МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет Кафедра горно-металлургической промышленности и строительства технологии и организации машиностроительного производства

УТВЕРЖДАЮ Иго, проректора по учебной работе Д.В. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Технология машиностроения (наименование дисциплины)	
Металлургическое оборудование (профиль подготовки)	
бакалавр (бакалавр/специалист/магистр)	
РЕНГОВ В В В В В В В В В В В В В В В В В В	
	(наименование дисциплины) 3.02 Технологические машины и оборудование (код, наименование направления) Металлургическое оборудование (профиль подготовки) бакалавр (бакалавр/специалист/магистр)

1 Цели и задачи изучения дисциплины

Цели дисциплины. Целью изучения учебной дисциплины "Технология машиностроения" является формирование у студентов представления о проектировании технологических процессов изготовления деталей машин, прогрессивных методах эксплуатации изделий; овладение основными принципами проектирования технологических процессов изготовления типовых деталей металлургической промышленности.

Задачи изучения дисциплины:

- изучение структуры производственного и технологического процессов;
- владение основными терминами и определениями технологии машиностроения, точности детали, качестве поверхности;
- обучение основным методам обработки деталей машин, определение припусков, видов оборудования, режущего инструмента;
- обучение основным понятиям жизненного цикла изделий машиностроения;
 - обучение теории базирования деталей машин;
- овладение технологическими процессами изготовления типовых деталей металлургической промышленности;
- овладение системой технологической документации для разработки технологических процессов обработки деталей.

Дисциплина направлена на формирование общепрофессиональных компетенций (ОПК-9) выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины курс входит образовательную часть Блока 1 «Дисциплины (модули)», формируемая образовательных отношений, участниками подготовки студентов направлению 15.03.02 «Технологические машины оборудование», (профиль «Металлургическое оборудование»).

Дисциплина реализуется кафедрой технологии и организации машиностроительного производства. Основывается на базе дисциплин: «Физика», «Инженерная графика», «Теоретическая механика», «Технология конструкционных материалов», «Сопротивление материалов».

Дисциплина является основой для изучения следующих дисциплин: «Основы проектирования машин», «Практикум по эксплуатации и ремонту оборудования», «Эксплуатация и обслуживание металлургического оборудования».

Для изучения дисциплины необходимы компетенции, сформированные у студента для решения профессиональных задач, осваивать на практике и совершенствовать технологии машиностроительных производств, участвовать в разработке и внедрении оптимальных технологий изготовления машиностроительных изделий, выполнять мероприятия по выбору оборудования, инструментов, технологической оснастки, алгоритмов и программ выбора и расчётов параметров технологических процессов для их реализации.

Является основой для изучения профессионально-ориентированных дисциплин.

Общая трудоемкость освоения дисциплины составляет 6 зачетных единиц, 216 ак.ч. Программой дисциплины предусмотрены:

- лекционные (72 ак.ч.), практические (36 ак.ч.) занятия и самостоятельная работа студента (108 ак.ч.) для очной формы обучения;
- лекционные (12 ак.ч.), практические (8 ак.ч.) занятия и самостоятельная работа студента (196 ак.ч.) для заочной формы обучения.

Дисциплина изучается на третьем курсе в 5 и 6 семестрах очной и заочной форм обучения. Форма промежуточной аттестации — зачет в пятом семестре, экзамен в шестом семестре.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Технология машиностроения» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание	Код	Код и наименование индикатора					
компетенции	компетенции	д достижения компетенции					
Способен внедрять и осваивать новое технологическое оборудование	ОПК-9	ОПК-9.1 Уметь пользоваться методической, технической и эксплуатационной документацией технологического оборудования ОПК-9.2 Владеть методами расчета экономической эффективности внедрения нового технологического оборудования ОПК-9.3 Владеть методами технической диагностики и испытаний нового технологического оборудования					

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 6 зачётных единиц, 216 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим занятиям, текущему контролю, самостоятельное изучение материала и подготовку к зачету и экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы, и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС в 5 и 6 семестрах

		Ак.	4. ПО
Вид учебной работы	Всего ак.ч.	семес	страм
, ,	Всего ак.ч. сем 5 108 54 72 36 36 18 108 54 18 9 30 15	5	6
Аудиторная работа, в том числе:	108	54	54
Лекции (Л)	72	36	36
Практические занятия (ПЗ)	36	18	18
Лабораторные работы (ЛР)	-		-
Курсовая работа/курсовой проект	-		-
Самостоятельная работа студентов (СРС), в	100	5.1	54
том числе:	108	34	34
Подготовка к лекциям	18	9	9
Подготовка к лабораторным работам	-	-	-
Подготовка к практическим занятиям /	30	15	15
семинарам		13	13
Выполнение курсовой работы / проекта	-	-	-
Расчетно-графическая работа (РГР)	-	-	-
Реферат (индивидуальное задание)	-	-	-
Домашнее задание	-	-	-
Подготовка к контрольной работе	12	6	6
Подготовка к коллоквиуму	12	6	6
Аналитический информационный поиск	16	8	8
Работа в библиотеке	-	-	-
Подготовка к экзамену	20	10	10
Промежуточная аттестация – экзамен (Э)	Э(6)	3(5)	Э(6)
Общая трудоемкость дисциплины			
ак.ч.	216	108	108
3.e.	6	3	3

5 Содержание дисциплины

С целью освоения компетенции, приведенной в п.3 дисциплина разбита на 16 тем:

- тема 1 (Понятие о производственном и технологическом процессах);
- тема 2 (Кинематические основы формообразования поверхностей деталей машин);
- тема 3 (Технологические возможности метода обработки заготовок точениям);
- тема 4 (Технологические возможности обработки на станках сверлильной группы);
- тема 5 (Технологические возможности обработки плоских поверхностей);
- тема 6 (Технологические возможности методов обработки на чистовых операциях);
- тема 7 (Технологические возможности станков зубообрабатывающей группы);
 - тема 8 (Понятие о служебном назначении изделия (детали);
 - тема 9 (Качество изделия, система показателей качества изделия);
- тема 10 (Параметры оценки точности: точность размеров, точность формы, точность взаимного положения поверхностей);
- тема 11 (Теория базирования деталей машин как основа обеспечения точности);
 - тема 12 (Факторы, влияющие на точность обработки);
 - тема 13 (Понятие припусков и напусков);
 - тема 14 (Основы нормирования технологических процессов);
- тема 15 (Исходные данные для проектирования технологического процесса изготовления деталей);
- тема 16 (Система технологической документации для разработки технологических процессов обработки деталей).

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 3 и 4 соответственно для 5 семестра.

