Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Вишневский Дмитрий Александрович

Должность: Ректор

Дата подписания: 17.1 ПОТЕРСТВО НА УКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Уникальный программный ключ:

03474917c4d012283e5ad996a48a5e70bf8da057

(МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

информационных технологий и автоматизации Факультет производственных процессов электроники и радиофизики Кафедра

> ТВЕРЖДАЮ И. о. проректора по учебной работе Д.В. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Моделирова	ние устройств СВЧ и оптического диапазонов	
	03.04.03 Радиофизика	
	(код, наименование направления)	
Инженерно	-физические технологии в промышленности	
•	(магистерская программа)	
Квалификация	магистр	
	(бакалавр/специалист/магистр)	
Форма обучения	очная, очно-заочная	
(очная, очно-заочная, заочная)		

1 Цели и задачи изучения дисциплины

Учебная дисциплина «Моделирование устройств СВЧ и оптического диапазонов» позволяет сформировать профессиональные навыки будущего специалиста в области решения различных электродинамических задач путем математического и компьютерного моделирования процессов излучения, распространения, преломления и отражения ЭМВ.

Обучающиеся по направлению подготовки 03.04.03 «Радиофизика», магистерская программа «Инженерно-физические технологии в промышленности» при изучении дисциплины «Моделирование устройств СВЧ и оптического диапазонов» изучают следующие вопросы.

- 1.Классификация моделей, виды моделирования, особенности моделирования электродинамических процессов.
 - 2. Моделирование процессов излучения электромагнитных волн.
- 3. Моделирование процессов распространения электромагнитных волн в неограниченных средах.
- 4.Моделирование электромагнитных процессов на границе раздела двух сред.
- 5.Моделирование характеристик электромагнитного поля в линиях передачи.
- 6.Моделирование электродинамических процессов численными методами.

Цель дисциплины: формирование у обучающихся знаний, умений и практических навыков моделирования устройств СВЧ и оптического диапазонов.

Задачи дисциплины: расширить и углубить знания и навыки решения электродинамических задач; научиться формировать математические и компьютерные модели процессов излучения, распространения, преломления и отражения ЭМВ, осуществлять их моделирование и получать графические зависимости.

Дисциплина нацелена на формирование общепрофессиональной (ОПК-3) компетенции выпускника.

2 Место дисциплины в структуре ОПОП ВО

Учебная дисциплина «Моделирование устройств СВЧ и оптического диапазонов» входит в состав элективных дисциплин (модулей) БЛОКА 1 подготовки обучающихся по направлению 03.04.03 «Радиофизика», магистерская программа «Инженерно-физические технологии в промышленности».

Дисциплина реализуется кафедрой электроники и радиофизики.

Дисциплина основывается на базе дисциплин: «Высшая математика», «Электричество и магнетизм», «Оптика», «Численные методы и математическое моделирование», «Теория колебаний», «Электродинамика», «Квантовая электроника. Квантовые приборы.», «Техника и электроника СВЧ», «Радиотехнические цепи и сигналы», «Распространение электромагнитных волн», «Математическое моделирование физических процессов».

Дисциплина является основой для изучения следующих дисциплин: «Квантовые и оптические технологии», «Лазерные и плазменные технологии обработки материалов», «Дополнительные главы квантовой и оптической электроники», «Методы решения научно-технических задач», защита магистерской работы, включая подготовку к защите и процедуру защиты, научно-исследовательская работа, производственная, преддипломная практика.

Общая трудоемкость освоения дисциплины составляет 4 зачетные единицы, 144 ак.ч. Программой дисциплины предусмотрены лекционные (36 ак.ч.), лабораторные (18 ак.ч.), практические (18 ак.ч.) занятия и самостоятельная работа обучающегося (72 ак.ч.). Дисциплина изучается на 1 курсе во 2 семестре.

Для очно-заочной формы обучения программой дисциплины предусмотрены лекционные (14 ак.ч.), практические (8 ак.ч.) занятия и самостоятельная работа обучающегося (122 ак.ч.). Дисциплина изучается на 2 курсе в 3 семестре.

