МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет информационных технологий и автоматизации производственных процессов
Кафедра электромеханики им. А. Б. Зеленова

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

	Электрический привод	
	(наименование дисциплины)	
13.03.02	Электроэнергетика и электротехника	
	(код, наименование направления)	
Электрически	е машины и аппараты. Беспилотная техника	
	(профиль подготовки)	
Vnogychywayyg	бакалавр	
Квалификация	(бакалавр/специалист/магистр)	-
Форма обучения	очная, заочная	
7-1	(опная опно-заодная заодная)	

1 Цели и задачи изучения дисциплины

Целью дисциплины является овладение знаниями, получение умения и опыта для расчета динамических и статических характеристик электропривода машин металлургического комплекса, а также выбора вида электропривода и способов регулирования скорости электроприводов.

Задачей дисциплины является изучение основных видов электроприводов и методов их расчета, а также режимов работы электроприводов, приобретение умений по проектированию и расчету электроприводов, выбора наиболее рациональных с технологической точки зрения типов электроприводов, физических и математических моделей, описывающие электрические и электромеханические процессы.

Процесс изучения дисциплины нацелен на формирование: общепрофессиональных (ОПК-3) и профессиональных компетенций (ПК-1, ПК-3) выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины — «Электрический привод» входит в часть Блока 1, формируемую участниками образовательных отношений по направлению 13.03.02 «Электроэнергетика и электротехника» (профиль «Электрические машины и аппараты. Беспилотная техника».

Дисциплина базируется на следующих дисциплинах: «Физика», «Высшая математика», «Теоретические основы электротехники», «Электрические машины».

В свою очередь компетенции, освоенные студентами в ходе изучения дисциплины, являются основой для изучения следующих дисциплин: «Эксплуатационно-технологическая (производственная) практика», «Преддипломная практика», «Подготовка к процедуре защиты и защита выпускной квалификационной работы».

Общая трудоемкость дисциплины составляет 5 зачетных единиц, 180 ак. ч. Программой дисциплины предусмотрены лекционные (36 ак.ч. для группы ЭМАБП, 6 ак. ч. для группы ЭМАБП-з), лабораторные работы (36 ак.ч. для группы ЭМАБП, 4 ак.ч. для ЭМАБП-з) практические занятия (18 ак.ч. для группы ЭМАБП, 6 ак.ч. для группы ЭМАБП-з) и самостоятельная работа студента (90 ак.ч. для группы ЭМАБП, 164 ак.ч. для группы ЭМАБП-з).

Дисциплина изучается на 4 курсе в 7 семестре для группы ЭМАБП и на 5 курсе в 9 семестре для группы ЭМАБП-3. Форма промежуточной аттестации – экзамен.

3 Перечень результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения ОПОП ВО

По завершению освоения дисциплины «Электрический привод» обучающийся должен овладеть следующими компетенциями:

Таблица 1 – Компетенции, обязательные к освоению

	T.0	
Содержание компетенции	Код компетен- ции	Код и наименование индикатора достижения компетенции
Способен применять соответствующий физико- математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач	ОПК-3	ОПК-3.1. Применяет соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач
Способен: — использовать методы анализа, расчета и моделирования электромеханических преобразователей энергии, электромеханических систем и их элементов; — проектировать электромеханические и электромагнитные преобразователи энергии, электромеханические системы и их элементы в соответствии с техническим заданием, стандартами и нормативными требованиями, в том числе с использованием современных средств проектирова-	ПК-1	ПК-1.1. Демонстрирует знание основных характеристик, принципов действия и режимов работы электромеханических и электромагнитных преобразователей энергии, электромеханических систем и их элементов. Выполняет сбор и анализ данных для проектирования, проектирует электромеханические и электромагнитные преобразователи энергии, электромеханические системы и их элементы. Применяет знания теории автоматического управления. ПК-1.2. Анализирует технические характеристики современных электрических машин и трансформаторов, электрических и электронных аппаратов, а также систем на их основе. Обосновывает выбор проектного решения, демонстрирует понимание взаимосвязи задач проектирования и эксплуатации,
ния; Способен организовывать и выполнять работы по энергоснабжению, эксплуатации, техническому обслуживанию, ремонту объектов профессиональной деятельности, оценивать их надежность обеспечивать требуемые режимы и заданные параметры технологических процессов, знать организационные структуры и выполнять функции управления	ПК-3	проводит технико-экономические расчеты. ПК-3.1. Способен участвовать в энергоснабжении и эксплуатации объектов профессиональной деятельности. ПК-3.2. Способен применять методы и технические средства эксплуатационных испытаний и диагностики электроэнергетического оборудования. ПК-3.3. Способен оценивать техническое состояние и остаточный ресурс оборудования, электромеханических систем, их надежность. ПК-3.4. Знает организацию и структуру производства. ПК-3.5. Способен выполнять функцию управления производством.