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 5 и 6 соответственно для 6 семестра.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (5 семестр, очная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.	
1	Понятие о производственном и технологическом процессах	Основные понятия и определения: производственный процесс, технологический процесс, изделие, заготовка, деталь, сборочная единица. Типы машиностроительных производств и их характеристика. Структура технологического процесса. Понятия: операция, рабочее место, переход, проход, установ, позиция, прием	4				_	_
2	Кинематические основы формо- образования поверхностей деталей машин	Кинематические основы формообразования поверхностей деталей машин. Классификация геометрииических форм поверхностей деталей машин. Понятие об образующей и направляющей и их роль в формообразовании поверхностей. Контактные явления в процессе формообразования поверхности. Нарост и наклеп при резании металлов. Силы резания. Влияние теплоты резания на процесс формообразования поверхностей. Режущий инструмент. Составные части и элементы инструментов. Факторы, влияющие на качество поверхности	6	Изучение структуры технологического процесса	6	_		

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.		
	Технологические возможности метода обработки заготовок точениям	Технологические возможности метода обработки заготовок точениям. Схемы обработки заготовок. Режущий инструмент. Формирование показателей качества, поверхностей тел вращения и управление ими при обработке точением. Основное технологическое время. Качество поверхности детали. Факторы, влияющие на качество при обработке на станках токарной группы	4	Определение основного технологического времени при обработке на	основного технологического времени при обработке на	основного технологического времени при	4	_	_
4	Технологические возможности обработки на станках сверлильной группы	Возможности обработки на станках сверлильной группы. Технологические методы обработки отверстий. Схемы обработки заготовок и особенности кинематики и физики резания при обработке отверстий. Используемый режущий инструмент и оборудование	4	станках токарной группы		_	_		

№ п/п		Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
5	Технологические возможности обработки плоских поверхностей	Технологические возможности обработки плоских поверхностей. Используемый режущий инструмент. Схемы обработки. Режимы резания. Основное технологическое время. Качество поверхности детали. Факторы, влияющие на качество при обработке на станках фрезерной группы	4	Определение основного технологического времени при обработке на станках сверлильной группы	2	-	_
6	Технологические возможности методов обработки на чистовых операциях	Технологические возможности методов обработки на чистовых операциях. Схемы обработки. Режущий инструмент. Режимы резания. Основное технологическое время. Качество поверхности детали. Факторы, влияющие на качество при обработке на станках шлифовальной группы	4	Определение основного технологического времени при обработке на станках фрезерной группы.	2	_	_

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
7	Технологические возможности станков зубообрабатывающе й группы	Технологические возможности станков зубообрабатывающей группы. Схемы обработки. Режущий инструмент. Режимы резания. Основное технологическое время. Качество поверхности детали. Факторы, влияющие на качество при обработке на станках зубообрабатывающей группы	4	Определение основного техно-логического времени при обработке на шлифовальных станках	2	_	_
8	Понятие о служебном назначении изделия (детали)	Понятие о служебном назначении изделия (детали). Виды поверхностей. Факторы, влияющие на качество деталей. Понятие о технологичности конструкций деталей машин. Основные критерии оценки технологичности конструкций деталей	6	Определение основного технологического времени при обработке на станках зубообрабатываю щей	2	-	_
	Всего аудиторных ч	асов	36	18	1		1

Таблицы 4 – Виды занятий по дисциплине и распределение аудиторных часов (5 семестр, заочная форма обучения)

№ п/п	Наименование раздела дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1	Кинематические основы формо- образования поверхностей деталей машин	Кинематические основы формообразования поверхностей деталей машин. Классификация геометрииических форм поверхностей деталей машин. Понятие об образующей и направляющей и их роль в формообразовании поверхностей. Контактные явления в процессе формообразования поверхности. Нарост и наклеп при резании металлов. Силы резания. Влияние теплоты резания на процесс формообразования поверхностей. Режущий инструмент. Составные части и элементы инструментов. Факторы, влияющие на качество поверхности		Определение основного техно- логического вре- мени при обра- ботке на токар- ных станках	4	_	_
	Всего аудиторных	часов	6	4		_	

Таблица 5 – Виды занятий по дисциплине и распределение аудиторных часов (6 семестр, очная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
9	Качество изделия, система показателей качества изделия	Качество изделия, система показателей качества изделия. Основные виды связей между поверхностями деталей машин Понятие о точности обработки. Влияние требований к точности на построение технологического процесса ее изготовления	4	Служебное назначение детали. Виды поверхностей	2	-	_
10	Параметры оценки точности: точность размеров, точность формы, точность взаимного положения поверхностей	Параметры оценки точности: точность размеров, точность формы, точность взаимного положения поверхностей. Методы достижения точности при механической обработке в разных типах производства	4	Выбор метода получения заготовки	2	_	_
11	Теория базирования деталей машин как основа обеспечения точности	Теория базирования деталей машин как основа обеспечения точности. Правило 6-ти точек. Понятие «технологическая база». Классификация баз по числу отнимаемых степеней свободы у заготовки, детали, сборочной единицы: установочная, направляющая, опорная, двойная направляющая и двойная опорная. Рекомендуемые комплекты техно-	6	Выбор оборудования и режущего инструмента Схемы обработки и виды движений	2	_	_

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		логических баз для деталей типовых форм: призматических, длинных цилиндрических и коротких цилиндрических. Базирование деталей машин. Правило 6-ти точек. Классификация баз. Комплект технологических баз					
12	Факторы, влияющие на точность обработки	Факторы, влияющие на точность обработки: погрешность установки, износ инструмента, деформация технологической системы	4	Разработка маршрутной технологии обработки детали	2	_	_
13	Понятие припусков и напусков	Понятие припусков и напусков. Основы расчета межоперационных размеров и допусков на обработку. Способы назначения припусков	4	Разработка структуры операции	2	-	_

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
14	Основы нормирования технологических процессов	Основы нормирования технологических процессов. Основные составные части норм времени технологических процессов. Способы нормирования технологических процессов	4	Выбор и расчет режимов резания	2	_	_
15	Исходные данные для проектирования технологического процесса изготовления деталей	Исходные данные для проектирования технологического процесса изготовления деталей. Разработка маршрутной технологи обработки детали. Основы разработки технологических операций	4	Нормирование технологического процесса	2	_	_
16	Система технологической документации для разработки технологических процессов обработки деталей	Система технологической документации для разработки технологических процессов обработки деталей. Технология производства типовых деталей: валы, зубчатые колеса. Технология производства корпусных деталей	6	Оформление технологической документации	4	_	_
	Всего аудиторных ч	асов	36	18	1		,

Таблицы 6 – Виды занятий по дисциплине и распределение аудиторных часов (6 семестр, заочная форма обучения)

№ п/п	Наименование раздела дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1	Теория базирования деталей машин как основа обеспечения точности	Теория базирования деталей машин как основа обеспечения точности. Правило 6-ти точек. Понятие «технологическая база». Классификация баз по числу отнимаемых степеней свободы у заготовки, детали, сборочной единицы: установочная, направляющая, опорная, двойная направляющая и двойная опорная. Рекомендуемые комплекты технологических баз для деталей типовых форм: призматических, длинных цилиндрических и коротких цилиндрических. Базирование деталей машин. Правило 6-ти точек. Классификация баз. Комплект технологических баз	6	Служебное назначение детали. Виды поверхностей Разработка маршрутной технологии обработки детали	4	_	
	Всего аудиторных часов		6	4		_	

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 7.