Форма промежуточной аттестации – экзамен.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Изучение дисциплины «Моделирование устройств СВЧ и оптического диапазонов» направлено на формирование общепрофессиональной компетенции ОПК-3, представленной в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание компетенции	Код компетенции	Код и наименование индикатора достижения компетенции
Способен применять современные информационные технологии, использовать компьютерные сети и программные продукты для решения задач профессиональной деятельности.	ОПК-3	ОПК-3.1. Выбирает, применяет информационные технологии и программные средства для решения задач профессиональной деятельности с использованием современных методов и программного инструментария. ОПК-3.2. Имеет основные навыки применения информационных технологий, компьютерных сетей и программных продуктов, используемых при решении задач профессиональной деятельности. ОПК-3.3. Владеет принципами построения математических моделей для различных объектов на основе радиофизических, квантово-механических, механических, теплофизических и других физических подходах.

4 Объём и виды занятий по дисциплине

Общая трудоемкость освоения учебной дисциплины составляет 4 зачетные единицы, 144 ак.ч. Из них лекционные занятия 36 ак.ч., лабораторные 18 ак.ч., практические 18 ак.ч. и самостоятельная работа обучающегося 72 ак.ч.

Самостоятельная работа обучающегося (СРС) включает проработку материалов лекций, подготовку к лабораторным и практическим занятиям, текущему контролю, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

		Ак.ч. по
Вид учебной работы	Всего ак.ч.	семестрам
-		2
Аудиторная работа, в том числе:	72	72
Лекции (Л)	36	36
Практические занятия (ПЗ)	18	18
Лабораторные работы (ЛР)	18	18
Курсовая работа/курсовой проект	-	-
Самостоятельная работа студентов (СРС), в	72	72
том числе:	12	12
Подготовка к лекциям	18	18
Подготовка к лабораторным работам	18	18
Подготовка к практическим занятиям / се-	18	18
минарам	10	10
Выполнение курсовой работы / проекта	-	-
Расчетно-графическая работа (РГР)	-	-
Реферат (индивидуальное задание)	-	-
Домашнее задание(индивидуальное задание)	-	-
Подготовка к контрольной работе	-	-
Подготовка к коллоквиуму	10	10
Аналитический информационный поиск	-	-
Работа в библиотеке	-	-
Подготовка к экзамену	8	8
Промежуточная аттестация – экзамен	Э	Э
Общая трудоемкость дисциплины		
ак.ч.	144	144
3.e.	4	4

5 Содержание дисциплины

С целью освоения компетенции ОПК-3, приведенной в п.3 дисциплина разбита на 18 тем.

- Тема 1. Общие вопросы моделирования.
- Tema 2. Моделирование процессов излучения электромагнитных волн элементарными электрическими излучателями.
- Тема 3. Моделирование процессов излучения электромагнитных волн элементарными магнитными излучателями.
- Тема 4. Моделирование процессов излучения электромагнитных волн элементарными щелевыми излучателями.
- Teма 5. Моделирование процессов распространения электромагнитных волн в неограниченных средах.
- Тема 6. Моделирование электромагнитных процессов на границе раздела двух сред.
- Тема 7. Моделирование характеристик электромагнитного поля в линиях передачи.
- Тема 8. Моделирование характеристик электромагнитного поля в прямоугольном волноводе.
- Тема 9. Моделирование характеристик электромагнитного поля в круглом волноводе.
- Тема 10 Решение электродинамических задач методом конечных разностей в частотной области.
- Тема 11. Решение электродинамических задач методом конечных разностей во временной области.
- Тема 12. Решение электродинамических задач методом конечного интегрирования.
- Тема 13. Решение электродинамических задач методом конечных элементов в частотной области.
- Тема 14. Решение электродинамических задач методом конечных элементов во временной области.
 - Тема 15. Решение электродинамических задач методом моментов.
- Тема 16. Решение электродинамических задач методом матрицы линий передачи.
 - Тема 17. Проекционный метод решения электродинамических задач.
- Тема 18. Программные пакеты для моделирования электродинамических процессов.

