# МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет Кафедра <u>горно-металлургической промышленности и строительства</u> экологии и безопасности жизнедеятельности



# РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

|                | Радиобиология                     |  |
|----------------|-----------------------------------|--|
|                | (наименование дисциплины)         |  |
| 05.03.0        | 6 Экология и природопользование   |  |
|                | (код, наименование направления)   |  |
| Приклад        | ная экология и природопользование |  |
|                | (профиль подготовки)              |  |
|                |                                   |  |
|                |                                   |  |
| Квалификация   | бакалавр                          |  |
| -              | (бакалавр/специалист/магистр)     |  |
| Форма обучения | очная, заочная                    |  |
| -              | (очная, очно-заочная, заочная)    |  |

#### 1 Цели и задачи изучения дисциплины

*Цели дисциплины*. Целью изучения дисциплины «Радиобиология» является формирование знаний о влиянии ионизирующего излучения на экологические системы и их компоненты, миграции радионуклидов в экосистемах; овладение умениями выбирать мероприятия для защиты от негативного влияния радиоактивного загрязнения окружающей среды.

Задачи изучения дисциплины:

- ознакомить студентов с физическими основами радиационного загрязнения,
- изучить естественные и техногенные источники радиационного загрязнения,
- овладеть средствами и методами создания радиационного безопасности населения и окружающей среды.

*Дисциплина направлена на формирование* профессиональной (ПК-2) компетенции выпускника.

#### 2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины - курс входит в элективные дисциплины (модули) Блока 1 подготовки студентов по направлению подготовки 05.03.06 «Экология и природопользование» (профиль «Прикладная экология и природопользование»).

Дисциплина реализуется кафедрой экологии и безопасности жизнедеятельности. Для изучения дисциплины необходимы компетенции, сформированные у студента в результате освоения дисциплин «Физика» и «Биология».

В свою очередь, дисциплина «Радиобиология» является основой для изучения следующих дисциплин: «Экология», «Экологическое проектирование и экспертиза», «Охрана труда и безопасность в чрезвычайных ситуациях», а также, приобретенные знания могут быть использованы при подготовке и защите выпускной квалификационной работы, при прохождении преддипломной практики и в профессиональной деятельности.

Общая трудоемкость освоения дисциплины составляет 4 зачетные единицы, 144 часа. Программой дисциплины предусмотрены лекционные (36 ч.), практические (36 ч.) занятия и самостоятельная работа студента (72 ч.).

Дисциплина изучается на 3 курсе в 6 семестре для очной формы обучения и на 5 курсе в 10 семестре для заочной формы обучения. Форма промежуточной аттестации – экзамен.

# 3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Радиобиология» направлен на формирование компетенции, представленной в таблице 1.

*Таблица 1* – Компетенции, обязательные к освоению

| Содержание           | Код       | Код и наименование индикатора                |
|----------------------|-----------|----------------------------------------------|
| компетенции          | компетенц | достижения компетенции                       |
|                      | ии        |                                              |
| Способность          | ПК-2      | ПК-2.1 Использует знания и навыки основ      |
| применять знания     |           | экологии, гидроэкологии, ландшафтоведения,   |
| основ экологии,      |           | почвоведения, биологии, экологии человека,   |
| гидроэкологии,       |           | животных и растений, социальной экологии и   |
| ландшафтоведения,    |           | токсикологии при оценке состояния окружающей |
| почвоведения,        |           | среды и здоровья населения                   |
| биологии, экологии   |           |                                              |
| человека, животных и |           | ПК-2.2 Проводит оценку состояния окружающей  |
| растений, социальной |           | среды и здоровья населения с применением     |
| экологии и           |           | знаний основ экологии, гидроэкологии,        |
| токсикологии в       |           | ландшафтоведения, почвоведения, биологии,    |
| профессиональной     |           | экологии человека, животных и растений       |
| деятельности         |           |                                              |