Таблица 7 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
ОПК-9	Зачет, Экзамен	Комплект контролирующих материалов для зачета, экзамена

Всего по текущей работе в каждом семестре студент может набрать 100 баллов, в том числе:

- тестовый контроль или устный опрос на коллоквиумах (2 работы) всего 60 баллов;
 - практические работы всего 40 баллов.

Зачет в 5 и экзамен в 6 семестрах проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Зачет в 5 и экзамен в 6 семестрах по дисциплине «Технология машиностроения» проводится по результатам работы в семестрах. В случае, если полученная в семестре сумма баллов не устраивает студента, во время зачетной недели студент имеет право повысить итоговую оценку либо в форме устного собеседования по приведенным ниже вопросам (п.п. 6.2.5, 6.3.5), либо в результате тестирования.

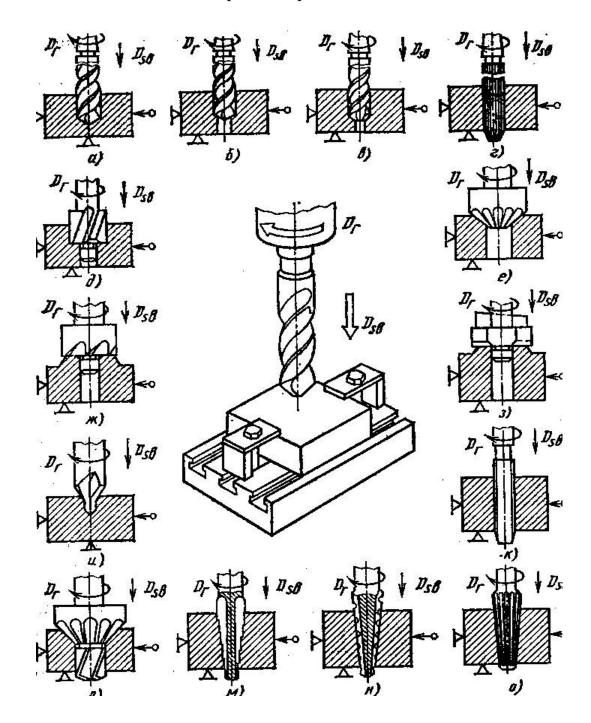
Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале	
учебной деятельности	зачёт/экзамен	
0-59	Не зачтено/неудовлетворительно	
60-73	Зачтено/удовлетворительно	
74-89	Зачтено/хорошо	
90-100	Зачтено/отлично	

5 семестр

6.2.1 Тематика и содержание заданий для подготовки к контрольным работам и текущему контролю успеваемости

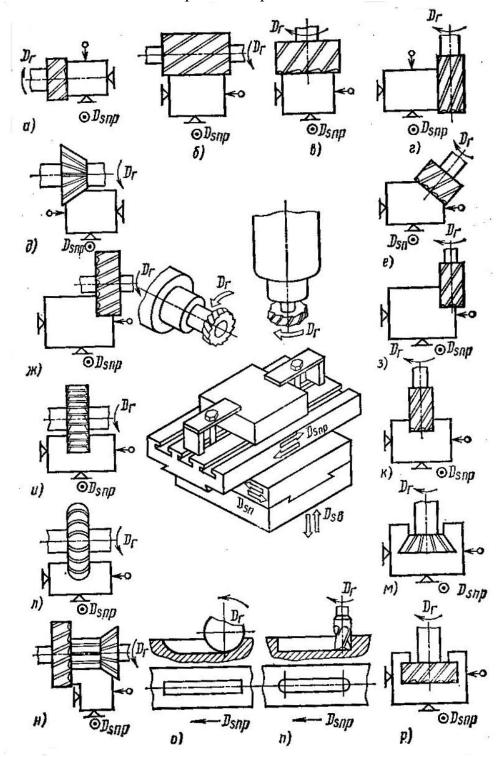

Типовые задания к контрольной работе №1 D_{SH}

Для заданной схемы указать:

- величину врезания инструмента;
- величину перебега инструмента;
- длину обработки.

Определить основное технологическое время.

Типовые задания к контрольной работе №2

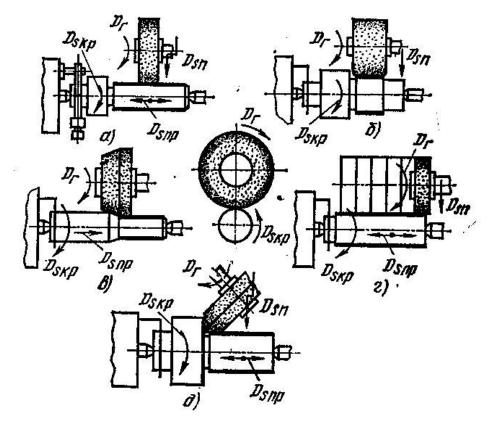


Для заданной схемы указать:

- величину врезания инструмента;
- величину перебега инструмента;
- длину обработки.

Определить основное технологическое время.

Типовые задания к контрольной работе №3



Для заданной схемы указать:

- величину врезания инструмента;
- величину перебега инструмента;
- длину обработки.

.Определить основное технологическое время.

Типовые задания к контрольной работе №4

Для заданной схемы указать:

- величину врезания инструмента;
- величину перебега инструмента;
- длину обработки.

Контрольная работа (заочная форма обучения)

В контрольную работу, которую должны выполнить студенты заочного обучения, входит теоретический вопрос и практическое задание.

Список теоретических вопросов для контрольной работы

- 1) Что характеризует область применения процесса резания?
- 2) Что относится к основным терминам и понятиям при резании?
- 3) Какая классификация движения рабочих органов станков?
- 4) Какие методы формообразования поверхностей?
- 5) Какие существуют элементы режимов резания и сечение срезаемого слоя металла?
 - 6) Какие основные элементы схемы процесса резания?
 - 7) Какие существуют типы стружки, усадка стружки?
 - 8) Какие явления сопровождают процесс нароста?

- 9) Какие существуют силы резания при точении, равнодействующая сил резания?
- 10) Что подразумевает износ режущего инструмента, Виды износа. критерий "затупления" режущего инструмента?
- 11) Какая существует классификация металлорежущих станков по степени универсальности, автоматизации, точности, технологическим признакам? Как обозначаются металлорежущие станки?
- 12) Какие существуют типы станков токарной группы, основные узлы и виды работ, которые можно выполнять на токарно-винторезном станке?
- 13) Какой режущий инструмент, используется на токарно-винторезном станке, классификация режущего инструмента, режимы резания?
- 14) Какая методика определения основного технологического времени при обработке на токарном станке?
- 15) Какие существуют сверлильные станки, назначение, виды работ, выполняемых на сверлильных станках?
 - 16) Какой режущий инструмент, используется при сверлении?
 - 17) Как классифицируются сверла, их конструктивные элементы?
- 18) Какая методика определения основного технологического времени при обработке на сверлильных станках?
- 19) Какие существуют режимы резания при обработке на сверлильных станках?
- 20) Какие особенности обработки на шлифовальных станках, назначение обработки шлифованием?
- 21) Какие виды шлифовальных станков существуют, основные узлы и виды работ, которые можно выполнять на шлифовальных станках?
 - 22) Как классифицируется абразивный режущий инструмент?
 - 23) Какие существуют режимы резания при шлифовании?
 - 24) Какие существуют виды фрезерования?
- 25) Какие виды работ, которые можно выполнять на фрезерных станках?
 - 26) Какой существует режущий инструмент при фрезеровании?
 - 27) Какие элементы режима резания при фрезеровании?
- 28) В чем заключается методика определения основного технологического времени при обработке на фрезерных станках?
 - 29) Какие факторы, влияющие на точность детали?
 - 30) Как характеризуются показатели точности детали?