Виды занятий по дисциплине и распределение аудиторных часов приведены в таблицах 3 и 4.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Тру- доем- кость в ак.ч.	Темы практических занятий	Тру- доем- кость в ак.ч.	Темы лабораторных занятий	Тру- доем- кость в ак.ч.
1	Общие вопросы моделирования	Общие понятия о моделировании. История возникновения и развития моделирования в науке и технике. Классификация моделей. Виды моделирования. Основные уравнения классической электродинамики. Параметры сред. Начальные и граничные условия. Классы задач электродинамики. Постановка краевых задач электродинамики. Моделирование устройств СВЧ и оптического диапазонов с использованием методов классической макроскопической электродинамики. Моделирование устройств СВЧ и оптического диапазонов с использованием численных методов.	2	Моделирование процессов распространение электромагнитных волн в линиях передачи	2		
2	Моделирование процессов излучения электромагнитных волн электрическими излучателями	Элементарный электрический излучатель. Структура поля элементарного электрического излучателя. Дальняя зона. Ближняя зона. Промежуточная зона. Диаграмма направленности элементарного электрического излучателя. Мощность излучения элементарного электрического излучателя.	2	_	-	Моделирование процессов излучения ЭМВ элементарными электрическими излучателями	2

~

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Тру- доем- кость в ак.ч.	Темы практических занятий	Тру- доем- кость в ак.ч.	Темы лабораторных занятий	Тру- доем- кость в ак.ч.
3	Моделирование процессов излучения электромагнитных волн элементарными магнитными излучателями	теля в дальней зоне. Диаграмма направленности элементарного магнитного излучателя. Мощность излучения элемен-	Моделирование электродинамических процессов методом конечных разностей в частотной области		2	_	_
4	Моделирование процессов излучения электромагнитных волн элементарными щелевыми излучателями	Элементарный щелевой излучатель. Поле элементарного щелевого излучателя в дальней зоне. Диаграмма направленности элементарного щелевого излучателя. Мощность излучения элементарного щелевого излучателя.	2	2 –		Моделирование процессов излучения ЭМВ элементарными магнитными излучателями	2
5	Моделирование процессов распространения электромагнитных волн в неограниченных средах	Основные понятия. Распространения электромагнитных воли в идеальных диэлектриках. Распространения электромагнитных воли в диэлектриках с малыми потерями. Распространения электромагнитных воли в диэлектриках с большими потерями. Распространения электромагнитных воли в проводниках. Сложение поперечных несинфазных воли.	2	Моделирование электродинамиче-ских процессов методом конечных разностей во временной области		_	
6	Моделирование электромагнитных процессов на границе раздела двух сред	Волновые явления на границе раздела двух сред. Законы Снеллиуса. Коэффициенты Френеля. Преломление плоской волны на границе двух диэлектриков. Преломление плоской волны на границе с поглощающей средой. Параметры отраженной и прошедшей волн.	2	_	-	Моделирование процессов излучения ЭМВ элементарными щелевыми излучателями	2

