Документ подписан простой электронной подписью Информация о владельце:

Форма обучения

ФИО: Вишневский Дмитрий Александрович

Должность: Рект**м**ИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Дата подписания: 17.10.2025 15:06:46 (МИНОБРНАУКИ РОССИИ)

Уникальный программный ключ:

03474917c4d012283e5ad996a48a5e70b@GGEPAЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

(ФГБОУ ВО «ДонГТУ»)

 Факультет
 информационных технологий и автоматизации производственных процессов

 Кафедра
 автоматизированного управления и инновационных технологий

УТВЕРЖДАЮ И.о. проректора по учебной работе Д.В. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Интеллектуальные системы управления (наименование дисциплины) 15.04.04 Автоматизация технологических процессов и производств (код. наименование направления) Автоматизированное управление технологическими процессами и производствами (магистерская программа) Квалификация магистр (бакалавр/специалист/магистр)

ОЧНАЯ, ЗАОЧНАЯ (очная, очно-заочная, заочная)

1 Цели и задачи изучения дисциплины

Цели дисциплины. Целью изучения дисциплины «Интеллектуальные системы управления» является изучение общих принципов построения и функционирование интеллектуальных систем, математических методов моделирования интеллектуальной деятельности, знакомство с основами представления и обработки знаний в интеллектуальных системах, методами построения логических, продукционных, сетевых моделей и их использования в интеллектуальных системах различного назначения: экспертных системах, нечетких системах, системах поддержки принятия решений, нейросетевых и генетических алгоритмах.

Задачи изучения дисциплины:

- изучение принципов организации современных интеллектуальных систем;
- освоение методов представления знаний и методов вывода в современных интеллектуальных системах;
- изучение методов и программных средств разработки интеллектуальных систем различного назначения;
- анализ реальных проблем, применение интеллектуальных систем для решения задач средствами экспертных систем, систем поддержки принятия решений.

Дисциплина направлена на формирование универсальных (УК-1) и общепрофессиональных компетенций (ОПК-6) выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины – курс входит в часть Блока 1, участниками образовательных отношений, формируемую подготовки студентов 15.04.04 ПО направлению подготовки «Автоматизация технологических процессов и производств» (магистерская программа «Автоматизация бизнес-процессов»)

Дисциплина реализуется кафедрой автоматизированного управления и инновационных технологий.

Основывается на базе дисциплин: «Современная теория управления», «Теория систем и системный анализ».

Является основой для дальнейшего освоения компетенций, связанных со сферами и областями профессиональной деятельности в соответствии с ФГОС ВО и ОПОП ВО.

Для изучения дисциплины необходимы компетенции, сформированные у студента для решения профессиональных задач деятельности, связанных с использованием разработок в области искусственного интеллекта для последующей профессиональной деятельности.

Курс является фундаментом для ориентации студентов в сфере использования искусственного интеллекта для последующей профессиональной деятельности.

Общая трудоемкость освоения дисциплины составляет 5 зачетных единиц, 180 ак.ч.

Программой дисциплины предусмотрены:

- при очной форме обучения лекционные (18 ак.ч.), лабораторные (36 ак.ч.), практические (36 ак.ч.) занятия и самостоятельная работа студента (90 ак.ч.);
- при заочной форме обучения лекционные (4 ак.ч.), лабораторные (4 ак.ч.), практические (4 ак.ч.) занятия и самостоятельная работа студента (168 ак.ч.);

Дисциплина изучается:

- при очной форме обучения на 2 курсе в 3 семестре;
- при заочной форме обучения на 2 курсе в 3 семестре.

