МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет

информационных технологий и автоматизации

производственных процессов

Кафедра

автоматизированного управления и инновационных технологий

УТВЕРЖДАЮ
И.о. проректора по
учебной работе
Д.В. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Термодинамика и теплотехника

(наименование дисциплины)

15.03.04 Автоматизация технологических процессов и производств (код, наименование направления)

Автоматизированное управление технологическими процессами и

производствами (профиль подготовки)

Квалификация	бакалавр	
_	(бакалавр/специалист/магистр)	
Форма обучения	очная, заочная	
–	(очная/заочная)	

Алчевск, 2024

1 Цели и задачи дисциплины

Цели дисциплины

Задачи изучения дисциплины. Изучение физической сущности основных законов термодинамики, принципов преобразования теплоты в работу; изучение основных термодинамических процессов, их характеристик, взаимосвязи между внутренней теплотой работой; параметрами, энергией, И изучение свойств термодинамических циклов тепловых машин, тепловой эффективности; освоение навыков расчета и анализа эффективности теплотехнических устройств и п. Изучение закономерностей процессов и явлений, происходящих в тепловых агрегатах и различных теплообменных аппаратах, широко применяемых во многих отраслях промышленности, в том числе и на предприятиях черной металлургии, а также теоретическая и практическая подготовка специалистов по методам получения, преобразования, максимальной экономии передачи И использования теплоты В целях топливноэкономических материалов, интенсификации ресурсов И технологических процессов и использования вторичных энергоресурсов, защиты окружающей среды.роцессов.

Дисциплина нацелена на формирование общепрофессиональных компетенций ОПК-1.1, ОПК-1.3 выпускника.

2 Место дисциплины в структуре образовательной программы

Логико-структурный анализ дисциплины – курс входит в часть Блока 1, формируемую участниками образовательных отношений дисциплин Б1.В.02 15.03.04 «Автоматизация подготовки студентов ПО направлению технологических бакалаврская процессов И производств» программа: «Автоматизированное управление технологическими процессами производствами».

Дисциплина реализуется кафедрой автоматизированного управления и инновационных технологий.

Входные знания студента базируются на изученных дисциплинах: «Математика», «Физика», «Химия».

Дисциплина является основой для выполнения НИР и ВКР.

Общая трудоемкость освоения дисциплины для очной формы обучения составляет 5 зачетных единицы, 180 ак.ч. Программой дисциплины предусмотрены лекционные (36 ак.ч.), лабораторные (54 ак.ч.) занятия и самостоятельная работа студента (90 ак.ч.).

Общая трудоемкость освоения дисциплины для заочной формы обучения составляет 3 зачетные единицы, 180 ак.ч. Программой дисциплины предусмотрены лекционные (6 ак.ч.), лабораторные (6 ак.ч.) занятия и самостоятельная работа студента (168 ак.ч.).

Дисциплина изучается на 2 курсе в 3 семестре для очной и заочной формы. Форма промежуточной аттестации – экзамен.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Термодинамика и теплотехника» направлен на формирование компетенций, представленных в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

	Код	
Содержание	компетен-	Код и наименование индикатора
компетенции	ции по	достижения компетенции
	ОПОП ВО	
	Общег	профессиональные компетенции
Применять		ОПК-1.1. Знать основные понятия и законы естественных
естественнонауч		наук
ные и		ОПК-1.3 Уметь применять естественнонаучные и
общеинженерные		общеинженерные знания в профессиональной деятельности
знания, методы	ОПК-1	
математического	OHK-1	
анализа, и		
моделирования в		
профессионально		
й деятельности		

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 5 зачётные единицы, 180 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к лабораторным занятиям, текущему контролю, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам 3	
Аудиторная работа, в том числе:	90	90	
Лекции (Л)	36	36	
Практические занятия (ПЗ)	_	_	
Лабораторные работы (ЛР)	54	54	
Курсовая работа/курсовой проект	_	_	
Самостоятельная работа студентов (СРС), в том числе:	90	90	
Подготовка к лекциям	8	8	
Подготовка к лабораторным работам	20	20	
Подготовка к практическим занятиям / семинарам	_	_	
Расчетно-графическая работа (РГР)	_	_	
Реферат (индивидуальное задание)		_	
Домашнее задание	_	_	
Подготовка к контрольной работе	_	_	
Подготовка к коллоквиумам	14	14	
Аналитический информационный поиск	_	_	
Работа в библиотеке	22	22	
Подготовка к экзамену	26	26	
Промежуточная аттестация – экзамен (Э)	Э	Э	
Общая трудоемкость дисциплины			
ак.ч.	180	180	
3.e.	5	5	