9

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Тру- доем- кость в ак.ч.	Темы практических занятий	Тру- доем- кость в ак.ч.	Темы лабораторных занятий	Тру- доем- кость в ак.ч.
7	Моделирование характеристик электромагнитного поля в линиях передачи	Основные определения. Критическая частота. Критическая длина волны. Длина волны в линии передачи. Особенности Н-волн. Особенности Е-волн.	2	Моделирование электродинамиче-ских процессов методом конечного интегрирования	2	_	_
8	Моделирование характеристик электромагнитного поля в прямо- угольном волноводе	Н-волны и Е-волны в прямоугольном волноводе. Основной тип волны. Высшие типы волн. Одноволновой режим работы. Выбор волновода. Мощность, переносимая ЭМВ по прямоугольному волноводу. Затухание ЭМВ в прямоугольном волноводе.	2 –		_	Моделирование процессов распространения ЭМВ в неограниченных средах	2
9	Моделирование характеристик электромагнитного поля в круглом волноводе	Краткая характеристика круглого волновода. Критическая длина H- и E-волн в круглом волноводе. Основной тип волны. Высшие типы волн. Выбор волновода. Мощность, переносимая ЭМВ по круглому волноводу. Затухание ЭМВ в круглом волноводе.	2	Моделирование электродинамических процессов методом конечных элементов в частотной области		_	_
10	Решение электро- динамических задач методом конечных разно- стей в частотной области	Конечно-разностные аппроксимации дифференциальных операторов. Аппроксимация граничных условий. Методы решения конечно-разностной СЛАУ. Интегрирование сеточных функций.	2	_	_	Моделирование процессов распространения ЭМВ при сложении несинфазных волн	2
11	Решение электро- динамических задач методом конечных разно- стей во временной	Конечно-разностные уравнения в прямо- угольных и криволинейных координатах. Начальные и граничные условия. Аб- сорбционные граничные условия. Метод дополнительных операторов. Конформ-	2	Моделирование электродинамиче- ских процессов методом конечных элементов во		_	_

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Тру- доем- кость в ак.ч.	Темы практических занятий	Тру- доем- кость в ак.ч.	Темы лабораторных занятий	Тру- доем- кость в ак.ч.
	области	ный метод КРВО. Метод КРВО для сред с временной дисперсией. Алгоритмы КРВО и погрешности метода.		временной области			
12	Решение электро- динамических задач методом конечного инте- грирования	Основные принципы метода конечного интегрирования (FIT). Конечноразностные уравнения. Начальные и граничные условия. Источники возбуждения и сосредоточенные элементы. Преимущества FIT.	2	_	_	Моделирование характеристик ЭМП на границе раздела двух сред	2
13	Решение электро- динамических задач методом конечных элемен- тов в частотной области	Основные уравнения и граничные условия. Методы построения сетки и решения глобального матричного уравнения. Базисные функции. Построение локальной матрицы. Составление глобального матричного уравнения. Численная реализация граничных условий. Вычисление электромагнитного поля и параметров электродинамических систем. Методы увеличения эффективности МКЭ.	2	Моделирование электродинамических процессов методом моментов	2	_	_
14	Решение электро- динамических задач методом конечных элемен- тов во временной области	Метод коллокаций. Неявные схемы МКЭВО. Разрывный метод Галеркина. Погрешности и примеры расчета.	2	_	-	Моделирование процессов распространения ЭМВ на границе раздела двух сред	2
15	Решение электро- динамических задач методом моментов	Основные уравнения. Разбиение поверхности, базисные и пробные функции. Дискретизация интегральных уравнений. Спектральный метод моментов. Быстрый метод мультиполей.	2	Моделирование электродинамических процессов методом матрицы линий передачи	2	_	_

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Тру- доем- кость в ак.ч.	Темы практических занятий	Тру- доем- кость в ак.ч.	Темы лабораторных занятий	Тру- доем- кость в ак.ч.
16	Решение электро- динамических задач методом матрицы линий передачи	Дискретный принцип Гюйгенса. Метод МЛП для двухмерных задач. Метод МЛП для трехмерных задач. Усовершенствование метода МЛП. Погрешности метода МЛП.	2			Моделирование характеристик электромагнитного поля в прямоугольном волноводе	2
17	Проекционный метод решения электродинамических задач	Основные принципы проекционного метода. Краевые задачи электродинамики. Прямые проекционные методы. Метод частичных областей.	2	Моделирование электродинамиче- ских процессов про- екционным методом	2	_	_
18	Программные пакеты для моделирования электродинамических процессов	Задачи, решаемые с помощью программ электродинамического моделирования. Основные этапы моделирования. Процесс моделирования. Анализ результатов. Проблемы моделирования. Примеры программ электродинамического моделирования.	2	_	_	Моделирование характеристик электромагнитного поля в круглом волноводе	2
Всег	о аудиторных часов	** <u>*</u>	36		18		18