Практическое задание на контрольную работу (заочная форма обучения)

- 1) Выполнить 4-5 схем обработки, указав при этом:
 - главное движение резания;
 - движение подачи;
 - обрабатываемую, обработанную и поверхность резания;
 - глубину резания.
- 2) Перечислить виды станков и дать им краткую техническую характеристику, на которых можно осуществить данные схемы обработки.
- 3) Перечислить режущий инструмент необходимый для обработки детали и дать ему краткую техническую характеристику.

6.2.2 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Тема 1. Понятие о производственном и технологическом процессах

- 1) Что называется технологическим процессом?
- 2) Что называется производственным процессом?
- 3) Какая структура производственного процесса?
- 4) Характеристика единичного типа производства.
- 5) Какие типы производства существуют?.
- 6) Как характеризуется серийный тип производства?
- 7) Как характеризуется массовый тип производства
- 8) Что называется заготовкой?
- 9) Что называется деталью?
- 10) Что называется изделием?
- 11) Что такое программа выпуска?
- 12) Что называется величиной серии?
- 13) Какое оборудование применяется для единичного типа производства?
 - 14) Какое оборудование применяют для массового типа производства?
 - 15) Какая структура технологического процесса?
- Teмa 2. Кинематические основы формообразования поверхностей деталей машин
 - 1) Что называют обработкой конструкционных материалов резанием?
 - 2) Что называется припуском?
 - 3) Какое назначение рабочего движения станка?
 - 4) Как классифицируется рабочее движение станка?
 - 5) Что обеспечивает движение подач?
 - 6) Какое назначение установочного движения в станке?

- 7) Как классифицируются движения рабочих органов станка?
- 8) Что называется обработанной поверхностью?
- 9) Что называется обрабатываемой поверхностью?
- 10) Что называется поверхностью резания?
- 11) Что называется глубиной резания?
- 12) Как определяется глубина резания при точении цилиндрической поверхности режущим инструментом?
 - 13) Что называется скоростью резания?
 - 14) Как определяется скорость резания?
 - 15) Что называется шириной срезаемого слоя металла?
 - 16) Что называется толщиной срезаемого слоя металла?
 - 17) От чего зависит вид получаемой стружки?
 - 18) Что представляет собой сливной вид стружки?
 - 19) Что представляет собой стружка "надлома"?
 - 20) Что такое износ режущего инструмента?
 - 21) Какие виды износа режущего инструмента существуют?
- 22) Какой вид износа принят за критерий "затупления" режущего инструмента?
 - 23) Что влияет на виды износа режущего инструмента?
- 24) Почему за критерий "затупления" режущего инструмента принят износ по задней поверхности?
- Tema 3. Технологические возможности метода обработки заготовок точением
 - 1) Какие типы станков токарной группы существуют?
 - 2) Основные узлы токарно-винторезного станка.
 - 3) Какие виды работ, выполняются на станках токарной группы?
 - 4) Какие виды режущего инструмента, используются на токарных станках?
 - 5) Как классифицируются резцы по назначению?
 - 6) Как классифицируются резцы по характеру обработки?
 - 7) Какие конструктивные элементы резца существуют?
 - 8) Как классифицируются резцы по конструкции?
 - 9) Как классифицируются резцы по виду сечения державки?
- 10) Как классифицируются резцы по расположению главной режущей кромки?
 - 11) Применение резцов различных типов
 - 12) Какие элементы режима резания при обработке на токарных станках?
 - 13) Какие существуют движения резания при точении?

- 14) Методика определения основного технологического времени при обработке на токарных станках.
- 15) Основные термины и понятия при резании. Координатные плоскости и углы.
 - 16) Какие поверхности различают на заготовке при точении?
- Тема 4. Технологические возможности обработки на станках сверлильной группы
 - 1) Обработка на станках сверлильной группы. Виды работ.
 - 2) Какой режущий инструмент используется на сверлильных станках?
 - 3) Какое назначение и конструктивные элементы сверла?
 - 4) Какое назначение и конструктивные элементы зенкера?
 - 5) Какое назначение и конструктивные элементы развертки?
 - 6) Какие элементы режима резания при обработке на сверлильных станках?
 - 7) Какие существуют движения резания при обработке на сверлильных станках?
- 8) Основные типы сверлильных станков (вертикально- сверлильные, радиально сверлильные). Назначение, основные узлы.
- 9) Методика определения основного технологического времени при обработке на сверлильных станках.
- 10) От чего зависит величина врезания инструмента при нарезании резьбы метчиком?
- Тема 5. Технологические возможности обработки плоских поверхностей
 - 1) Обработка на станках фрезерной группы. Виды работ.
 - 2) Какой режущий инструмент используется на фрезерных станках?
 - 3) Какая существует классификация фрез, конструктивные элементы?
 - 4) Какие существуют элементы режима резания при обработке на фрезерных станках.
 - 5) Какие существуют движения резания при обработке на фрезерных станках.
- 6) Основные типы фрезерных станков (вертикально-фрезерные, горизонтально-фрезерные). Назначение, основные узлы.
- 7) Методика определения основного технологического времени при обработке на фрезерных станках.
- Тема 6. Технологические возможности методов обработки на чистовых операциях
 - 1) Какое назначение шлифованных станков?

- 2) Какие существуют виды шлифовальных станков? Основные узлы и виды работ, выполняемых на шлифовальных станках.
 - 3) Как классифицируется абразивный режущий инструмент?
 - 4) Какие существуют элементы режима резания при шлифовании?
- 5) Методика определения основного технологического времени при шлифовании
- 6) Какие виды движений совершает шлифовальный круг при плоском шлифовании периферией шлифовального круга?
- 7) За счет чего достигается малое значение параметра шероховатости при шлифовании?
- Teмa 7. Технологические возможности станков зубообрабатывающей группы
 - 1) Обработка на станках зубообрабатывающей группы. Виды работ.
- 2) Какой режущий инструмент используется на станках зубообрабатывающей группы?
- 3) Какие конструктивные элементы зубообрабатывающего инструмента?
- 4) Какие существуют элементы режима резания при обработке на зубообрабатывающих станках?
- 5) Какие существуют движения резания при обработке на зубообрабатывающих станках.
- 6) Какие типы зубообрабатывающих станков существуют? Назначение, основные узлы.
- 7) Какая методика определения основного технологического времени при обработке на зубообрабатывающих станках?