5 Содержание дисциплины

С целью освоения компетенций, приведенных в п.3 дисциплина разбита на 5 тем:

- тема 1 (Техническая термодинамика);
- тема 2 (Законы и уравнения состояния идеальных газов. Реальные газы);
- тема 3 (Первый закон термодинамики. Теплоемкость газов. Энтропия);
- тема 4 (Второй закон термодинамики);
- тема 5 (Основные положения теплопроводности);
- тема 6 (Конвективный теплообмен);
- тема 7 (Теплообмен излучением);
- тема 8 (Сложный теплообмен).

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

			1	1		1	1
No	Наименование		Трудо-	Темы	Трудо-	Темы	Трудо
п/п	темы (раздела)	Содержание лекционных занятий	емкость	практических	емкость	лабораторных	емкость
	дисциплины		в ак.ч.	занятий	в ак.ч.	работ	в ак.ч.
1	Техническая	Введение. Цель и задачи курса.				Определение	
	термодинамика	Предмет технической термодинамики и ее				параметров	
		задачи. Основные понятия и определения в				газа в	
		технической термодинамике.				начальном и	
		Термодинамическая система.	4	_	_	конечном	8
		Термодинамический процесс. Рабочее тело	_			состояниях,	0
		Обратимые и необратимые процессы.				изменение	
		Термодинамическое равновесие. Теплота и				внутренней	
		работа. Основные термодинамические				энергии	
		параметры состояния.					
2	Законы и	Законы идеальных газов. Закон-Бойля				Определение	
	уравнения	-Мариотта, Гей-Люссака, Шарля, Авогадро.				изобарной	
	состояния	Газовая и универсальная газовая постоянная.				теплоемкости	
	идеальных	Газовые смеси идеальных газов. Газовая	1			газов	6
	газов. Реальные	постоянная и средняя молекулярная масса	7	_	_		0
	газы	газовой смеси. Свойства реальных газов.					
		Уравнение состояния для реальных газов Вук					
		аловича -Новикова.					
3	Первый закон	Первый закон термодинамики.				Определение	
	термодинамики.	Дифференциальные уравнения первого закона.				показателя	
	Теплоемкость	Внутренняя энергия. Энтальпия. Определение				адиабаты	
	газов. Энтропия	изменения внутренней энергии и энтальпии в				воздуха	
		различных процессах. Понятие о теплоемкости.	6	_	_		6
		Изобарная и изохорная теплоемкости и связь					
		между ними. Определение теплоемкостей.					
		Понятие об энтропии. Определение изменения					
		энтропии в различных процессах.					

Продолжение таблицы 3

TIPO,	должение таоли	(DI 5						
No	Наименование		Трудо-	Темы	Трудо-	Темы	Трудо	
п/	темы (раздела)	Содержание лекционных занятий	емкость	практических	емкость	лабораторных	емкость	
П	дисциплины		в ак.ч.	занятий	в ак.ч.	работ	в ак.ч.	
4	Второй закон	Основные положения второго закона.				Определение	6	
	термодинамики	Формулировка второго закона (Клаузиуса,				степени		
		Томсона) Термический КПД и холодильный				сухости		
		коэффициент. Круговые циклы. Прямые и	6			влажного		
		обратные циклы. Обратимые циклы Карно в				насыщенного		
		диаграммах Рv и Тs. Термический КПД цикла.				пара		
		Теорема Карно.						
5	Основные	Передача тепла теплопроводностью.				Определение		
	положения	Стационарная теплопроводность. Основной закон				параметров		
	теплопроводнос	теплопроводности (закон Фурье). Передача тепла	4	_	_	влажного	6	
	ТИ	теплопроводностью через однослойную и				воздуха		
		многослойную плоскую стенку.						
6	Конвективный	Основы конвективного теплообмена.				Определение		
	теплообмен	Естественная и вынужденная конвекция. Закон				Коэффициент		
		Ньютона-Рихмана. Критериальное уравнение	4			a	6	
		конвективного теплообмена при вынужденном и				теплопроводн		
		свободном движении газов				ости		
7	Теплообмен	Теплообмен излучением. Законы лучистого				Исследование		
	излучениям	теплообмена: Планка, Вина, Стефана - Больцмана,	4			нагрева	8	
		Кирхгофа и Ламберта. Излучение газов.				тонкого тела		
8	Сложный	Сложный теплообмен конвекцией и излучением				Исследование		
	теплообмен	через плоскую стенку. Сложный теплообмен	4			нагрева	8	
		излучением и конвекцией. Суммарный	'			массивного		
		коэффициент теплопередачи				тела		
	Всего аудиторных часов		36	_	_		54	