Форма промежуточной аттестации – экзамен.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Интеллектуальные системы управления» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание компетенции	Код компетенции	Код и наименование индикатора достижения компетенции
Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий	УК-1	УК-1.1. Знать: методы системного и критического анализа; методики разработки стратегии действий для выявления и решения проблемной ситуации. УК-1.2. Уметь: применять методы системного подхода и критического анализа проблемных ситуаций; разрабатывать стратегию действий, принимать конкретные решения для ее реализации. УК-1.3. Владеть: методологией системного и критического анализа проблемных ситуаций; методиками постановки цели, определения способов ее достижения, разработки стратегий действий.
Способен осуществлять научно- исследовательскую деятельность, используя современные информационно- коммуникационные технологии, глобальные информационные ресурсы	ОПК-6	ОПК-6.1. Знать модели структур данных, классификацию СУБД, уровни хранения данных, проблемы коллективного доступа к данным ОПК-6.2. Уметь выбирать модели хранения информации, реализовывать сложные структуры данных средствами реляционной СУБД, организовывать структуры хранения данных с доступом из глобальной информационной сети ОПК-6.3. Владеть навыками определения материальных и информационных связей между оборудованием, рабочими местами, структурными единицами подразделений, подразделениями организации, навыками работы с современными средствами организации баз данных

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 5 зачётных единиц, 180 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим занятиям, текущему контролю, выполнение индивидуального задания, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам 3
Аудиторная работа, в том числе:	90	90
Лекции (Л)	18	18
Практические занятия (ПЗ)	36	36
Лабораторные работы (ЛР)	36	36
Курсовая работа/курсовой проект	-	-
Самостоятельная работа студентов (СРС), в том числе:	90	90
Подготовка к лекциям	4	4
Подготовка к лабораторным работам	12	12
Подготовка к практическим занятиям / семинарам	16	16
Выполнение курсовой работы / проекта	-	-
Расчетно-графическая работа (РГР)	-	-
Реферат (индивидуальное задание)	10	10
Домашнее задание	-	-
Подготовка к контрольной работе	-	-
Подготовка к коллоквиуму	3	3
Аналитический информационный поиск	-	-
Работа в библиотеке	9	9
Подготовка к экзамену	36	36
Промежуточная аттестация – экзамен (Э)	Э	Э
Общая трудоемкость дисциплины		
ак.ч.	180	180
3.e.	5	5

5 Содержание дисциплины

С целью освоения компетенции, приведенной в п.3 дисциплина разбита на 8 тем:

- тема 1 (Искусственный интеллект как наука. Понятие интеллектуальной системы);
 - тема 2 (Экспертные системы);
 - тема 3 (Основные понятия теории нечетких множеств);
- тема 4 (Методология применения нечетких технологий в задачах управления);
 - тема 5 (Основные понятия нейронных сетей);
 - тема 6 (Многослойные персептроны);
 - тема 7 (Основные архитектуры нейронных сетей);
 - тема 8 (Обучение искусственной нейронной сети).

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 3 и 4 соответственно.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1	Искусственный интеллект как наука. Понятие интеллектуальной системы	Предмет дисциплины «Искусственный интеллект». Области применения искусственного интеллекта. История, состояние и перспективы развития систем искусственного интеллекта. Основные направления и области применения.	2	Высота нечеткого множества. Нормальные нечеткие множества. Нормализация. Равенство нечетких множеств	4	_	_
2	Экспертные системы	Возникновение и развитие экспертных систем, их возможности. Модели представления знаний в экспертных системах. Продукционные модели. Знания и данные в экспертных системах.	2	Обобщение определения операций: t-норма и s-норма	4	Изучение функций принадлежност и различных видов и методики их построения	8
3	Основные понятия теории нечетких множеств	Особенности классической теории множеств. История зарождения и развития теории нечетких множеств. Понятие нечеткости, нечеткого множества, функции принадлежности. Основные понятия теории нечетких множеств. Примеры записи нечеткого множества. Основные характеристики нечетких множеств. Примеры нечетких множеств. Примеры нечетких множеств. О методах построения функций принадлежности нечетких множеств.	4	Алгоритм компьютерно- ориентированной реализации нечеткого обобщения	6	Изучение операций над нечеткими множествами	4

