениями?

- 2) Какие этапы включает процесс математического моделирования мехатронных и робототехнических систем?
- 3) Как учитываются силовые взаимодействия в математическом описании мехатронных систем?
- 4) Какие способы применяются для получения обобщенных математических моделей робототехнических систем?
- 5) Как определяются эквивалентные параметры элементов мехатронных систем?
- 6) Какие особенности учитываются при моделировании нелинейных мехатронных систем?
- 7) Как выбирается метод численного интегрирования для решения дифференциальных уравнений модели?
- 8) Какие программные средства используются для моделирования мехатронных и робототехнических систем на ЭВМ?

6.5 Вопросы для подготовки к экзамену

- 1) Что понимается под моделированием мехатронных и робототехнических систем?
- 2) Какие возможности предоставляет моделирование для анализа и проектирования мехатронных систем?
- 3) Какие виды моделирования применяются для исследования робототехнических систем?
- 4) Какие характеристики объектов моделирования учитываются при построении математических моделей?
- 5) Какие требования предъявляются к математическим моделям мехатронных и робототехнических систем?
- 6) В чем заключается важность адекватности математической модели реальному объекту?
 - 7) Какие этапы включает процесс моделирования технических систем?
- 8) Какова роль моделирования в проектировании и оптимизации мехатронных и робототехнических систем?
- 9) Как классифицируются математические модели в зависимости от их свойств и характеристик?
- 10) Какие формы представления математических моделей наиболее часто используются в электромеханике?
- 11) Как связана векторно-матричная форма описания объекта с его передаточной функцией?
- 12) Какие преимущества имеет векторно-матричное представление математических моделей?

- 13) Как преобразовать дифференциальные уравнения системы в векторно-матричную форму?
- 14) Какие типы математических моделей применяются для описания динамических систем?
- 15) Как передаточная функция используется для анализа свойств системы?
- 16) Какие ограничения имеют линейные математические модели при описании нелинейных систем?
- 17) Каковы основные элементы математической модели механической части манипулятора?
- 18) Как строится математическая модель механической части робототехнической системы?
- 19) Какие параметры механической системы учитываются при построении математической модели?
- 20) Как учитываются силы трения и инерции в математической модели механической системы?
- 21) Какие упрощения допускаются при моделировании механической части манипулятора?
- 22) Как связаны механические и электрические параметры в модели мехатронной системы?
- 23) Какие методы используются для решения уравнений механической системы?
- 24) Как проверить адекватность математической модели механической части робототехнической системы?
- 25) Какие основные методы используются для моделирования систем, описываемых дифференциальными уравнениями?
- 26) Какие этапы включает процесс математического моделирования мехатронных и робототехнических систем?
- 27) Как учитываются силовые взаимодействия в математическом описании мехатронных систем?
- 28) Какие способы применяются для получения обобщенных математических моделей робототехнических систем?
- 29) Как определяются эквивалентные параметры элементов мехатронных систем?
- 30) Какие особенности учитываются при моделировании нелинейных мехатронных систем?
- 31) Как выбирается метод численного интегрирования для решения дифференциальных уравнений модели?
- 32) Какие программные средства используются для моделирования мехатронных и робототехнических систем на ЭВМ?

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

1. Дьяконов В. П.. МАТLAВ [Электронный ресурс]:Полный самоучитель. - Саратов: Профобразование, 2019. - 768 с. — Режим доступа: http://www.iprbookshop.ru/87981.html (дата обращения: 20.08.2024). (дата обращения: 20.08.2024).

Дополнительная литература

- 1. Лазарева Н. М., Яров В. М., Белов Г. А.. Компьютерное моделирование. SimPowerSystems: практикум [для 2 курса по специальности "Промышленная электроника"]. Чебоксары: Изд-во Чуваш. ун-та, 2016. 67с.
- 2. Фролов В. Я., Смородинов В. В.. Устройства силовой электроники и преобразовательной техники с разомкнутыми и замкнутыми системами управления в среде Matlab Simulink [Электронный ресурс]:учебное пособие. Санкт-Петербург: Лань, 2018. 332 с. Режим доступа: https://e.lanbook.com/book/106890. (дата обращения: 20.08.2024).
- 3. Семенова Т. И., Шакин В. Н., Юсков И. О., Юскова И. Б.. Введение в математический пакет Matlab [Электронный ресурс]:Учебно-методическое пособие. Москов: Московский технический университет связи и информатики, 2016. 88 с. Режим доступа: http://www.iprbookshop.ru/61469.html (дата обращения: 20.08.2024)
- 4. Компьютерное моделирование электромеханических систем постоянного и переменного тока в среде MATLAB Simulink: учебное пособие / Ю. Н. Дементьев, В. Б. Терехин, И. Г. Однокопылов, В. М. Рулевский. Томск: Томский политехнический университет, 2018. 497 с. ISBN 978-5-4387-0819-3. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/98983.html (дата обращения: 20.05.2024).

Учебно-методическое обеспечение

1. Методические указания к выполнению лабораторных работ по курсу «ФММ ЭМПЭ» : (для студ. напр. подготовки 13.04.02 «Электроэнергетика и электротехника») / сост. И.А. Карпук ; Каф. электромеханики им. А.Б.Зеленова . — Алчевск : ФГБОУ ВО «ДонГТУ», 2024 . — 64 с. https:// moodle.dstu.education/pluginfile.php/61962/mod_resource/content/1/МУ% 2ФММ ЭМПЭ.pdf

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт. Алчевск. URL: <u>library.dstu.education</u>. Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст : электронный.
- 3. Консультант студента : электронно-библиотечная система. Mockва. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст : электронный.
- 4. Университетская библиотека онлайн : электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст : электронный.
- 5. IPR BOOKS : электронно-библиотечная система. Красногорск. URL: http://www.iprbookshop.ru/. Текст : электронный.
- 6. Федеральная служба по экологическому, технологическому и атомному надзору (Ростехнадзор) : официальный сайт. Москва. https://www.gosnadzor.ru/. Текст : электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 8.

Таблица 8.1 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местополо- жение) учебных кабинетов
Специальные помещения: Компьютерный класс кафедры ЭМ - Персональный компьютер — 17 шт - Принтер HP1100 - Сканер	ауд 319, корп. глав- ный

Лист согласования РПД

Разработал	/
доц. кафедры электромеханики	
им. А. Б. Зеленова	200 HAK
(должность)	(пожнись) <u>И.А. Карпук</u> (ф.И.О.)
	(4.21.0.)
(должность)	(подпись) (Ф.И.О.)
(должность)	(подпись) (Ф.И.О.)
Заведующий кафедрой	<u>Деменя</u> Д. И. Морозов (Ф.И.О.)
Протокол № <u>1</u> заседания кафедры	
электромеханики им. А.Б. Зеленова	от 22.08.2024г.
Декан факультета	<u>Доди</u> В. В. <u>Дьячкова</u> (Ф.И.О.)
Согласовано	
Председатель методической комиссии по направлению подготовки 13.04.02 Электроэнергетика и электротехника	<u>комаревцева</u>
	(подпись) (Ф.И.О.)

<u>О.А. Коваленко</u> (Ф.И.О.)

Начальник учебно-методического центра

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения изменений			
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:		
Основ	зание:		
Подпись лица, ответственного за внесение изменений			