9

Таблица 4— Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

No	Наименование		Трудоем	Темы	Трудоем	Темы	Трудое
п/	темы (раздела)	Содержание лекционных занятий	кость	практических	кость	лабораторных	мкость
П	дисциплины	-	в ак.ч.	занятий	в ак.ч.	работ	в ак.ч.
3	Первый закон термодинамики. Теплоемкость газов. Энтропия	Первый закон термодинамики. Дифференциальные уравнения первого закона. Внутренняя энергия. Энтальпия. Определение изменения внутренней энергии и энтальпии в различных процессах. Понятие о теплоемкости.	2	_	_	Определение параметров газа в начальном и конечном состояниях, изменение внутренней энергии	6
4	Второй закон термодинамики	Основные положения второго закона. Формулировка второго закона (Клаузиуса, Томсона) Термический КПД и холодильный коэффициент. Круговые циклы. Прямые и обратные циклы. Обратимые циклы Карно в диаграммах Рv и Тs. Термический КПД цикла. Теорема Карно.	2	_	_	_	_
5	Основные положения теплопроводнос ти	Передача тепла теплопроводностью. Стационарная теплопроводность. Основной закон теплопроводности (закон Фурье). Передача тепла теплопроводностью через однослойную и многослойную плоскую стенку.	2	_	_	_	_
	Всего аудиторных часов		6		_	_	6

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
ОПК-1.1, ОПК-1.3	Экзамен	Комплект контролирующих материалов для Экзамена

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- лабораторные работы всего 50 баллов;
- коллоквиумы (два) всего 50 баллов.

Экзамен проставляется автоматически, если студент набрал по текущей работе не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60 % от максимального.

Экзамен по дисциплине «Термодинамика и теплотехника» проводится в форме устного опроса по вопросам, представленным ниже (п.п. 6.5). Билет включает 2 вопроса из приводимого ниже перечня. Билеты на экзамен составляются таким образом, чтобы каждый вопрос относился к различному модулю. Ответ на каждый вопрос оценивается из 50 баллов. Студент на экзамене может набрать до 100 баллов.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашнее задание

Домашнее задание не предусмотрено

6.3 Темы для рефератов (презентаций) – индивидуальное задание Рефераты не предусмотрены.

6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Тема 1. Техническая термодинамика.

- 1) Что понимается под термодинамической системой?
- 2) Каким числом независимых параметров характеризуется состояние рабочего тела?
 - 3) Какое состояние называется равновесным, какое неравновесным?
 - 4) Что называется термодинамическим процессом?
 - 5) Какие процессы называются равновесными, какие неравновесными?
 - 6) Какие процессы называются обратимыми, какие необратимыми?
 - 7) Каковы условия обратимости процессов?
 - Тема 2. Законы и уравнения состояния идеальных газов. Реальные газы.
 - 1) Какое определение парциального объема?
 - 2) Как задают состав смеси идеальных газов?
- 3) Какой вид имеют формулы для вычислений объемной доли, молярной доли, массовой доли смеси?
 - 4) Какие виды теплоемкостей используют в расчетах?
 - 5) Что представляет собой удельная газовая постоянная?

Тема 3. Первый закон термодинамики. Теплоемкость газов. Энтропия.