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.	
4	Методология применения нечетких технологий в задачах управления	Принцип формирования нечетких правил в задачах автоматического и ситуационного управления. Особенности задач диагностики, многокритериальной оценки, многофакторного анализа.	2	Обоснованная структура и принцип работы системы нечеткой логики. Структура и принцип работы нечетких регуляторов.	6	Построение нечеткой системы управления технологи-ческим объектом	8	
5	Основные понятия нейронных сетей	Искусственные нейронные сети: история проблемы.	2	Кластерный анализ с использованием нейросети	4	Эволюционные вычисления и генетические алгоритмы	8	
6	Многослойные персептроны	Структура нейронной сети, алгоритмы обучения. Задача аппроксимации функции.	2	Идентификация динамических объектов с использованием многослойного персептрона	4	-	_	∞
7	Основные архитектуры нейронных сетей	Радиально-базисные сети. Нейронные сети Хэмминга и Хопфилда. Нейронные сети Кохонена. Рекуррентные нейронные сети. Нечеткие нейронные сети.	2	Построение сети Хемминга и Хопфилда	4	Решение задач оптимизации с применением генетических алгоритмов	6	

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
8	Обучение искусственной нейронной сети	Критерии оценки качества обучения. Правила обучения. Правила обучения. Правило Хопфилда. Правило «дельта». Правило градиентного спуска. Обучение методом соревнования. Метод обратного распространения ошибки. Сеть Кохонена. Сеть Хопфилда. Рекуррентные нейронные сети Элмана и Джордана. Примеры (формализации задач. Задачи классификации, распознавание, прогнозирование.	2	Идентификация динамических объектов.	4	Построение систем инверсного нейроуправления	4
	Всего аудиторных ч	асов	18	36		3	6

Таблица 4 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

№ п/п		Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1	Экспертные системы	Возникновение и развитие экспертных систем, их возможности. Модели представления знаний в экспертных системах. Продукционные модели. Знания и данные в экспертных системах.	2	Обобщение определения операций: t-норма и s-норма	4	Изучение функций принадлежности различных видов и методики их построения	4
2	Основные понятия теории нечетких множеств	Особенности классической теории множеств. История зарождения и развития теории нечетких множеств. Понятие нечеткости, нечеткого множества, функции принадлежности. Основные понятия теории нечетких множеств. Примеры записи нечеткого множества. Основные характеристики нечетких множеств. Примеры нечетких множеств. Примеры нечетких множеств. О методах построения функций принадлежности нечетких множеств.	2	Алгоритм компьютерно- ориентированной реализации нечеткого обобщения	4	Изучение операций над нечеткими множествами	4
	Всего аудиторных часов		4	8	1	8	

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
УК-1, ОПК-6	Экзамен	Комплект контролирующих материалов для экзамена

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- тестовый контроль или устный опрос на коллоквиумах всего 50 баллов;
- за выполнение реферата (контрольной работы для студентов 3ФО) всего 20 баллов;
 - практические работы всего 15 баллов.
 - лабораторные работы всего 15 баллов.

Экзамен проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Экзамен по дисциплине «Интеллектуальные системы управления» проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время экзамена студент имеет право повысить итоговую оценку в форме устного экзамена по приведенным ниже вопросам (п.п. 6.4).

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Темы для рефератов (контрольных работ) – индивидуальное задание

Вариант №1

- 1) Основные функции различных частей головного мозга.
- 2) Сети Кохонена: задачи и способы их решения.

Вариант №2

- 1) Условие возбуждения формального нейрона.
- 2) Структура рекуррентной нейронной сети.

Вариант №3

- 1) Обобщенная модель искусственного нейрона.
- 2) Идея построения нечеткой нейронной сети.

Вариант №4

- 1) История исследований и основные понятия в области ИИ.
- 2) Модели представления знаний в интеллектуальных системах.