#### 4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 4 зачётные единицы, 144 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим занятиям, текущему контролю, выполнение индивидуального задания, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

| Вид учебной работы                                   | Всего ак.ч. | Ак.ч. по<br>семестрам<br>б |
|------------------------------------------------------|-------------|----------------------------|
| Аудиторная работа, в том числе:                      | 72          | 72                         |
| Лекции (Л)                                           | 36          | 36                         |
| Практические занятия (ПЗ)                            | 36          | 36                         |
| Лабораторные работы (ЛР)                             | -           | -                          |
| Курсовая работа/курсовой проект                      | -           | -                          |
| Самостоятельная работа студентов (СРС), в том числе: | 72          | 72                         |
| Подготовка к лекциям                                 | 9           | 9                          |
| Подготовка к лабораторным работам                    | -           | -                          |
| Подготовка к практическим занятиям / семинарам       | 18          | 18                         |
| Выполнение курсовой работы / проекта                 | -           | -                          |
| Расчетно-графическая работа (РГР)                    | -           | -                          |
| Индивидуальное задание                               | 15          | 15                         |
| Домашнее задание                                     | -           | -                          |
| Подготовка к контрольной работе                      | 6           | 6                          |
| Аналитический информационный поиск                   | 8           | 8                          |
| Работа в библиотеке                                  | 8           | 8                          |
| Подготовка к экзамену                                | 8           | 8                          |
| Промежуточная аттестация – экзамен (Э)               | Э           | Э                          |
| Общая трудоемкость дисциплины                        |             |                            |
| ак.ч.                                                | 144         | 144                        |
| 3.e.                                                 | 4           | 4                          |

# 5 Содержание дисциплины

С целью освоения компетенции, приведенной в п.3 дисциплина разбита на 6 тем:

- тема 1 (Предмет, задачи, история становления науки);
- тема 2 (Физические основы радиобиологии);
- тема 3 (Дозиметрия и радиометрия ионизирующих излучений);
- тема 4 (Загрязнение окружающей среды естественными и искусственными источниками радиации);
- тема 5 (Миграция радионуклидов по биологическим цепям);
- тема 6 (Биологическое действие ионизирующих излучений).

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 3 и 4 соответственно.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

| <b>№</b><br>п/п | Наименование темы (раздела) дисциплины | Содержание лекционных занятий                                                                                                                                                                                                                                                                                                                                                                                                                         | Трудоемкость<br>в ак.ч. | Темы практических<br>занятий                              | Трудоемкость<br>в ак.ч. | Тема<br>лабораторных<br>занятий | Трудоемкость<br>в ак.ч. |
|-----------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------|-------------------------|---------------------------------|-------------------------|
| 1               |                                        | Радиобиология как предмет. Основные задачи общей радиобиологии. Радиобиологический парадокс. Открытие рентгеновских лучей и радиоактивности. Роль ученых В.К. Рентгена, А.А. Беккереля, М. Кюри-Склодовской, П. Кюри и др. в становлении науки радиобиологии как самостоятельной дисциплины. Три этапа развития радиобиологии.                                                                                                                        |                         | Оценка дозы внешнего облучения радиоактивными элементами. |                         | _                               |                         |
| 2               | радиобиологии                          | Физические основы действия ионизирующих излучений на биологические объекты. Типы ионизирующих излучений. Общая характеристика различных видов радиоактивных превращений как источников ионизирующих излучений. Закон радиоактивного распада и единицы радиоактивности. Проникающая способность различных ионизирующих излучений и особенности их взаимодействия с веществом. Основные механизмы передачи энергии электромагнитных излучений веществу. |                         | Оценка дозы<br>внешнего облучения<br><sup>90</sup> Sr.    | 6                       | _                               |                         |