- 1) Что такое «функция состояния» и «функция процесса»? Приведите примеры этих функций.
- 2) Когда теплота, работа и изменение внутренней энергии считаются положительными и когда отрицательными?
- 3) Почему внутренняя энергия и энтальпия идеального газа зависят только от одного параметра температуры?
- 4) В чем отличие понятий «истинная теплоемкость» и «средняя теплоемкость»?
 - 5) Как с помощью дифференциальных соотношений термодинамики по

известному уравнению состояния определить и, i, s?

- 6) В каких единицах выражаются теплоемкости?
- 7). Что такое истинная теплоемкость?

Тема 4. Второй закон термодинамики.

- 1) Что называется круговым процессом (или циклом)? Какие бывают циклы?
 - 2) Что называется термическим КПД?
 - 3) От каких параметров зависит термический КПД обратимого цикла Карно?
 - 4) Что такое холодильный коэффициент и как он определяется?
 - 5)В чем сущность теоремы Карно?
 - 6) Как определяется максимальная полезная работа рабочего тела?
 - 7) Что такое холодильный коэффициент?

Тема 5. Основные положения теплопроводности.

- 1) Что представляет передача тепла теплопроводностью?
- 2) Что такое стационарная теплопроводность?
- 3) Что такое нестационарная теплопроводность?
- 4) Как описывается основной закон теплопроводности (закон Фурье)?
- 5) Что представляет передача тепла теплопроводностью через однослойную плоскую стенку?
- 6) Что представляет передача тепла теплопроводностью через многослойную плоскую стенку?

Тема 6. Конвективный теплообмен.

- 1) Что такое естественная и вынужденная конвекция?
- 2) Как описывается закон передача тепла конвекцией (закон Ньютона-Рихман)?
- 3) Какой вид имеет критериальное уравнение конвективного теплообмена при свободном движении газов?
- 4) Какой вид имеет критериальное уравнение конвективного теплообмена при вынужденном движении газов?
 - 5) Какие различают виды конвекции?
 - 6) Каков механизм передачи теплоты при ламинарном и турбулентном движениях жидкости?
- 7) Почему для определения коэффициента теплоотдачи применяют теорию подобия?
 - 8) От каких величин зависит коэффициент теплоотдачи?

Тема 7. Теплообмен излучением.

- 1) Что представляет передача тепла излучением?
- 2) Какой вид имеет Планка?
- 3) Какой вид имеет закон Вина?
- 4) Какой вид имеет закон Стефана Больцмана?
- 5) Какой вид имеет закон Кирхгофа?
- 6) В чем особенность излучения газов?
- 7) Что такое степень черноты газов и как ее определить?

Тема 8. Сложный теплообмен

- 1) Как осуществляется расчет сложного теплообмена конвекцией и теплопроводностью?
 - 2) Как рассчитывается сложный теплообмен излучением и конвекцией?
 - 3) Что называется теплопередачей?
 - 4) Каким уравнением описывается передача тепла через стенку?
 - 5) . Что называется коэффициентом теплопередачи?
 - 6) Как получается основное уравнение теплопередачи?

6.5 Вопросы для подготовки к коллоквиумам и экзамену

- 1) Что понимается под термодинамической системой?
- 2) Каким числом независимых параметров характеризуется состояние рабочего тела?
 - 3) Какое состояние называется равновесным, какое неравновесным?
 - 4) Что называется термодинамическим процессом?
 - 5) Какие процессы называются равновесными, какие неравновесными?
 - 6) Какие процессы называются обратимыми, какие необратимыми?
 - 7) Каковы условия обратимости процессов?
 - 8) Какое определение парциального объема?
 - 9) Как задают состав смеси идеальных газов?
- 10) Какой вид имеют формулы для вычислений объемной доли, молярной доли, массовой доли смеси?
 - 11) Какие виды теплоемкостей используют в расчетах?
 - 12) Что представляет собой удельная газовая постоянная?
 - 13) Что такое «функция состояния» и «функция процесса»? Приведите примеры этих функций.
- 14) Когда теплота, работа и изменение внутренней энергии считаются положительными и когда отрицательными?
- 15) Почему внутренняя энергия и энтальпия идеального газа зависят только от одного параметра-температуры?
- 16) В чем отличие понятий «истинная теплоемкость» и «средняя теплоемкость»?
- 17) Как с помощью дифференциальных соотношений термодинамики по известному уравнению состояния определить и, i, s?
 - 18) В каких единицах выражаются теплоемкости?
 - 19). Что такое истинная теплоемкость?
- 20) Что называется круговым процессом (или циклом)? Какие бывают циклы?
 - 21) Что называется термическим КПД?
 - 22) От каких параметров зависит термический КПД обратимого цикла Карно?
 - 23) Что такое холодильный коэффициент и как он определяется?
 - 24)В чем сущность теоремы Карно?
 - 25) Как определяется максимальная полезная работа рабочего тела?
 - 26) Что такое холодильный коэффициент?