Вариант №5

- 1) Особенности и классификация методов интеллектуального анализа данных.
 - 2) Логистическая регрессия и ROC-анализ данных.

Вариант №6

- 1) Деревья решений.
- 2) Классификация программных реализаций систем Data Mining.

Вариант №7

- 1) Алгоритмы кластеризации на службе Data Mining.
- 2) Решение задач интеллектуального анализа данных в металлургии.

Вариант №8

- 1) Основные направления исследований в области интеллектуальных систем
- 2) Аналитическая платформа Deductor для решения задач интеллектуального анализа данных?

Вариант №9

- 1) Основные типы интеллектуальных систем.
- 2) Современные технологии анализа информации.

Вариант №10

- 1) Технологии анализа данных: Data Mining, Visual Mining, Text Mining.
- 2) Базы знаний интеллектуальных систем.

Вариант №11

- 1) Идентификация с помощью нейронных сетей?
- 2) Основные направления создания нейрокомпьютеров.

Вариант №12

- 1) Перспективы применения нейрокомпьютеров в задачах управления.
- 2) Генетические алгоритмы и нейросети.

Вариант №13

- 1) Эволюционный поиск в решении технологических задач.
- 2) Цели и задачи генетических алгоритмов.

Вариант №14

- 1) Основные отличительные особенности генетических алгоритмов.
- 2) Целевая функция в генетических алгоритмах.

Вариант №15

- 1) Основные понятия и определения генетических алгоритмов.
- 2) Выбор способа представления решения в генетических алгоритмах.

6.3 Оценочные средства (тесты) для текущего контроля успеваемости и коллоквиумов

Тема 1 Искусственный интеллект как наука. Понятие интеллектуальной системы

- 1) Какие вам известны основные нейрофизиологические характеристики мозга как системы переработки информации?
- 2) Как развиваются познавательные функции человека в процессе его взросления?
- 3) На чем основаны механизмы классификации и структурирования у человека?
- 4) Какие свойства интеллекта отражают тесты интеллектуального развития (IQ)?
 - 5) Какие вам известны стадии развития ИИ?
 - 6) Какие основные недостатки имел планировщик STRIPS?
- 7) Какие фундаментальные ограничения имели первые системы ИИ (1970-е гг.)?
 - 8) Что понимается в ИИ под термином «интеллектуальный агент»? *Тема 2 Экспертные системы*
 - 1) Каковы характеристики агентов в многоагентных системах?
 - 2) Какие функции активации вы знаете.
- 3) Какие логические функции могут реализовать двух- и трехслойная сеть нейронов?
- 4) Для чего в нейронной сети используется слой, реализующий функцию softmax?
- 5) Почему глубокие НС имеют большую выразительную силу по сравнению с обычными НС?
 - 6) Из каких типов слоев состоит сверточная НС?
 - 7) В чем заключаются принципиальные особенности экспертных

систем?

8) Какие механизмы реализуются современными технологиями глубокого обучения?

Тема 3 Основные понятия теории нечетких множеств

- 1) Какие вы знаете основные проблемы искусственного интеллекта, связанные с теорией нечетких множеств?
- 2) Какие известны основные направления исследований в области теории нечетких множеств?
- 3. Какова история исследований в области теории нечетких множеств в нашей стране и за рубежом?
- 4. Какие из признаков интеллектуальных информационных систем относятся к теории нечетких множеств?
- 5. Какие из характеристик базовых интеллектуальных структур для теории нечетких множеств наиболее распространены?

Teмa 4 Методология применения нечетких технологий в задачах управления

- 1) В чем отличие критерия управляемости от критерия нормализуемости?
- 2) Как осуществляется оценка степени связности технологического процесса с использованием теории нечетких множеств?
- 3) Что представляет методология применения нечетких технологий в задачах управления?
- 4) Как осуществляется применение нечетких технологий в задачах управления?
- 5) Какими достоинствами и недостатками обладают нечеткие технологии в задачах управления?