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 5 зачетных единиц, 180 ак. ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим занятиям, текущему контролю, самостоятельное изучение материала и подготовку к экзаменам.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 4.1.

Таблица 4.1 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам
Аудиторная работа, в том числе:	90	7 90
Лекции (Л)	36	36
Практические занятия (ПЗ)	18	18
Лабораторные работы (ЛР)	36	36
Курсовая работа/курсовой проект		
Самостоятельная работа студентов (СРС), в том числе:	90	90
Подготовка к лекциям	18	18
Подготовка к лабораторным работам	18	18
Подготовка к практическим занятиям / семинарам	18	18
Выполнение курсовой работы / проекта		
Расчетно-графическая работа (РГР)		
Реферат (индивидуальное задание)		
Домашнее задание	24	24
Подготовка к контрольной работе		
Подготовка к коллоквиумам		
Аналитический информационный поиск	4	4
Работа в библиотеке	4	4
Подготовка к экзамену	4	4
Промежуточная аттестация – экзамен (Э)	Э	Э
ак.ч.	180	180
3.e.	5	5

5 Содержание дисциплины

С целью освоения компетенций, приведенных в п. 3 дисциплина разбита на 9 тем:

- *тема 1* (Введение);
- тема 2 (Основное уравнение движения электропривода);
- *тема 3* (Электромеханические свойства электропривода с двигателями постоянного тока независимого возбуждения (ДПТ НВ));
- *тема 4* (Электромеханические свойства электропривода с двигателями постоянного тока последовательного возбуждения (ДПТ ПВ));
- *тема* 5 (Электромеханические свойства электропривода с двигателями переменного тока);
 - тема 6 (Методы выбора приводного электродвигателя);
 - тема 7 (Электропривод оборудования аглофабрик);
 - тема 8 (Электропривод оборудования доменных цехов);
- *тема 9* (Электропривод оборудования кислородно-конвертерного цехов);
 - тема 10 (Электропривод оборудования прокатных цехов).

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 5.1 - 5.2 соответственно.

Таблица 5.1 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения, 7 семестр)

№ п/ п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Грудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
1	Введение	Определение электропривода и его функциональная схема. Координаты и параметры электропривода.	2	Функциональная схема электропривода. Виды единиц измере-	Ţ	Вводное занятие по лабораторным работам в ауд. 118	2
2	Основное уравнение движения электропри-	Основное уравнения движения электропривода. Время пуска, торможения и реверса привода	2	ния Задачи на определение быстродействия	2	Подготовка к выполнению л.р. №1	2
	вода	Потери электропривода при переходных процессах. Путь электропривода при пуске, торможении и реверсе	2	Задачи на определение пути.		Отработка л.р. №1	2
3	Электромеханические свойства электроприво- да с двигателями посто-	Способы регулирования скорости электропривода постоянного тока: реостатное регулирование, изменение напряжения на якоре и магнитного потока	2	Расчет пусковой диа- граммы ДПТ НВ Статические и дина-	2	Оформление результатов л.р.№1	2
3	янного тока независимо-го возбуждения	Тормозные режимы двигателя постоянного тока независимого возбуждения: рекуперация, динамическое торможение и реверс	2	мические и дина- мические характери- стики ДПТ НВ	2	Защита л.р. №1	2