Тема 8. Понятие о служебном назначении изделия (детали)

- 1) Что понимается под служебным назначением детали?
- 2) Что называется основной поверхностью?
- 3) Что называется вспомогательной поверхностью?
- 4) Что называется исполнительной поверхностью?
- 5) Что называется свободной поверхностью?
- 6) Какие факторы влияют на качество детали?
- 7) Какие два направления анализа соответствия служебному назначению детали существуют?
- 8) Что понимается под качественной стороной оценки служебного назначения детали?
- 9) Что понимается под количественной стороной оценки служебного назначения детали?
 - 10) Что понимают под технологичностью конструкции детали?

6.2.3 Вопросы для подготовки к тестовому коллоквиуму 1

- 1) Что называется технологическим процессом?
- 2) Что называется производственным процессом?
- 3) Что называется заготовкой?
- 4) Что называется деталью?
- 5) Что называется изделием?
- 6) Что такое программа выпуска?
- 7) Что называется величиной серии?
- 8) Какое оборудование применяется для единичного типа производства?
 - 9) Какое оборудование применяют для массового типа производства?
 - 10) Какие существуют типы производства?
- 11) Какое оборудование применяется для единичного типа производства?
 - 12) Что называют обработкой конструкционных материалов резанием?
 - 13) Что называется припуском?
 - 14) Что обеспечивает рабочее движение станка?
 - 15) Как классифицируется рабочее движение станка?
 - 16) Что обеспечивает движение подач?
 - 17) Что обеспечивает установочное движение в станке?
 - 18) Как классифицируются движения рабочих органов станка?
 - 19) Что называется обработанной поверхностью?
 - 20) Что называется обрабатываемой поверхностью?
 - 21) Что называется поверхностью резания?
 - 22) Что называется глубиной резания?
- 23) Как определяется глубина резания при точении цилиндрической поверхности режущим инструментом?
 - 24) Что называется скоростью резания?
 - 25) Как определяется скорость резания?
 - 26) Что называется шириной срезаемого слоя металла?
 - 27) Что называется толщиной срезаемого слоя металла?
 - 28) От чего зависит вид получаемой стружки?
 - 29) Что представляет собой сливной вид стружки?
 - 30) Что представляет собой стружка "надлома"?
 - 31) Что такое износ режущего инструмента?
 - 32) Как классифицируются виды износа режущего инструмента?
- 33) Какой вид износа принят за критерий "затупления" режущего инструмента?
 - 34) Что влияет на виды износа режущего инструмента?

- 35) Почему за критерий "затупления" режущего инструмента принят износ по задней поверхности?
- 36) Как классифицируются металлорежущие станки по уровню специализации?
- 37) Как классифицируются металлорежущие станки по степени автоматизации?
 - 38) К какой группе классификации относятся станки "автоматы"?
 - 39) Как классифицируются металлорежущие станки по точности?
 - 40) Как классифицируются металлорежущие станки по массе?
- 41) Как классифицируются металлорежущие станки по технологическим признакам?
- 42) В зависимости от вида обработки, на сколько групп делится металлорежущие станки?
- 43) Что обозначает первая цифра шифра классификации металлорежущих станков?
- 44) Что обозначает вторая цифра шифра классификации металлорежущих станков?
- 45) Что обозначает третья или третья и четвертая цифры классификации металлорежущих станков?
 - 46) Как называется сила Р_z?
 - 47) Как называется сила Р_v?
 - 48) Как называется сила Р_х?
 - 49) Какие основные узлы есть токарно-винторезного станка?
 - 50) Какие виды работ, выполняют на токарных станках?
 - 51) Какой режущий инструмент, используется на токарных станках?
 - 52) Как классифицируются резцы по назначению?
 - 53) Как классифицируются резцы по характеру обработки.
 - 54) Какие конструктивные элементы резца?
 - 55) Как классифицируются резцы по конструкции?
 - 56) Классификация резцов по виду сечения державки.
- 57) Как классифицируются резцы по расположению главной режущей кромки?
 - 58) Какое применение резцов различных типов?
- 59) Какие элементы режима резания существуют при обработке на токарных станках?
 - 60) Какие движения резания при точении?
- 61) Как определяется, основное технологическое временя при обработке на токарных станках?
 - 62) Какие существуют поверхности, на заготовке при точении?

6.2.4 Вопросы для подготовки к тестовому коллоквиуму 2

- 1) Что понимают под сверлением?
- 2) Что понимают под рассверливанием?
- 3) Что понимают под зенкерование?
- 4) Что совершает главное движение резания и движение подач при сверлении отверстий на вертикально-сверлильном станке?
 - 5) Какие виды работ, выполняются на сверлильном станке?
 - 6) Какие основные конструктивные элементы есть у сверла?
 - 7) Какое назначение направляющей части сверла?
 - 8) Какие конструктивные элементы режущей части есть у сверла?
- 9) Какие элементы режима резания при сверлении на вертикальносверлильном станке?
 - 10) Чему равна глубина резания при сверлении?
 - 11) Чему равна глубина резания при зенкеровании?
 - 12) От чего зависит величина врезания инструмента при сверлении?
- 13) Какое движение сообщается заготовке при обработке на вертикально-сверлильном станке?
 - 14) Что называется встречным фрезерованием?
 - 15) Что называется попутным фрезерованием?
- 16) Как определяется толщина срезаемого слоя металла при встречном фрезеровании?
- 17). Чему равна толщина срезаемого слоя металла при попутном фрезеровании?
 - 18) Чему равна глубина резания при фрезеровании?
 - 19) Что определяет подача на зуб при фрезеровании?
 - 20) Что определяет оборотная подача при фрезеровании?
 - 21) Что определяет минутная подача при фрезеровании?
 - 22) Что называется шириной фрезерования?
- 23) Какой тип фрезы необходимо выбрать при фрезеровании вертикальной плоскости на горизонтально-фрезерном станке?
- 24) Какой тип фрезы необходимо выбрать при фрезеровании горизонтальной плоскости на горизонтально-фрезерном станке?
- 25) Какой тип фрезы необходимо выбрать при фрезеровании горизонтальной плоскости на вертикально-фрезерном станке?
- 26) Что совершает главное движение резания и движение подач при фрезеровании горизонтальной плоскости на горизонтально-фрезерном станке?
- 27) Что совершает главное движение резания и движение подач при фрезеровании концевой фрезой уступа на вертикально-фрезерном станке?