| №<br>п/п | Наименование темы (раздела) дисциплины                                           | Содержание лекционных занятий                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Трудоемкость<br>в ак.ч. | Темы практических<br>занятий                                                      | Трудоемкость<br>в ак.ч. | Тема<br>лабораторных<br>занятий | Трудоемкость<br>в ак.ч. |
|----------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------|-------------------------|---------------------------------|-------------------------|
| 3        | Дозиметрия и<br>радиометрия<br>ионизирующих<br>излучений                         | Прямое и косвенное действие ионизирующих излучений. Детекторы ионизирующих излучений. Использование радионуклидов в в медицине. Единицы измерения ионизирующего излучения. Основы Радиационной дозиметрии. Коэффициент радиационного риска                                                                                                                                                                                                                                                     | 6                       | Оценка дозы<br>внутреннего<br>облучения от<br>сельскохозяйственн<br>ой продукции. | 6                       | _                               |                         |
| 4        | Загрязнение окружающей среды естественными и искусственными источниками радиации | Основные свойства радиоактивных веществ как токсических агентов (характер излучения, интенсивность излучения, величина коэффициента всасывания, распределение внутри организма, скорость выведения из организма, продолжительность времени поступления радиоактивных веществ). Пути поступления радиоактивных веществ в организм. Радиобиологическая оценка поражений инкорпорированными радионуклидами. Различие между внешним и внутренним облучением. Последствия поражений радионуклидами. | 6                       | Оценка дозы<br>внутреннего<br>облучения от<br>животноводческой<br>продукции.      | 6                       | _                               |                         |
| 5        | Миграция радионуклидов по биологическим цепям                                    | Миграция радионуклидов в морской экосистеме. Анализ морских экосистем с позиции теории радиоемкости. Миграция радионуклидов в                                                                                                                                                                                                                                                                                                                                                                  | 6                       | Оценка суммарной<br>дозы облучения                                                | 6                       | _                               | _                       |

| <b>№</b><br>π/π | Наименование темы (раздела) дисциплины | Содержание лекционных занятий      | Трудоемкость<br>в ак.ч. | Темы практических<br>занятий | Трудоемкость<br>в ак.ч. | Тема<br>лабораторных<br>занятий | Трудоемкость в ак.ч. |
|-----------------|----------------------------------------|------------------------------------|-------------------------|------------------------------|-------------------------|---------------------------------|----------------------|
|                 |                                        | пресноводных экосистемах. Общие    |                         |                              |                         |                                 |                      |
|                 |                                        | особенности пресноводных           |                         |                              |                         |                                 |                      |
|                 |                                        | экосистем. Распределение           |                         |                              |                         |                                 |                      |
|                 |                                        | радионуклидов среди компонентов    |                         |                              |                         |                                 |                      |
|                 |                                        | пресноводных водоемов. Накопление  |                         |                              |                         |                                 |                      |
|                 |                                        | радионуклидов гидробионтами.       |                         |                              |                         |                                 |                      |
|                 |                                        | Проблемы радиоемкости              |                         |                              |                         |                                 |                      |
|                 |                                        | пресноводных экосистем.            |                         |                              |                         |                                 |                      |
|                 |                                        | Миграция радионуклидов в наземных  |                         |                              |                         |                                 |                      |
|                 |                                        | системах. Нахождение               |                         |                              |                         |                                 |                      |
|                 |                                        | радионуклидов на территории с      |                         |                              |                         |                                 |                      |
|                 |                                        | растительным покровом. Миграция    |                         |                              |                         |                                 |                      |
|                 |                                        | радионуклидов в лесных             |                         |                              |                         |                                 |                      |
|                 |                                        | экосистемах. Миграция              |                         |                              |                         |                                 |                      |
|                 |                                        | радионуклидов в луговых            |                         |                              |                         |                                 |                      |
|                 |                                        | экосистемах. Радиоемкость наземных |                         |                              |                         |                                 |                      |
|                 |                                        | экосистем.                         |                         |                              |                         |                                 |                      |
|                 |                                        | Миграция радионуклидов в           |                         |                              |                         |                                 |                      |
|                 |                                        | агроценозах. Поступление           |                         |                              |                         |                                 |                      |
|                 |                                        | радионуклидов в                    |                         |                              |                         |                                 |                      |
|                 |                                        | сельскохозяйственные растения.     |                         |                              |                         |                                 |                      |
|                 |                                        | Радионуклидное загрязнение         |                         |                              |                         |                                 |                      |
|                 |                                        | природной среды вследствие         |                         |                              |                         |                                 |                      |
|                 |                                        | Чернобыльской аварии. Загрязнение  |                         |                              |                         |                                 |                      |
|                 |                                        | водной экосистемы, загрязнение     |                         |                              |                         |                                 |                      |
|                 |                                        | растительности и животного мира.   |                         |                              |                         |                                 |                      |
|                 |                                        | Проблемы загрязнения               |                         |                              |                         |                                 |                      |
|                 |                                        | радионуклидами значительных        |                         |                              |                         |                                 |                      |
|                 |                                        | территорий.                        |                         |                              |                         |                                 |                      |