Продолжение таблицы 5.1

№ п/ п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
4	Электромеханические свойства электропривода с двигателями посто-	Способы регулирования скорости электропривода постоянного тока: реостатное регулирование, изменение напряжения на якоре и магнитного потока	2	Расчет пусковой диа- граммы ДПТ ПВ Статические и дина-	2	Подготовка к выполнению л.р. №2	2
	янного тока последова- тельного возбуждения.	Тормозные режимы двигателя постоянно- го тока последовательного возбуждения: отсутствие рекуперации, динамическое торможение и реверс	2	мические характери- стики ДПТ ПВ		Отработка л.р. №2	2
	Электромеханические свойства электроприво-	Формула Клосса. Способы регулирования скорости асинхронного двигателя с фазным ротором	2	Расчет характеристики АД в противовключении	2	Оформление результатов л.р. №2	2
5	да с двигателями переменного тока.	Тормозные режимы асинхронного электропривода: рекуперация, различные виды динамического торможения, противовключение	2	Расчет характеристики АД в режиме динамического торможения	2	Защита л.р. №2	2
6	Методы выбора привод- ного электродвигателя.	Требования к приводным электродвигателям Выбор мощности двигателя при продолжительном режиме работы. Метод эквивалентных величин.	2	Выбор мощности электродвигателя в повторно- кратковременном режиме работы	2	Подготовка к выполнению л.р. №3	2

Продолжение таблицы 5.1

№ п/ п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
7	Электропривод обору- дования аглофабрик	Назначение и оборудование аглофабрик. Электропривод смесителей и окомкователей, распределителей шихты. Назначение, конструкция и электропривод агломашин	2	Расчет мощности двигателей барабанного смесителя и окомкователя Расчет мощности привода распределителя шихты	2	Отработка л.р. №3 Оформление результатов л.р. №3	2
8	Электропривод оборудования доменных цехов	Электропривод вагоноопрокидывателей, грейферов, перегрузочных весов и вагонвесов. Электропривод скипового подъемника, разливочной машины и кантовательных лебедок	2	Расчет мощности привода механизма опрокидывания люльки Расчет мощности разливочной машины и кантовательной лебедки	2	Защита л.р. №3 Подготовка к выполнению л.р. №4	2
9	Электропривод обору- дования кислородно- конвертерного цехов.	Электропривод кислородных фурм, стрипперных кранов и кристаллизаторов Электропривод сталевозов и шлаковозов	2	Расчет мощности привода механизма подъёма кислородной фурмы Расчет мощности привода механизма качания кристаллизатора	2	Отработка л.р. №4 Оформление результатов л.р.№4	2

Продолжение таблицы 5.1

№ п/ п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
10	Электропривод обору- дования прокатных це-	Главный привод прокатного стана, рольганги, манипуляторы, нажимные устройства	2	Расчет мощности привода рольгангов Расчет мощности при-	2	Защита л.р. №4	2
	хов	Ножницы, пилы горячей резки, сталкиватели, листоправильные машины	2	вода нажимного устройства		Сдача задолженно- стей по л.р.	2
	Всего аудиторных часов		36		18		36

Таблица 5.2 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения, 9 семестр)

_		<u> </u>		`		· · · · · · · · · · · · · · · · · · ·	
№ п/ п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
3	Электромеханические свойства электропривода с ДПТ НВ	Способы регулирования скорости электропривода постоянного тока: реостатное регулирование, изменение напряжения на якоре и магнитного потока	2	Статические характеристики ДПТ НВ	4	Вводное занятие по л.р. Отработка л.р. №1	4
4	Электромеханические свойства электропривода с двигателями переменного тока	Способы регулирования скорости асин-хронного двигателя с фазным ротором	4	Аналитический расчет пусковой диаграммы АД с ФР	2	Отработка л.р. №2	2
	Всего	аудиторных часов	6	_	4	_	6

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по конструкторско-преддипломной (производственной) практике используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 6.1.