Тема 5 Основные понятия нейронных сетей

- 1) По каким основаниям можно классифицировать системы ИИ в соответствии с ГОСТ Р 59277–2020?
 - 2) Как можно классифицировать средства объяснимого ИИ?
- 3) Каков принцип построения карт значимости (Salience Maps) в глубоких нейронных сетях?
- 4) Какие методы снижения размерности признакового пространства используются для выделения наиболее значимых признаков в объяснимом ИИ?
- 5) Какие методы объяснимого ИИ на основе байесовских правил вы знаете?

Тема 6 Многослойные персептроны

- 1) Какие причины возникновения теории о многослойных персептронах?
 - 2) Какие задачи решает персептрон?
 - 3) В чем заключается принцип линейной разделимости?
 - 4) Как реализуется метод в задачах на классификацию?
 - 5) Какие известны методы обучения персептронов?

Тема 7 Основные архитектуры нейронных сетей

- 1) Какие известны архитектуры нейросетей?
- 2) В чем отличия нейросетей прямого распространения?
- 3) В чем особенности сверточной нейросети?
- 4) Как реализуются рекуррентные нейросети?
- 5) Как осуществляется мультимодальное обучение?

Тема 8 Обучение искусственной нейронной сети

- 1) В чем принципиальные отличия алгоритмов обучения с учителем и без учителя?
- 2) Какие сложности возникают при обучении искусственной нейронной сети?
- 3) В чем заключается последовательность обучения искусственной нейронной сети?
- 4) Какие примеры обучения искусственной нейронной сети вам известны?
- 5) Какие перспективы использования нейронных сетей и алгоритмов их обучения?

6.4 Вопросы для подготовки к экзамену

- 1) Какие известны основные функции различных частей головного мозга?
 - 2) Какую структуру имеет биологический нейрон?
- 3) Каким образом выполняется взаимодействие нейронов в центральной нервной системе?
 - 4) Что понимается под формальным нейроном Мак-Каллока-Питтса?
 - 5) Как записывается условие возбуждения формального нейрона?
 - 6) В чем суть проблемы «Исключающего ИЛИ»?
- 7) Какой вид имеет обобщенная модель искусственного нейрона. Запишите условие возбуждения данного нейрона?
 - 8) В чем состоит идея обучения многослойного персептрона?
- 9) В чем заключаются преимущества использования алгоритма обратного распространения?
- 10) В чем заключаются основные проблемы, возникающие при обучении многослойных нейронных сетей, и пути их преодоления?
- 11) Почему многослойные персептроны называют «универсальными аппроксиматорами»?
- 12) К чему сводится решение задачи аппроксимации функции с помощью персептрона?
 - 13) Как осуществляется обучение радиально-базисной сети?
 - 14) Что представляет собой сеть Хопфилда?
- 15) Какие задачи и каким образом решаются с помощью сети Кохонена?
 - 16) Почему сеть Кохонена называется «самоорганизующейся»?

- 17) Какие задачи решаются с помощью рекуррентных нейронных сетей?
 - 18) В чем заключается идея построения нечеткой нейронной сети?
 - 19) В чем заключаются преимущества нейроуправления?
 - 20) В чем заключается особенность построения нейросетевой САУ?
 - 21) Как решается задача идентификации с помощью нейронных сетей?
- 22) В чем состоит идея структурного синтеза нейросетевого регулятора?
 - 23) Что представляет собой нейрокомпьютер?
 - 24) В чем заключается проблема в области разработки нейропакетов?
- 25) В чем состоят особенности реализации нейрокомпьютеров на основе ПЛИС и нейрочипов?
- 26) Каковы перспективы применения нейрокомпьютеров в задачах управления?
 - 27) Что понимается под термином «генетические алгоритмы»?
 - 28) В чем заключается эволюционный поиск?
- 29) Какие существуют основные цели и задачи генетических алгоритмов?
- 30) Какие известны основные отличительные особенности генетических алгоритмов?
 - 31) Что такое целевая функция в генетических алгоритмах?
- 32) Какие бывают предварительные этапы работы генетических алгоритмов?
- 33) Каким образом в генетических алгоритмах осуществляется выбор способа представления решения?
- 34) Как производится разработка операторов случайных изменении в генетических алгоритмах?
- 35) Какие способы «выживания» решений в генетических алгоритмах вы знаете?