- 27) Что представляет передача тепла теплопроводностью?
- 28) Что такое стационарная теплопроводность?
- 29) Что такое нестационарная теплопроводность?
- 30) Как описывается основной закон теплопроводности (закон Фурье)?
- 31) Что представляет передача тепла теплопроводностью через однослойную плоскую стенку?
- 32) Что представляет передача тепла теплопроводностью через многослойную плоскую стенку?
 - 33) Что такое естественная и вынужденная конвекция?
- 34) Как описывается закон передача тепла конвекцией (закон Ньютона-Рихман)?
- 35) Какой вид имеет критериальное уравнение конвективного теплообмена при свободном движении газов?
- 36) Какой вид имеет критериальное уравнение конвективного теплообмена при вынужденном движении газов?
 - 37) Какие различают виды конвекции?
 - 38) Каков механизм передачи теплоты при ламинарном и турбулентном движениях жидкости?
- 39) Почему для определения коэффициента теплоотдачи применяют теорию подобия?
 - 40) От каких величин зависит коэффициент теплоотдачи?
 - 41) Что представляет передача тепла излучением?
 - 42) Какой вид имеет Планка?
 - 43) Какой вид имеет закон Вина?
 - 44) Какой вид имеет закон Стефана Больцмана?
 - 45) Какой вид имеет закон Кирхгофа?
 - 46) В чем особенность излучения газов?
 - 47) Что такое степень черноты газов и как ее определить?
- 48) Как осуществляется расчет сложного теплообмена конвекцией и теплопроводностью?
 - 49) Как рассчитывается сложный теплообмен излучением и конвекцией?
 - 50) Что называется теплопередачей?
 - 51) Каким уравнением описывается передача тепла через стенку?
 - 52) . Что называется коэффициентом теплопередачи?
 - 53) Как получается основное уравнение теплопередачи?

6.6 Примерная тематика курсовых работ

Курсовые работы не предусмотрены.

дисциплины

7.1 Рекомендованная литература

Основная литература

- 1. Кузнецов, А. В. Термодинамика: учебник [текст] / А.В. Кузнецов; под общей редакцией Е.А. Памятных; Министерство науки и высшего образования Российской Федерации, Уральский федеральный университет.— Екатеринбург: Изд-во Урал. ун-та, 2023.— 196 с. https://m.eruditor.one/file/3985721/?ysclid=m8mu5n7y56414871989 (дата обращения: 3.06.2024)
- 2.Дзюзер, В. Я. Теплотехника и тепловая работа печей [Электронный ресурс]: учебное пособие для вузов [текст] / Дзюзер В. Я. 4-е изд., стер. Санкт-Петербург: Лань, 2021. 384 с. https://library.utmn.ru/doc/info?url=https%3A%2F%2Fe.lanbook.com%2Fbook%2F152446 (дата обращения: 5.06.2024)
- 3. Теплотехника: учебное пособие для вузов [текст] / Г. А. Круглов, Р. И. Булгакова, Е. С. Круглова. 4-е изд., стер. Санкт-Петербург: Лань, 2022. 208 с. https://lib.dm.centre.ru/lib/document/gpntb/ESVODT/4cab3cba22fe99a1676dcdbedd3934610/ (дата обращения: 8.06.2024)

Дополнительная литература

- 1. Кириллин, В.А., Сычев, В.В., Шейндлин, А.Е. Техническая термодинамика. [текст] М.: Энергоиздат, 1983. 416 с. https://djvu.online/file/GKZhAcYdnrz4w?ysclid=m8mtjm4ze8846311123 (дата обращения: 16.06.2024)
- 2. Кривандин, В.А. Металлургическая теплотехника.Т1. Теоретические основы [текст] / Кривандин, В.А., Неведомская, И.Н., Кобахидзе, В.В. М.: Металлургия, 1986. 472с. https://bik.sfu-kras.ru/elib/view?id=BOOK1669.02/09/M%2054030423&ysclid=m1ajgy8k8z44181103 (дата обращения: 17.06.2024)
- 3. Манташов А.Т Теплотехника. Часть І Термодинамика и теплопередача [текст]: Учебное пособие. Пермь: Изд-во ПГСХА, 2009 184 с.