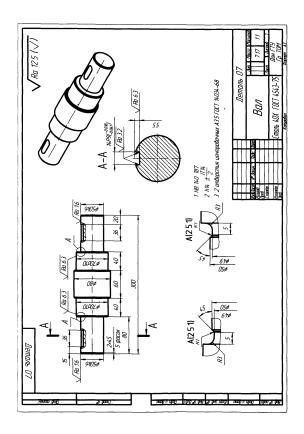
- 28) Что включает в себя рабочая часть сверла?
- 29) Какое назначение хвостовика спирального сверла?
- 30) Какое назначение центровочного сверла?
- 31) Как классифицируются сверла по конструкции?
- 32) Чем зенкер отличается от сверла?
- 33) Какой используется режущий инструмент для нарезания резьбы на вертикально-сверлильным станком?
 - 34) Какое назначение направляющей части у зенковок?
 - 35) Что понимается под развертыванием?
- 36) Что называется толщиной срезаемого слоя металла при фрезеровании?
 - 37) Что называется скоростью резания при фрезеровании?
 - 38) Какое назначение фасонных фрез?
 - 39) Какое назначение дисковых фрез?
- 40) На станках, какой группы обрабатываются шпоночные пазы на валу?
 - 41) Какие основные узлы горизонтально-фрезерного станка?
- 42) Где находится коробка скоростей у горизонтально-фрезерного станка?
 - 43) Какие виды подач совершает стол вертикально-фрезерного станка?
 - 44) Какое назначение подвески горизонтально-фрезерного станка?
 - 45) Где находится коробка подач горизонтально-фрезерного станка?
 - 46) Как располагается ось шпинделя вертикально-фрезерного станка?
- 47) Какое движение совершает заготовка при круговом наружном шлифовании с продольным движение подачи?
- 48) Какое движение совершает шлифовальный круг при круговом наружном шлифовании с продольным движение подачи?
- 49) Какое движение совершает заготовка при круговом внутреннем шлифовании с продольным движение подачи?
- 50) Какое движение совершает шлифовальный круг при круговом внутреннем шлифовании с продольным движение подачи?
- 51) Какое движение совершает заготовка при круговом наружном шлифовании методом врезания?
- 52) Какое движение совершает шлифовальный круг при круговом наружном шлифовании методом врезания?
 - 53) Когда используется врезное шлифование?
 - 54) Когда применяется шлифование внутренних поверхностей?
- 55) От чего зависит длина хода стола шлифовального станка при обработке на проход?

- 56) Чему равна величина вертикальной подачи шлифовального круга при круговом шлифовании?
- 57) Что относится к режиму резания при круговом шлифовании методом продольной подачи?
- 58) Что относится к режиму резания при круговом шлифовании методом врезания?
 - 59) Что относится к режиму резания при плоском шлифовании
- 60) В чем измеряется продольная подача заготовки при плоском шлифовании?
- 61) В чем измеряется поперечная подача заготовки при плоском шлифовании?
- 62) В чем измеряется продольная подача заготовки при круговом шлифовании?
- 63) Чему равна длина обработки при круговом шлифовании методом врезания?
- 64) Какие виды движений совершает шлифовальный круг при плоском шлифовании периферией шлифовального круга?
 - 65) Как расположены абразивные зерна в шлифовальном круге?
- 66) За счет чего достигается малое значение параметра шероховатости при шлифовании?

6.2.5 Вопросы для подготовки к зачету

- 1) Что характеризует область применения процесса резания?
- 2) Что относится к основным терминам и понятиям при резании?
- 3) Какая классификация движения рабочих органов станков?
- 4) Какие методы формообразования поверхностей?
- 5) Какие существуют элементы режимов резания и сечение срезаемого слоя металла?
 - 6) Какие основные элементы схемы процесса резания?
 - 7) Какие существуют типы стружки, усадка стружки?
 - 8) Какие явления сопровождают процесс нароста?
- 9) Какие существуют силы резания при точении, равнодействующая сил резания?
- 10) Что подразумевает износ режущего инструмента, Виды износа. критерий "затупления" режущего инструмента?
- 11) Какая существует классификация металлорежущих станков по степени универсальности, автоматизации, точности, технологическим признакам? Как обозначаются металлорежущие станки?
- 12) Какие существуют типы станков токарной группы, основные узлы и виды работ, которые можно выполнять на токарно-винторезном станке?

- 13) Какой режущий инструмент, используется на токарно-винторезном станке, классификация режущего инструмента, режимы резания?
- 14) Какая методика определения основного технологического времени при обработке на токарном станке?
- 15) Какие существуют сверлильные станки, назначение, виды работ, выполняемых на сверлильных станках?
 - 16) Какой режущий инструмент, используется при сверлении?
 - 17) Как классифицируются сверла, их конструктивные элементы?
- 18) Какая методика определения основного технологического времени при обработке на сверлильных станках?
- 19) Какие существуют режимы резания при обработке на сверлильных станках?
- 20) Какие особенности обработки на шлифовальных станках, назначение обработки шлифованием?
- 21) Какие виды шлифовальных станков существуют, основные узлы и виды работ, которые можно выполнять на шлифовальных станках?
 - 22) Как классифицируется абразивный режущий инструмент?
 - 23) Какие существуют режимы резания при шлифовании?
 - 24) Какие существуют виды фрезерования?
- 25) Какие виды работ, которые можно выполнять на фрезерных станках?
 - 26) Какой существует режущий инструмент при фрезеровании?
 - 27) Какие элементы режима резания при фрезеровании?
- 28) В чем заключается методика определения основного технологического времени при обработке на фрезерных станках?
 - 29) Какие факторы, влияющие на точность детали?
 - 30) Как характеризуются показатели точности детали?


6 семестр

6.3.1 Тематика и содержание заданий для подготовки к контрольным работам и текущему контролю успеваемости

Типовое задание к выполнению практической работы.

Для выданного чертежа детали «Вал»:

- провести анализ служебного назначения чертежа детали;
- выбрать метод получения заготовки;
- выбрать оборудование и инструмент для обработки детали;
- выбрать припуски на поверхности детали;
- рассчитать аналитически режимы резания на переход;
- заполнить комплект технологической документации на операцию

Контрольная работа (заочная форма обучения)

В контрольную работу, которую должны выполнить студенты заочного обучения, входит теоретический вопрос и практическое задание.

Список теоретических вопросов для контрольной работы

- 1) Какие основные понятия и термины технологии машиностроения знаете?
 - 2) Что понимается под служебным назначением детали?
 - 3) Что понимается под качеством изделия?
 - 4) Что понимается под точностью детали?

- 5) Как влияют режимы резания на качество обработанной поверхности?
 - 6) Как определяется определенность и неопределенность базирования?
- 7) Что понимается под сборочными, технологическими и конструкторскими базами?
- 8) Какие три метода получения и измерения размеров (общие положения) знаете?
 - 9) В чем заключается цепной метод получения и измерения размеров?
- 10) В чем заключается комбинированный метод получения и измерения размеров?
 - 11) Какой состав штучного времени на операцию?
 - 12) Методика определения припуска на механическую обработку?
- 13) Какие поверхности и геометрические параметры режущих лезвийных инструментов?
 - 14) Что входит в состав операции технологического процесса?
 - 15) Что входит в состав штучного времени механической обработки?
- 16) Что понимают под глубиной резания? Какие особенности определения глубины резания для различных видов обработки?
 - 17) В чем заключается определение вспомогательного времени?
 - 18) Какие два вида связи между поверхностями существуют?
 - 19) Какая структура подготовительно-заключительного времени?
 - 20) Какие виды поверхностей существуют у детали?
 - 21) Что входит в состав штучного времени?
 - 22) Какие факторы влияют на выбор метода получения заготовки?
- 23) Какой комплект баз существует при базировании призматических деталей?
- 24) От чего зависит определение необходимого количества технологических переходов?
- 25) Как классифицируются базы по числу лишаемых степеней свободы?
 - 26) Что входит в состав операционного времени?
- 27) Какой комплект баз существует при базировании цилиндрических деталей?
 - 28) Что входит в комплект технологической документации?
 - 29) Как классифицируются базы по назначению?
- 30) Какие три вида отклонений поверхности деталей от их геометрических форм существует?