| <b>№</b><br>п/п | Transition Dainie Telinbi              | Содержание лекционных занятий                                                                                                                                                                                                                                                                                                                                                                                                         | Трудоемкость<br>в ак.ч. | Темы практических<br>занятий                                                                   | Трудоемкость<br>в ак.ч. | Тема<br>лабораторных<br>занятий | Трудоемкость в ак.ч. |
|-----------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------|-------------------------|---------------------------------|----------------------|
| 6               | действие<br>ионизирующих<br>излучений. | Действие радиации на ДНК. Виды репарации ДНК. Действие радиации на белки и липиды. Кислородный эффект. Повреждающее действие радиации на ядро и мембраны. Радиочувствительность клеток в различных стадиях клеточного цикла. Действие радиации на костную и мышечную ткани. Действие радиации на органы пищеварительной системы. Действие ионизирующего излучения на органы пищеварения, сердечно — сосудистую и эндокринную системы. |                         | Анализ опасности радиоактивного облучения при проживании на загрязненной радиацией территории. | 6                       | <del>-</del>                    |                      |
| Bce             | го аудиторных часов                    |                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36                      | 36                                                                                             |                         | _                               |                      |

Таблицы 4 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

| №<br>п/п | дисциплины         | Содержание лекционных занятий                                                                                                                                                                                                                                                                                                                                                                                                       | в ак.ч. | Темы практических занятий                                                                                                                            | в ак.ч. | Тема<br>лабораторных<br>занятий | Трудоемкос.ь в ак.ч. |
|----------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------|----------------------|
|          |                    | Действие радиации на ДНК. Виды репарации ДНК. Действие радиации на белки и липиды. Кислородный эффект. Повреждающее действие радиации на ядро и мембраны. Радиочувствительность клеток в различных стадиях клеточного цикла. Действие радиации на костную и мышечную ткани. Действие радиации на органы пищеварительной системы. Действие ионизирующего излучения на органы пищеварения, сердечно сосудистую и эндокринную системы. |         | Оценка суммарной дозы облучения от 137 Cs и 90 Sr. Расчет годовой дозы радиоактивного облучения при проживании на загрязненной радиацией территории. |         | _                               |                      |
| Bcei     | го аудиторных часс | DB                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4       | 6                                                                                                                                                    |         | _                               |                      |

# 6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

#### 6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license\_certificate/polog\_kred\_modu l.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень работ по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень работ по дисциплине и способы оценивания знаний

| Вид учебной работы            | Способ оценивания               | Количество баллов |
|-------------------------------|---------------------------------|-------------------|
| Выполнение практических работ | Предоставление отчетов          | 24 - 40           |
| Сдача коллоквиумов            | Более 50% правильных<br>ответов | 36 - 60           |
| Итого                         | _                               | 60 - 100          |

Экзамен проставляется автоматически, если студент набрал в течение семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Экзамен по дисциплине «Радиобиология» проводится по результатам работы в семестре. В случае если полученная в семестре сумма баллов не устраивает студента, во время экзаменационной сессии студент имеет право повысить итоговую оценку либо в форме устного собеседования по приведенным ниже вопросам (п.п. 6.4), либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

| Сумма баллов за все виды | Оценка по национальной шкале |
|--------------------------|------------------------------|
| учебной деятельности     | экзамен                      |
| 0-59                     | неудовлетворительно          |
| 60-73                    | удовлетворительно            |
| 74-89                    | хорошо                       |
| 90-100                   | отлично                      |

#### 6.2 Домашнее задание

В качестве домашнего задания студенты выполняют:

- работу над составлением конспекта изученного материала;
- практические задания.

### 6.3. Оценочные средства (тесты) для текущего контроля успеваемости

Тема 1 Предмет, задачи, история становления науки

- 1. Каковы основные этапы развития радиобиологии?
- 2. Каков принцип деления электромагнитного излучения на ионизирующее и неионизирующее?.
- 3. Как связано строение атома и ядра с явлением изотопии?
- 4. Какова основная идея «Капельной» модели ядра?
- 5. Нестабильные изотопы. Причины нестабильности ядра.
- 6. Как проявляется и регистрируется радиоактивный распад?
- 7. Какие единицы измерения радиоактивности применялись в ядерной физике?