Таблица 6.1 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
ОПК-1	Экзамен	Комплект контролирующих материалов
		для экзамена

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- семестровые задания - всего 100 баллов

Экзамен проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60 % от максимального.

Экзамены по дисциплине «Электропривод машин» проводятся по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время сессии студент имеет право повысить итоговую оценку либо в форме устного собеседования по приведенным ниже вопросам (п. 6.4), либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.2

Таблица 6.2 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашние задания

Домашнее задание для студентов 2-го курса факультета ММК специальности 15.03.02 состоит из пяти текстовых задач, при решении которых необходимо показать знание уравнения движения электропривода, способов определения сил и моментов статического сопротивления движению для различных типовых промышленных установок. В этих задачах вычисляются также параметры движения (скорость, ускорение, путь, время) и определяются энергетические режимы работы электропривода, В некоторых задачах выполняется определение момента инерции электропри-вода на основе экспериментальных данных или расчеты момента инерции тел вращения по их размерам.

Для определения перечня задач, входящих в семестровое задание, студенту необходимо знать номер своего варианта по списку группы и но-мер своей группы. По этим данным в таблице 6.3 студент определит номера задач для своего варианта задания.

Таблица 6.3 – Варианты задания

Номер варианта	Номера задач, входящих в семестровое задание
1	2
1	1, 60, 43, 106, 110
2	62, 3, 37, 118, 113
3	41, 5, 99, 77, 111
4	7, 102, 66, 45, 108
5	30, 9, 68, 87, 104
6	59, 90, 11, 57, 94
7	105, 96, 13, 72, 35
8	15, 74, 93, 117, 53
9	69, 17, 91, 97, 32
10	107, 78, 19, 56, 89
11	21, 33, 80, 100, 121
12	103, 23, 54, 83, 122
13	25, 84, 34, 112, 87
14	73, 49, 27, 109, 90
15	29, 76, 114, 36, 94
16	2, 50, 119, 70, 101
17	92, 47, 79, 4, 97
18	67, 6, 48, 124, 101
19	8, 116, 82, 51, 123
20	38, 64, 10, 115, 105
21	85, 12, 95, 52, 120
22	14, 61, 31, 88, 108
23	98, 44, 75, 16, 111
24	18, 71, 86, 55, 115
25	20, 58, 63, 125, 113

6.3 Темы рефератов

Написание рефератов при изучении дисциплины не предусмотрено.

6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Тема 1. Введение.

- 1. Определение электропривода.
- 2. Функциональная схема электропривода.
- 3. Координаты и параметры электропривода.
- 4. Режимы работы электропривода.
- 5. Классификация электроприводов.

Тема 2. Основное уравнения движения электропривода.

- 1. Основное уравнения движения электропривода при разной жесткости связующих валов.
 - 2. Время пуска, торможения и реверса привода.
 - 3. Путь, совершаемый электроприводом при переходных процессах.
- 4. Потери энергии в механической части электропривода при переходных процессах.
- *Тема 3. Электромеханические свойства электропривода с двигателями постоянного тока независимого возбуждения.*
 - 1. Схема включения ДПТ НВ.
 - 2. Математическая модель ДПТ НВ.
 - 3. Статические характеристики ДПТ НВ.
 - 4. Способы регулирования скорости ДПТ НВ.
 - 5. Тормозные режимы ДПТ НВ.

Тема 4. Электромеханические свойства электропривода с двигателями постоянного тока последовательного возбуждения.

- 1. Схема включения ДПТ НВ.
- 2. Математическая модель ДПТ НВ.
- 3. Статические характеристики ДПТ НВ.
- 4. Способы регулирования скорости ДПТ НВ.
- 5. Тормозные режимы ДПТ НВ.

Тема 5. Электромеханические свойства электропривода с двигателями переменного тока.