Практическое задание на контрольную работу (заочная форма обучения)

Типовое задание к выполнению практической работы.

Для выданного чертежа детали:

- провести анализ служебного назначения чертежа детали;
- выбрать метод получения заготовки;
- выбрать оборудование и инструмент для обработки детали;
- выбрать припуски на поверхности детали;
- рассчитать аналитически режимы резания на переход;
- заполнить комплект технологической документации на операцию

6.3.2 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Тема 9. Качество изделия, система показателей качества изделия

- 1) Что понимают под качеством изделия?
- 2) Какая система показателей качества существует?
- 3) Какие основные виды связей между поверхностями деталей машин существуют?
 - 4) Что понимают под точностью обработки?
- 5) Как влияют требования к точности на построение технологического процесса ее изготовления?

Тема 10. Параметры оценки точности: точность размеров, точность формы, точность взаимного положения поверхностей

- 1) Чем характеризуется точность размеров?
- 2) Чем характеризуется точность формы?
- 3) Чем характеризуется точность взаимного положения поверхностей?
- 4) Сколько методов существует для обеспечения точности обработки детали?
 - 5) Какие основные причины возникновения погрешности обработки?

Tema 11. Теория базирования деталей машин как основа обеспечения точности

- 1) Как классифицируются базы по числу лишаемых степеней свободы?
- 2) Что понимается под базированием?
- 3) Что понимается под базой?
- 4) Скольких степеней свободы надо лишить заготовку, чтобы ее забазировать?
 - 5) Скольких степеней свободы лишает заготовку установочная база?
 - 6) Скольких степеней свободы лишает заготовку направляющая база?
 - 7) Скольких степеней свободы лишает заготовку опорная база?

8) Как классифицируются базы по назначению?

Тема 12. Факторы, влияющие на точность обработки

- 1) Какие источники, вызывают появление погрешностей механической обработки?
 - 2) Как определить суммарную погрешность обработки?
 - 3) Что относится к суммарной погрешности обработки?
 - 4) Какие виды износа режущего инструмента существуют?
 - 5) Что понимают под деформацией технологической системы?

Тема 13. Понятие припусков и напусков

- 1) Что называется припуском?
- 2) Что называется операционным припуском?
- 3) Что называется общим припуском?
- 4) Что называется напуском?
- 5) Какие особенности опытно-статистического метода определения припуска?
 - 6) Какие особенности табличного метода определения припуска?

Тема 14. Основы нормирования технологических процессов

- 1) Что называется нормой времени обработки детали?
- 2) Что называется штучным временем?
- 3) Что называется штучно-калькуляционным временем?
- 4) Что называется вспомогательным временем?
- 5) Что входит в состав штучного времени механической обработки?

Тема 15. Исходные данные для проектирования технологического процесса изготовления деталей

- 1) Что используют при разработке технологического процесса изготовления деталей?
- 2) Что включает в себя разработка маршрутной технологии обработки детали?
- 3) Что включает в себя разработка операционной технологии обработки детали?
 - 4) Что понимают под типовым технологическим процессом?
 - 5) Что понимают под групповым технологическим процессом?

Тема 16. Система технологической документации для разработки технологических процессов обработки деталей

- 1) Какое назначение технологической документации?
- 2) Что представляет собой маршрутная карта?
- 3) Что представляет собой операционная карта?
- 4) Что представляет собой операционная карта контроля?
- 5) Что представляет собой карта эскизов?

6.3.3 Вопросы для подготовки к тестовому коллоквиуму 1

- 1) Какие факторы влияют на качество деталей?
- 2) Что понимают под точностью детали?
- 3) Что понимают под номинальным размером?
- 4) Что понимают под действительным размером?
- 5) Какие существуют показатели точности детали?
- 6) Что понимают под служебным назначением детали?
- 7) Какие поверхности существуют, исходя из служебного назначения детали?
 - 8) Что понимают под качеством изделия?
 - 9) Какие существуют показатели качества изделия?
- 10) Какие основные виды связей между поверхностями деталей машин существуют
 - 11) Скольких степеней свободы лишает заготовку установочная база?
 - 12) Скольких степеней свободы лишает заготовку направляющая база?
 - 13) Скольких степеней свободы лишает заготовку опорная база?
 - 14) Как классифицируются базы по назначению?
- 15) Как классифицируются базы по числу лишаемых степеней свободы?
 - 16) Что понимается под базированием?
 - 17) Что понимается под базой?
- 18) Скольких степеней свободы надо лишить заготовку, чтобы ее забазировать?
- 19) Сколько методов существует для обеспечения точности обработки детали?
 - 20) Какие основные причины возникновения погрешности обработки?
 - 21) Какие виды износа режущего инструмента существуют?
 - 22) Что понимают под деформацией технологической системы?
- 23) Как влияют режимы резания на качество обработанной поверхности?
 - 24) Как определяется определенность и неопределенность базирования?
 - 25) Что понимается под сборочными, технологическими и конструкторскими базами?

6.3.4 Вопросы для подготовки к тестовому коллоквиуму 2

- 1) Что называется припуском?
- 2) Что называется операционным припуском?
- 3) Что называется общим припуском?

- 4) Что называется напуском?
- 5) Какие особенности опытно-статистического метода определения припуска?
 - 6) Какие особенности табличного метода определения припуска?
 - 7) Что называется нормой времени обработки детали?
 - 8) Что называется штучным временем?
 - 9) Что называется штучно-калькуляционным временем?
 - 10) Что называется вспомогательным временем?
- 11) Что используют при разработке технологического процесса изготовления деталей?
- 12) Что включает в себя разработка маршрутной технологии обработки детали?
- 13) Что включает в себя разработка операционной технологии обработки детали?
 - 14) Что понимают под типовым технологическим процессом?
 - 15) Что понимают под групповым технологическим процессом?
 - 16) Какое назначение технологической документации?
 - 17) Что представляет собой маршрутная карта?
 - 18) Что представляет собой операционная карта?
 - 19) Что представляет собой операционная карта контроля?
 - 20) Что представляет собой карта эскизов?
 - 21) Что входит в комплект технологической документации?
 - 22) Что входит в состав операции технологического процесса?
- 23) Какая последовательность разработки технологического процесса обработки детали?
- 24) Какая методика выбора необходимого количества технологических переходов для обработки элементарных поверхностей существует?
 - 25) Какие факторы влияют на формирование операций?