Тема 2 Физические основы радиобиологии

- 8. Какие физические факторы свидетельствуют о наличии явления радиоактивности?
- 9. Чем отличается ионизированный атом от неионизированного?
- 10. Классификация ионизирующего излучения (по природе)?
- 11. Свойства ионизирующего излучения. Полная и удельная ионизация?
- 12. Характеристики ионизирующего излучения. Их значение при взаимодействии радиации с веществом?
- 13. Структура радиологической службы и функции ее подразделений?
- 14. Предмет и задачи радиометрии. Сущность и этапы радиоэкспертизы?
- 15. Виды радиометрического контроля в зависимости от радиационной ситуации?
- 16. Проведение планового периодического контроля?
- 17. Предмет и задачи дозиметрии. Характеристика дозиметров?
- 18. Функции сотрудников радиологических отделов и групп?

Тема 3 Дозиметрия и радиометрия ионизирующих излучений

- 19. Отличия в действии внешнего и внутреннего облучения?
- 20. Экспозиционная и поглощенная дозы излучения. Единицы измерения?
- 21. Поглощенная доза и факторы, ее определяющие?
- 22. Понятие об эквивалентной дозе излучения. Единицы измерения?
- 23. Предмет и задачи радиотоксикологии?
- 24. Токсичность радионуклида и факторы её определяющие?
- 25. Пути поступления радиоактивных веществ в организм животных?
- 26. Типы распределения радионуклидов в организме?
- 27. Понятие о «критическом» органе при внутреннем облучении. Макро- и микро- распределение в органе?

- 28. Период полувыведения радионуклидов из организма. Факторы его определяющие?
- 29. Каков механизм развития лучевого поражения? Теория аутокаталитических цепных реакций в организме?
- Тема 4 Загрязнение окружающей среды естественными и искусственными источниками радиации
- 30. Физический этап взаимодействия ионизирующего излучения с веществом. Первичные радиотоксины?
- 31. Радиационно-химические процессы при развитии лучевых поражений? Вторичные радиотоксины?
- 32. Реакция клетки на облучение. Механизм гибели клетки?
- 33. Общебиологический этап развития лучевого поражения?
- 34. Классификация лучевых поражений?
- 35. Радиочувствительность тканей и фактор ее определяющие? Правило Бергонье-Трибондо?
- 36. Индивидуальная и видовая радиочувствительность? Понятие о летальной и полулетальной дозе?
- 37. Факторы, определяющие тяжесть лучевого поражения?
- 38. Кожные поражения?
- 39. Патогенез лучевой болезни?
- 40. Особенности течения лучевой болезни у разных видов сельскохозяйственных животных?
- 41. Особенности хронической формы лучевой болезни?
- 42. Неопухолевые последствия радиации?
- 43. Отдаленные последствия радиации?
- 44. Принципы профилактики и лечения лучевой болезни?
- 45. Синдромы лучевой болезни?
- 46. Лучевая болезнь и её формы, периоды, степени тяжести?
- 47. Действие ионизирующего излучения на зародыш, эмбрион и плод?

Тема 5 Миграция радионуклидов по биологическим цепям

- 48. Источники ионизирующего излучения?
- 49. Радиационный фон и его составляющие. Единицы измерения?
- 50. Естественный радиационный фон и его компоненты?
- 51. Общие закономерности миграции радионуклидов в биосфере?
- 52. Характеристика и биологическое действие радионуклидов стронция-90, иода-131, цезия-137?
- 53. Ведение сельскохозяйственного производства на зараженной радионуклидами местности?
- 54. Патоморфологические изменения в организме при лучевых поражениях?

Тема 6 Биологическое действие ионизирующих излучений

- 55. Теории прямого и косвенного действия излучений на клетку?
- 56. Биологическая цепь распространения стронция-90 и цезия-137?