- 1. Виды асинхронных двигателей.
- 2. Механические характеристики асинхронных двигателей.
- 3. Формула Клосса.
- 4. Пуско-тормозные режимы работы электропривода переменного тока
- 5. Способы регулирования его скорости.

Тема 6. Методы проверки мощности двигателя по нагреву.

- 1. Метод средних потерь.
- 2. Методы эквивалентных момента, мощности и тока.
- 3. Выбор двигателя по допустимому числу включений в час.
- 4. Определение времени движения электропривода при треугольной тахограмме.
 - 4. Метод эквивалентных ускорений.
 - 5. Метод средних перемещений.

Тема 7. Электропривод оборудования аглофабрик.

- 1. Назначение аглофабрик и их оборудование
- 2. Смесители и окомкователи
- 3. Распределители шихты, назначение, конструкция, электрооборудование. Агломашины

Тема 8. Электропривод оборудования доменных цехов.

- 1. Назначение доменного цеха и его оборудование.
- 2. Вагоноопрокидыватели.
- 3. Грейфер, назначение, конструкция, электрооборудование.
- 4. Перегрузочные вагоны
- 5. Вагон-весы и скиповый подъемник, назначение, конструкция, электрооборудование.
 - 6. Разливочная машина и кантовательные лебедки

Тема 9. Электропривод оборудования кислородно-конвертерного цехов.

- 1. Кислородно-конвертерное производство стали
- 2. Механизм подъема кислородной фурмы, назначение, конструкция, электрооборудование.
 - 3. Стрипперный кран, назначение, конструкция, электрооборудование
 - 4. Кристаллизатор, назначение, конструкция, электрооборудование
 - 5. Сталевозы и шлаковозы.

Тема 10. Электропривод оборудования прокатных цехов.

- 1. Прокатные цехи и их оборудование
- 2. Главный привод прокатного стана, назначение, конструкция, электрооборудование.
 - 3. Нажимное устройство.
 - 4. Рольганги с индивидуальным и групповым приводом.
 - 5. Манипуляторы, назначение, конструкция, электрооборудование
 - 6. Ножницы, назначение, конструкция, электрооборудование
 - 7. Пилы горячей резки, назначение, конструкция, электрооборудование
 - 8. Сталкиватели, назначение, конструкция, электрооборудование
 - 9. Листоправильная машина.

6.5 Вопросы для подготовки к экзаменам

- 1. Что входит в состав электропривода?
- 2. Что входит в функциональную схему электропривода?
- 3. Каковы координаты и параметры электропривода?
- 4. Какие бывают режимы работы электроприводов?
- 5. Какие существуют классификации электроприводов?
- 6. Что входит в основное уравнение движения электропривода?
- 7. Как определить время пуска, торможения и реверса электропривода?
- 8. Как определить путь, проходимый электроприводом, за время торможения?
- 9. Как найти потери в механической части электропривода при переходных процессах?
 - 10. Как соединены обмотка якоря и обмотка возбуждения ДПТ НВ?
 - 11 Какие уравнения входят в математическую модель ДПТ НВ?
 - 12. Как регулируют скорость ДПТ НВ?
 - 13. Для чего нужно электрическое торможение электропривода?
 - 14. Как получить режим динамического торможения ДПТ НВ?
 - 15. Как получить режим противовключения ДПТ НВ?
 - 16. Что такое реверс электропривода и как его получить?
 - 17. Как соединены обмотка якоря и обмотка возбуждения ДПТ ПВ?
 - 18. Какие уравнения входят в математическую модель ДПТ ПВ?
 - 19. Как регулируют скорость ДПТ ПВ?
 - 20. Для чего нужно электрическое торможение электропривода?
 - 21. Как получить режим динамического торможения ДПТ ПВ?
 - 22. Как получить режим противовключения ДПТ ПВ?
 - 23. Какие виды асинхронных двигателей существуют?
 - 24. Что такое формула Клосса? Что она описывает?
- 25. Как регулируют скорость асинхронного двигателя с короткозамкнутым ротором?
- 26. Как регулируют скорость асинхронного двигателя с фазным ротором?
- 27. Какие достоинства, недостатки и области применения асинхронных двигателей с фазным и короткозамкнутым ротором?
 - 28. Как среверсировать асинхронный электропривод?
 - 29. Как быстро остановить асинхронный электропривод?
 - 30. Каковы требования к приводным электродвигателям?
- 31. Как рассчитать мощность двигателя для механизма, работающего в длительном режиме?