6.3.5 Вопросы для подготовки к экзамену

- 1) Какие основные понятия и термины технологии машиностроения существуют?
 - 2) Что характеризует служебное назначение изделия?
 - 3) Что понимают под качеством изделия?
 - 4) Какие существуют показатели качества изделия?
 - 5) Какие существуют показатели точности детали?
- 6) Какое влияние оказывают режимы резания на качество обработанной поверхности?

- 7) Что понимают под определенностью и неопределенностью базирования?
- 8) Какие основные виды связей между поверхностями деталей машин существуют
 - 9) Скольких степеней свободы лишает заготовку установочная база?
 - 10) Скольких степеней свободы лишает заготовку направляющая база?
 - 11) Скольких степеней свободы лишает заготовку опорная база?
 - 12) Как классифицируются базы по назначению?
- 13) Как классифицируются базы по числу лишаемых степеней свободы?
- 14) Какие методы получения и измерения размеров (общие положения) существуют?
 - 14) В чем сущность цепного метода получения и измерения размеров?
- 15) В чем сущность комбинированного метода получения и измерения размеров?
 - 16) Что входит в состав штучного времени на операцию?
- 17) Какие методы и порядок определения припуска на механическую обработку знаете?
- 18) Какие режущие поверхности и геометрические параметры режущих лезвийных инструментов существуют?
 - 19) Какой состав операции технологического процесса?
 - 20) Какая структура штучного времени механической обработки?
- 21) Какие особенности определения глубины резания для различных видов обработки существует?
 - 22) Что называется вспомогательным временем?
 - 23) Какие два вида связи между поверхностями существует?
 - 24) Что определяет подготовительно-заключительное время?
 - 25) Какие виды поверхностей существует у детали?
 - 26) Что определяет штучное время?
- 27) Что определяют факторы, влияющие на выбор метода получения заготовки?
 - 28) Скольких степеней свободы лишает заготовку установочная база?
 - 29) Скольких степеней свободы лишает заготовку направляющая база?
 - 30) Скольких степеней свободы лишает заготовку опорная база?
 - 31) Как классифицируются базы по назначению?
- 32) Как классифицируются базы по числу лишаемых степеней свободы?
 - 33) Что представляет собой маршрутная карта?
 - 34) Что представляет собой операционная карта?

- 35) Что представляет собой операционная карта контроля?
- 36) Что представляет собой карта эскизов?
- 37) Что входит в комплект технологической документации?
- 38) Какая последовательность разработки технологического процесса обработки детали?

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

Тотай А.В. Основы технологии машиностроения : учебник и практикум для вузов / А.В. Тотай [и др.] ; под общей редакцией А. В.Тотая. — 2-е изд., испр. и доп. — Москва : Издательство Юрайт, 2024. — 300 с. — (Высшее образование). — ISBN 978-5-534-12954-0. — Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/536256 (дата обращения: 14.08.2024). — Текст : электронный.

2. Афанасьев А. А. Технология конструкционных материалов: учебник / А.А. Афанасьев, А.А. Погонин. — 2-е изд.,стереотип. — М: ИНФРА—М, 2021 — 656 с. — (Высшее образование: Бакалавриат). ISBN 978-5-16-013399-7. — URL: https://znanium.com/catalog/product/1190681 — (дата обращения 14.08.2024). — Текст: электронный.

Дополнительная литература

- 1. Черепахин А.А. Технологические процессы в машиностроении : учебное пособие / А.А. Черепахин, В.А. Кузнецов. 3-е изд., стер. Санкт-Петербург : Лань, 2019 184 с. ISBN 978-5-8114-4303-1.
- URL: https://e.lanbook.com/book/118618 (дата обращения 14.08.2024).— Текст : электронный.
- 2. Технология конструкционных материалов : учебное пособие / под ред. М.А. Шатерина. Санкт-Петербург : Политехника, 2012 596 с. ISBN 5-7325-0734-5.
- URL: https://www.studentlibrary.ru/book/ISBN5732507345.html (дата обращения 14.08.2024).— Текст : электронный.

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт. Алчевск. URL: library.dstu.education. Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст : электронный.

- 3. Консультант студента : электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст : электронный.
- 4. Университетская библиотека онлайн : электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст : электронный.
- 5. IPR BOOKS : электронно-библиотечная система. Красногорск. URL: http://www.iprbookshop.ru/. Текст : электронный.
- 6. Федеральная служба по экологическому, технологическому и атомному надзору (Ростехнадзор) : официальный сайт. Москва. https://www.gosnadzor.ru/. Текст : электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местоположение) учебных кабинетов
Специальные помещения:	
Мультимедийная аудитория. (50 посадочных мест),	ауд. <u>103</u> корп.
оборудованная специализированной (учебной) мебелью (скамья	<u>третий</u>
учебная – 50 шт., стол компьютерный – 1 шт., доска аудиторная–	
3 шт.), АРМ учебное ПК (монитор + системный блок),	
мультимедийный видеопроектор – 1 шт., широкоформатный	
экран.	
Оборудование:	
– станок токарно-винторезный мод. 1В625 с УЦИ;	ауд. <u>102</u> корп.
– станок токарно-винторезный с ЧПУ мод. 16К30Ф353;	<u>третий</u>
– станок радиально-сверлильный 2А912;	
– станок горизонтально-фрезерный мод. 6M81.	
Инструмент:	
Штангенциркули ШЦ-І, ШЦ-ІІ;	
Микрометры МК и МР;	
Аудитория для проведения лабораторных занятий, для	ауд. <u>303</u> корп.
самостоятельной работы.	<u>третий</u>
Лаборатория САПР (20 посадочных мест), оборудованная	ауд. <u>307</u> корп.
учебной мебелью, 10 персональных компьютеров с	<u>третий</u>
неограниченным доступом к сети Интернет, включая доступ к	
ЭБС, принтерами.	

Лист согласования РПД

Разработал		
старший преподаватель кафедры		
технологии и организации		
<u>машиностроительного производства</u> (должность)	(подпись)	<u>Желтобрюхова</u> (Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
Заведующий кафедрой		
технологии и организации	3	*
машиностроительного производства	(подпись)	<u>.М.Зинченко</u> (Ф.И.О.)
Протокол № 1 заседания кафедры		
технологии и организации		
машиностроительного производства	от 28.	<u>08</u> 20 <u>24</u> г.
И.о. декана факультета горно-металлургич промышленности и строительства	еской О. Д. С	О.В. Князьков (Ф.И.О.)
Согласовано		
Председатель методической комиссии по направлению подготовки 15.03.02 Технологические машины и обору («Металлургическое оборудование»)	/дование <u>Н</u>	І.А. <u>Денисова</u> (Ф.И.О.)
Начальник учебно-методического центра	And C	О.А. Коваленко

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения			
изменений			
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:		
Основание:			
Подпись лица, ответственного за внесение изменений			