<u>https://moodle.dstu.education/pluginfile.php/68284/mod_resource/content/2/</u> <u>Учебное%20пособие%20Термодинамика%20и%20теплопередача.pdf</u> (дата обращения: 14.06.2024)

4. Металлургическая теплотехника. Т.1. Теоретические основы [текст] / Кривандин, В.А., Арутюнов, В.А., Мастрюков, Б.С. Под ред. Кривандина, В.А. — М.: Металлургия, 1986. — 424 с. [Электронный ресурс]. — https://www.centrmag.ru/catalog/product/metallurgicheskaya-teplotehnika-tom-1-

teoreticheskie-osnovy/?ysclid=m1ahsbedna45607025 (дата обращения: 20.06.2024)

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт.— Алчевск. —URL: library.dstu.education.— Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст: электронный.
- 3. Консультант студента: электронно-библиотечная система.— Mосква. URL: http://www.studentlibrary.ru/cgi-bin/mb4x.— Текст: электронный.
- 4. Университетская библиотека онлайн: электронно-библиотечная система.— URL: http://biblioclub.ru/index.php?page=main_ub_red.— Текст: электронный.
- 5. IPR BOOKS: электронно-библиотечная система.—Красногорск. URL: http://www.iprbookshop.ru/. —Текст: электронный.
- 6. ЭБС Издательства "Университетская библиотека онлайн" http://e.lanbook.com/
 - 7. ЭБС Издательства "ЛАНЬ": [сайт]. https://e.lanbook.com/
- 8. Цифровая библиотека IPR SMART: [сайт]. https://www.iprbookshop.ru/
 - 9. Национальная электронная библиотека: [сайт]. https://rusneb.ru/
 - 10. Российская Государственная Библиотека: [сайт]. https://diss.rsl.ru/
- 11. Научная электронная библиотека «КиберЛенинка»: [сайт]. https://cyberleninka.ru/
- 12. Научная электронная библиотека eLIBRARY: [сайт]. https://elibrary.ru/defaultx.asp?/
- 13. Электронная библиотека «Астраханский государственный университет» https://biblio.asu.edu.ru
 - 14. ЭБС «Университетская Библиотека Онлайн» https://biblioclub.ru
- 15. Информационно-библиотечный комплекс «Политех» https://library.spbstu.ru

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО. Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

	Адрес		
Наименование оборудованных учебных кабинетов	(местоположение)		
паименование оборудованных ученных касинетов	учебных		
	кабинетов		
Лекционная. 79.7 м ² ; 50 посадочных мест; столы, стулья,	Аудитория 4306.		
доска классная, огнетушитель.	Лекционные занятия.		
Лаборатория теплотехники. 68.8 м ² ; посадочных мест,	Аудитория 3113.		
лабораторные столы, стулья, доска классная, огнетушитель.	Лабораторные занятия.		

Лист согласования РПД

Разработал Доцент кафедры автоматизированного управления и инновационных технологий (должность)

А.Н. Романчук (Ф.И.О.)

И.о. заведующий кафедрой автоматизированного управления и инновационных технологий

Е.В. Мова

(подпись)

(.О.И.Ф)

Протокол № 1 заседания кафедры автоматизированного управления и инновационных технологий

от 09.07.2024г.

И.о. декана факультета информационных технологий и автоматизации производственных процессов

(подпись)

(Ф.И.О.)

В.В. Дьячкова

Согласовано

Председатель методической комиссии по направлению подготовки 15.03.04 Автоматизация технологических процессов и производств

E.B. N

(подпись

(D N O)

Начальник учебно-методического центра

(подпись)

О.А. <u>Коваленко</u>

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения изменений				
до внесения изменений:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:			
Осног	зание:			
Подпись лица, ответственного за внесение изменений				