- 32. Как рассчитать мощность двигателя для механизма, работающего в повторно-кратковременном режиме?
- 33. Каковы достоинства, области применения и недостатки электроприводов постоянного и переменного тока?
- 34. Какой электропривод устанавливают на барабанных смесителях аглофабрик? Почему?
 - 35. Что такое агломашина? Какой у нее привод?
- 36. В каких цехах устанавливают вагоноопрокидыватели? Каковы требования к их электроприводу?
 - 37. Что такое вагон-весы? Какой у него электропривод?
- 38. Для чего используется скиповый подъемник? Как рассчитать мощность приводного электродвигателя этого подъемника?
 - 39. Для чего в доменных цехах применяют электропушки?
- 40. Как рассчитать мощность электропривода разливочной машины и кантовательной лебедки?
- 41. Для чего в кислородно-конверторном цеху применяют кислородную фурму? Как рассчитывается мощность приводного электродвигателя фурмы?
- 42. Каково назначение сталевозов и шлаковозов? Какой у них электропривод?
- 43. Для чего нужно качать кристаллизатор? Как осуществляется этот процесс?
- 44. Как осуществляется прокатка металла? Какие механизмы при этом используются?
- 45. Для чего нужны рольганги и как рассчитать мощность их приводных двигателей?
- 46. Каково назначение нажимных устройств? Каковы требования к их электроприводу?
- 47. Что такое манипуляторы в прокатных цехах? Каковы требования к их электроприводу?
- 48. Какие виды ножниц используют в прокатных цехах? Каковы требования к их электроприводу?
 - 49. Что такое листоправильная машина? Какой у нее электропривод?
- 50. Что такое пилы горячей резки? Зачем их электропривод обеспечивает стабилизацию мощности резания?

7 Учебно-методическое и информационное обеспечение конструкторско-преддипломной (производственной) практики

Уровень необходимого учебно-методического и информационного обеспечения (научно-техническая литература, технологические инструкции, государственные стандарты, технические условия, источники информации в сети Интернет и др.) учебного процесса на кафедре машин металлургического комплекса соответствуют требованиям подготовки бакалавров.

7.1 Рекомендуемая литература

Основная литература

- 1. Бигеев В. А. Основы металлургического производства : учебник для вузов / В. А. Бигеев, К. Н. Вдовин, В. М. Колокольцев [и др.]; под общей редакцией В. М. Колокольцева. 4-е изд., стер. Санкт-Петербург : Лань, 2023. 616 с. URL: https://reader.lanbook.com/book/267362?demoKey=4dbc7a1fa24b724d64fb29859 8b00799#2. (дата обращения: 20.08.2024). Текст : электронный.
- 2. Рудской, А. И. Теория и технология прокатного производства [Текст]. Учебное пособие / А. И. Рудской, В. А. Лунев. СПб: Лань, 2023. 528 с. URL: https://glavkniga.su/book/682925 (дата обращения: 20.08.2024). Текст: электронный.
- 3. Клим, О. Н. Основы металлургического производства. / О. Н. Клим. Москва : Издательство Юрайт, 2023. 168 с. ISBN 978-5-534-13295-3. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/519357. (дата обращения: 20.08.2024). Текст: электронный.