6.5 Примерная тематика курсовых работ

Курсовые работы не предусмотрены.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Ватьян, А. С. Системы искусственного интеллекта: учебное пособие / А. С. Ватьян, Н. Ф. Гусарова, Н. В. Добренко. СПб: Университет ИТМО, 2022. 186 с. URL: https://moodle.dstu.education/course/view.php?id=622. Режим доступа: для авториз. пользователей. Текст: электронный.
- 2. Сазонов, С. Н. Системы искусственного интеллекта : учебное пособие / С. Н. Сазонов. Ульяновск : УлГТУ, 2023. 83 с. URL: https://moodle.dstu.education/course/view.php?id=622. Режим доступа: для авториз. пользователей. Текст : электронный.

Дополнительная литература

- 1. Шарипбай, А. А. Нейронные сети: учебник / А. А. Шарипбай. Астана: 2018. 397 с. https://moodle.dstu.education/course/view.php?id=622. Режим доступа: для авториз. пользователей. Текст: электронный.
- 2. Ростовцев, В. С. Искусственные нейронные сети : учебник / В. С. Ростовцев. Киров: Изд-во ВятГУ, 2014. 208 с. https://moodle.dstu.education/course/view.php?id=622. Режим доступа: для авториз. пользователей. Текст : электронный.

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт. Алчевск. URL: <u>library.dstu.education</u>. Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст : электронный.
- 3. Консультант студента: электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст: электронный.
- 4. Университетская библиотека онлайн: электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст: электронный.
- 5. IPR BOOKS : электронно-библиотечная система. Красногорск. URL: http://www.iprbookshop.ru/. Текст : электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО. Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

	Адрес
Наименование оборудованных учебных кабинетов	(местоположение)
Паименование оборудованных учесных касинетов	учебных
	кабинетов
Специальные помещения:	
Лекционная аудитория. (100 посадочных мест)	ауд. <u>302</u> корп. <u>1</u>
Аудитории для проведения практических занятий, для	
самостоятельной работы:	ауд. <u>409</u> корп. <u>1</u>
компьютерный класс (учебная аудитория) для проведения	
лабораторных, практических занятий, групповых и	
индивидуальных консультаций, организации самостоятельной	
работы, в том числе, научно-исследовательской, <u>оборудованная</u>	
учебной мебелью, компьютерами с неограниченным доступом к	
сети Интернет, включая доступ к ЭБС	
Персональные компьютеры Sepron 3200, Int Celeron 420, принтер	
LBP2900, локальная сеть с выходом в Internet	

Лист согласования РПД

Разработал

Доц. кафедры автоматизированного упра и инновационных технологий (должность)	подпись)	<u>В.П. Долгих</u> (Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
И.о. заведующего кафедрой автоматизированного управления и инновационных технологий Протокол № 1 заседания кафедры	(подпись)	<u>Е.В. Мова</u> (Ф.И.О.)
протокол № заседания кафедры автоматизированного управления и инновационных технологий		от 09.07.20 <u>24</u> г.

Согласовано

Председатель методической комиссии по направлению подготовки 15.03.04 Автоматизация технологических (подпись) Е.В. Мова процессов и производств

Начальник учебно-методического центра

(подпись) О.А. Коваленко (Ф.И.О.)

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения					
изменений					
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:				
Основ	вание:				
Подпись лица, ответственного за внесение изменений					