- 57. Мероприятия, ограничивающие распространение радионуклидов по «пищевым» цепям. Принцип конкурентности?
- 58. Дезактивация сельскохозяйственной продукции?
- Применение неионизирующего излучения в животноводстве и ветеринарии?
- 60. Применение ионизирующего излучения в животноводстве, растениеводстве?
- 61. Принцип работы дозиметрических и радиометрических приборов?
- 62. Особенности биологического действия ионизирующей радиации на организм животных?

#### 6.4. Задания практических работ

Практическая работа № 1

#### Задание 1

Дано: уровень загрязнения почвы  $^{137}$ Cs  $a_s$ ,= 1,8Kи/ $\kappa$ м $^2$ .

Требуется оценить опасность внешнего облучения человека при проживании на загрязненной радионуклидами территории в следующей последовательности:

- а) определить время пребывания на загрязненной территории;
- b) определить уровень применяемых защитных средств;
- с) рассчитать дозу внешнего облучения;
- d) сделать оценку опасности радиоактивного облучения.

#### Задание 2

Дано: уровень загрязнения почвы  $^{90}$ Sr  $a_s$ ,= 0.85 Ки/км $^2$ .

Требуется оценить опасность внутреннего облучения человека при проживании на загрязненной радионуклидами территории и сделать оценку наиболее опасных сельскохозяйственных продуктов по радиоактивности:

- а) Определить время пребывания на загрязненной территории
- b) Определить уровень применяемых защитных средств
- с) Рассчитать дозу внешнего облучения.
- d) Сделать оценку опасности радиоактивного облучения.

# Практическая работа № 2

#### Задание 1

1. Рассчитать плотность твердой фазы Задание 1.

Дано: уровень загрязнения почвы  $^{137}$ Cs  $a_s$ ,= 1,6  $Ku/km^2$ .

Требуется оценить опасность суммарного облучения человека при проживании на загрязненной радионуклидами территории и потреблении продукции животноводства в следующей последовательности:

а) Определить время пребывания на загрязненной территории.

- b) Определить уровень применяемых защитных средств.
- с) Рассчитать дозу внешнего облучения.
- d) Сделать оценку наиболее опасных продуктов животноводства по радиоактивности.
- е) Сделать оценку опасности радиоактивного облучения.

#### Задание 2

Дано: уровень загрязнения почвы  $^{90}$ Sr  $a_s$ ,= 1,1  $Ku/km^2$ .

Требуется оценить опасность суммарного облучения человека при проживании на загрязненной радионуклидами территории и потреблении продукции животноводства и сельского хозяйства в следующей последовательности:

- а) Определить время пребывания на загрязненной территории.
- b) Определить уровень применяемых защитных средств.
- с) Рассчитать дозу внешнего облучения.
- d) Сделать оценку наиболее опасных продуктов животноводства по радиоактивности.
- е) Сделать оценку опасности радиоактивного облучения.

#### 6.4 Вопросы для подготовки к экзамену

- 1) Какие излучения на загрязненных радиоактивностью территориях являются ионизирующими?
- 2) Какие излучения в электромагнитном спектре не являются ионизирующими?
- 3) Количество каких частиц изменяется при ионизации атомов?
- 4) Как изменяется заряд атома при ионизирующем облучении?
- 5) Какие виды радиоактивного излучения при самопроизвольном распаде радионуклидов.
- 6) Что происходит в организме человека в результате получения большой дозы внешнего облучения?
- 7) У какого вида радиоактивного излучения наибольшая проникающая способность?
- 8) У какого радиоактивного излучения наибольшая энергия ионизации при внутреннем облучении?
- 9) Чем создается естественный радиационный фон?
- 10) Что означает условная атомная масса, указанная в таблице Менделеева?
- 11) Какие характеристики почвенного слоя усиливаюют или ослабляют его радиационный фон?
- 12) Какие агротехнические мероприятия по дезактивации почвенного слоя?
- 13) Что означает горизонтальная и вертикальная подвижность радионуклидов?
- 14) Что означает механические радиоактивные загрязнения воды? Какие проблемы от радиоактивного загрязнения воды?