Дополнительная литература

- 1. Грудев, А. П. Технология прокатного производства: Учебник для вузов / А. П. Грудев, Л. Ф. Машкин, М. И. Ханин. М.: Металлургия, 1994. 656 с. URL: https://moodle.dstu.education/mod/folder/view.php?id=90543. Режим доступа: для авториз. пользователей. Текст: электронный.
- 2. Рудской, А. И. Теория и технология прокатного производства [Текст]. Учебное пособие / А. И. Рудской, В. А. Лунев. СПб: Наука, 2008. 527 с. URL: https://library.dstu.education/akkred/denischenko/rudskoy.pdf. Режим доступа: для авториз. пользователей. Текст: электронный.
- 3. Коцюбинский, В.С. Выбор мощности электропривода общепромышленных механизмов: учебное пособие, 2-е изд., перераб. и доп./ В.С. Коцюбинский. Алчевск: ДонГТУ, 2007. 205 с. URL: https://moodle.dstu.education/course/view.php?id=535 . Режим доступа: для авториз. пользователей. Текст: электронный.

- 4. Белов, М.П. Автоматизированный электропривод типовых производственных механизмов и технологических комплексов: учебник для студентов высших учебных заведений / М.П. Белов, В.А. Новиков, Л.П. Рассудов. 3-е изд., испр. М.: Издательский центр «Академия», 2007. 576 с. URL: https://moodle.dstu.education/course/view.php?id=535 . Режим доступа: для авториз. пользователей. Текст: электронный.
- 5. Зименков, М.Г. Справочник по наладке электрооборудования промышленных предприятий / М.Г. Зименков, Г.В. Розенберг, Е.М. Феськов. М.: Энергоатомиздат, 1983. 480 с. URL: https://moodle.dstu.education/course/view.php?id=1640 . Режим доступа: для авториз. пользователей. Текст: электронный.
- 6. Дорофеюк, А.С. Справочник по наладке электроустановок / А.С. Дорофеюк, А.П. Хечумян. М.: Энергия, 1976. 560 с. URL: https://moodle.dstu.education/course/view.php?id=1640 . Режим доступа: для авториз. пользователей. Текст: электронный.

Учебно-методическое обеспечение

1. Методические указания к домашнему заданию №4 «Проектирование и расчет релейно-контакторной системы управления» по курсу «Теория электропривода» / Сост.: М.А. Ямковая. — Алчевск: ДонГТУ, 2015. — 20 с — URL: https://moodle.dstu.education/course/view.php?id=1640 . - Режим доступа: для авториз. пользователей. — Текст: электронный.

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт. Алчевск. URL: <u>library.dstu.education.</u> Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст : электронный.
- 3. Консультант студента : электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст : электронный.
- 4. Университетская библиотека онлайн : электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст : электронный.
- 5. IPR BOOKS : электронно-библиотечная система. Красногорск. URL: http://www.iprbookshop.ru/. Текст : электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 8.1.

Таблица 8.1 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местополо- жение) учебных кабинетов
Специальные помещения:	
Научно-исследовательская лаборатория «Теории электроприво-	Ауд. 118, корп.
да» (25 посадочных мест), оборудованная учебной мебелью и ла-	главный
бораторными стендами	
Компьютерный класс (25 посадочных мест), оборудованный	Ауд. 319, корп.
учебной мебелью, компьютерами с неограниченным доступом к	главный
сети Интернет	

Лист согласования РПД

Разработала		
доцент кафедры электромеханики	1	М. А. Ямковая
им. А. Б. Зеленова (должность)	(подпись)	(Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
И.о. зав. кафедрой	Mullered	Į. И. Морозов
1 . 1	(подинсь)	(Ф.И.О.)
Протокол № 1 заседания кафедры электромеханики им. А. Б. Зеленова от	22.08.2024 г.	
Декан факультета	(подпись)	В. В. Дьячкова (Ф.И.О.)
Согласовано		
Председатель методической комиссии по направлению подготовки		
13.03.02 Электроэнергетика и электротехника	<u>кое</u>	I. Н. Комаревцева (Ф.И.О.)

(подпись)

Начальник учебно-методического центра

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения		
изменений		
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	
Основание:		
Подпись лица, ответственного за внесение изменений		
подпись лица, ответственного за внесение изменении		