- 15) Как образуются анионы и катионы в результате радиоактивного облучения?
- 16) Какие радиоактивные изотопы и радиоактивные элементы таблицы Менделеева?
- 17) Как снизить радиоактивность почвы с помощью выращивания растений?
- 18) Какие существуют методы и средства дезактивации воды?
- 19) Какие факторы способствуют горизонтальной миграции радионуклидов?
- 20) Какие факторы способствуют вертикальной миграции радионуклидов?
- 21) Какие методы, приборы и средства измерения радиоактивности?
- 22) Какие предельно допустимые дозы облучения, утвержденные Международной комиссией по радиационной защите?
- 23) Какие суммарные дозы профессионального облучения для различных работ и зон?
- 24) Какая относительная биологическая эффективность и нормы ПДД, для различных видов излучения?
- 25) Какой порядок подготовки и согласования аварийных планов на предприятиях, использующих радиационно-ядерные технологии?
- 26) Какое содержание типового плана аварийных мероприятий на предприятиях, использующих радиационно-ядерные технологии?
- 27) Какой перечень необходимых запасов технических и медицинских средств на случай аварии, предусмотренных аварийным планом?
- 28) Какие прямые и косвенные контрмеры в условиях радиационной аварии?
- 29) Какие контрмеры в зависимости от масштабов и фаз радиационной аварии?
- 30) Какие радионуклиды являются следствием аварий атомных электростанций, их сравнительное количество на загрязненных территориях и периоды полураспада?
- 31) Какие особенности радиоэкологии городов?
- 32) Какое существует разделение радиоактивно загрязненных территорий на зоны по плотности загрязнения и величины эффективной дозы?
- 33) Как происходит дезактивация почвы методом фитомелиорации?
- 34) Какая экспозиционная доза радиоактивного облучения рентгеновским или гамма-излучением?

# 6.5 Тематика и содержание курсового проекта.

Не предусмотрен.

# 7 Учебно-методическое и информационное обеспечение дисциплины

#### 7.1 Рекомендуемая литература

#### Основная литература

- 1. Белозерский, Г. Н. Радиационная экология: учебник для вузов [Текст] / Г. Н. Белозерский. 2-е изд., перераб. и доп. Москва: Издательство Юрайт, 2024. 418 с. (Высшее образование). ISBN 978-5-534-10644-2. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/540979. (дата обращения: 28.06.2024).
- 2. Радиобиология: учебник [Текст] / Н. П. Лысенко, В. В. Пак, Л. В. Рогожина, З. Г. Кусурова; под редакцией Н. П. Лысенко, В. В. Пака. 5-е изд., стер. Санкт-Петербург: Лань, 2019. 572 с. ISBN 978-5-8114-4523-3. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/121988. Режим доступа: для авториз. пользователей. (дата обращения: 28.06.2024).

#### Дополнительная литература

- 1. Сапожников, Ю.А. Радиоактивность окружающей среды. Теория и практика [Текст] / Ю. А. Сапожников, Р. А. Алиев, С. Н. Калмыков. М.: БИНОМ, 2015. 286 с.- URL: library.tsilikin.ru Режим доступа: для авториз. пользователей. Текст : электронный. (дата обращения: 28.06.2024).
- 2. Воробьёва, В.В. Введение в радиоэкологию [Текст] : учеб. пособие для вузов / В. В. Воробьёва. М. : Логос, 2019. 360 с. URL: rosmedlib.ru Режим доступа: для авториз. пользователей. Текст : электронный. (дата обращения: 28.06.2024).

### Нормативные ссылки

- 1. Российская Федерация. Законы. О промышленной безопасности опасных производственных объектов : Федеральный закон от 21.07.1997 № 116-ФЗ : принят Государственной Думой 20 июня 1997 года. Текст : электронный // Гарант : информационно-правовое обеспечение / Компания «Гарант». URL: <a href="https://base.garant.ru/11900785/">https://base.garant.ru/11900785/</a>.
- 2. СанПиН 2.1.3684-21. Санитарно-эпидемиологические требования к содержанию территорий городских и сельских поселений, к водным воде питьевому водоснабжению объектам, питьевой И населения, атмосферному помещениям, воздуху, почвам, жилым эксплуатации производственных, общественных помещений, организации и проведению (профилактических) санитарно-противоэпидемических мероприятий издание официальное : утвержден Главным государственным санитарным врачом Российской Федерации 28.01.2021 : введены : 01.03.2021. — М. : Стандартинформ, 2021. — 75 с. — Текст : электронный // Гарант : информационно-правовое обеспечение / Компания «Гарант». — URL:

#### https://base.garant.ru/400289764/.

- 3 СанПиН 1.2.3685-21. Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания: утвержден Главным государственным санитарным врачом Российской Федерации 30.12.2022: введены: 01.03.2021. М.: Стандартинформ, 2021. 469 с. URL: https://www.garant.ru/products/ipo/prime/doc/406408041/.
- 4. О федеральном государственном надзоре в области промышленной безопасности : Постановление Правительства РФ от 30.10.2021 № 1082. Текст : электронный // ГАРАНТ.РУ : иформационно-правовой портал. URL: https://www.garant.ru/products/ipo/prime/doc/401323288/.

# 7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт. Алчевск. URL: <u>library.dstu.education.</u> Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: <a href="http://ntb.bstu.ru/jirbis2/">http://ntb.bstu.ru/jirbis2/</a>. Текст : электронный.
- 3. Консультант студента : электронно-библиотечная система. Mockba. URL: <a href="http://www.studentlibrary.ru/cgi-bin/mb4x">http://www.studentlibrary.ru/cgi-bin/mb4x</a>. Текст : электронный.
- 4. Университетская библиотека онлайн : электронно-библиотечная система. URL: <a href="http://biblioclub.ru/index.php?page=main\_ub\_red.">http://biblioclub.ru/index.php?page=main\_ub\_red.</a> Текст : электронный.
- 5. IPR BOOKS : электронно-библиотечная система. Красногорск. URL: <a href="http://www.iprbookshop.ru/">http://www.iprbookshop.ru/</a>. Текст : электронный.
- 6. Федеральная служба по экологическому, технологическому и атомному надзору (Ростехнадзор) : официальный сайт. Москва. https://www.gosnadzor.ru/. Текст : электронный.
- 7. Онлайн база данных Министерства природных ресурсов и экологии Российской Федерации: <a href="http://ecopages.ru/links.html&rub1id=7&page=5">http://ecopages.ru/links.html&rub1id=7&page=5</a>. Текст : электронный.
- 8. Единое окно доступа к образовательным ресурсам: http://window.edu.ru/.— Текст : электронный.

# 8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

| Наименование оборудованных учебных кабинетов                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Адрес<br>(местоположение)<br>учебных<br>кабинетов |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Специальные помещения: Помещения для проведения всех видов работ, предусмотренных учебным планом, укомплектованы необходимой специализированной учебной мебелью и техническими средствами обучения. Аудитории, оснащенные мультимедиа проекторами и экранами. Материально-техническое обеспечение учебного процесса: микроскоп портативный, микроскоп 2П-1, микроскоп ДП-380-800, микроскоп «юннатов» 2П-1, рН-метр рН-150 МИ, весы технические, прибор для определения влажности почвы, гигрометр волосяной, психрометр парных термометров, термограф для регистрации температуры в течение суток, набор химической посуды. | ауд. 6.215                                        |

# Лист изменений и дополнений

| Номер изменения, дата внесения изменения, номер страницы для внесения изменений |                           |  |  |  |
|---------------------------------------------------------------------------------|---------------------------|--|--|--|
| ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:                                                          | ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ: |  |  |  |
|                                                                                 |                           |  |  |  |
|                                                                                 |                           |  |  |  |
|                                                                                 |                           |  |  |  |
|                                                                                 |                           |  |  |  |
|                                                                                 |                           |  |  |  |
|                                                                                 |                           |  |  |  |
|                                                                                 |                           |  |  |  |
|                                                                                 |                           |  |  |  |
|                                                                                 |                           |  |  |  |
| Осног                                                                           | вание:                    |  |  |  |
|                                                                                 |                           |  |  |  |
|                                                                                 |                           |  |  |  |
|                                                                                 |                           |  |  |  |
|                                                                                 |                           |  |  |  |
|                                                                                 |                           |  |  |  |
|                                                                                 |                           |  |  |  |
|                                                                                 |                           |  |  |  |
|                                                                                 |                           |  |  |  |
| Подпись лица, ответственного за внесение изменений                              |                           |  |  |  |
|                                                                                 |                           |  |  |  |
|                                                                                 |                           |  |  |  |