Таблица 4— Виды занятий по дисциплине и распределение аудиторных часов (очно-заочная форма обучения)

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Тру- доем- кость в ак.ч.	Темы практических занятий	Тру- доем- кость в ак.ч.	Темы лабора- торных занятий	Тру- доем- кость в ак.ч.
1	Общие вопросы моделирования	Общие понятия о моделировании. История возникновения и развития моделирования в науке и технике. Классификация моделей. Виды моделирования. Основные уравнения классической электродинамики. Параметры сред. Начальные и граничные условия. Абсорбционные граничные условия. Классы задач электродинамики. Постановка краевых задач электродинамики. Моделирование устройств СВЧ и оптического диапазонов с использованием методов классической макроскопической электродинамики. Моделирование устройств СВЧ и оптического диапазонов с использованием численных методов.	2	Моделирование процессов излучения ЭМВ элементарными электрическими излучателями	2	-	_
2	Моделирование процессов излучения электромагнитных волн.	Элементарный электрический излучатель. Элементарный магнитный излучатель. Элементарный щелевой излучатель. Структура поля элементарного излучателя. Дальняя зона. Ближняя зона. Промежуточная зона. Диаграмма направленности элементарного излучателя. Мощ-ность излучения элементарного излучателя	2	_	ı	-	_
3	Моделирование процессов распространения электромагнитных волн в неограниченных средах	Основные понятия. Распространения электромагнитных волн в идеальных диэлектриках. Распространения электромагнитных волн в диэлектриках с малыми потерями. Распространения электромагнитных волн в диэлектриках с большими потерями. Распространения электромагнитных волн в проводниках. Сложение поперечных несинфазных волн.	2	Моделирование процессов распространения ЭМВ в неограниченных средах.	2	_	_

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Тру- доем- кость в ак.ч.	Темы практических занятий	Тру- доем- кость в ак.ч.	Темы лабора- торных занятий	Тру- доем- кость в ак.ч.
4	Моделирование электромагнитных процессов на границе раздела двух сред	Волновые явления на границе раздела двух сред. Законы Снеллиуса. Коэффициенты Френеля. Преломление плоской волны на границе двух диэлектриков. Преломление плоской волны на границе с поглощающей средой. Параметры отраженной и прошедшей волн.	2	_	_	_	_
5	Решение электро- динамических задач методом конечных разно- стей	Решение электро-динамических задач методом конечных разностей в частотной области. Решение электродинамических задач методом конечных разностей во временной области.	2	Моделирование характеристик ЭМП на границе раздела двух сред.	2	_	_
6	Решение электро- динамических задач методом конечных элемен- тов	Решение электродинамических задач методом конечных элементов в частотной области. Решение электродинамических задач методом конечных элементов во временной области.	2		-	_	_
7	Программные пакеты для для моделирования электродинамических процессов	Задачи, решаемые с помощью программ электродинамического моделирования. Основные этапы моделирования. Процесс моделирования. Анализ результатов. Проблемы моделирования. Примеры программ электродинамического моделирования.	2	Моделирование характеристик электромагнитного поля в прямоугольном волноводе.	2	_	_
		Всего аудиторных часов	14		8		

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Таблица 5 — Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетен- ции	Способ оценивания	Оценочное средство
ОПК-3	Экзамен	Комплект контролирующих материалов для экзамена

Всего по текущей работе в семестре обучающийся может набрать 100 баллов, в том числе:

- тестовый контроль или устный опрос на коллоквиумах (2 работы) всего 28 баллов;
 - лабораторные работы всего 36 баллов;
 - практические работы всего 36 баллов.

Промежуточная аттестация по дисциплине «Моделирование устройств СВЧ и оптического диапазонов» производится в форме экзамена. Экзамен выставляется автоматически, если обучающийся набрал по текущей работе не менее 60 баллов. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Экзамен по дисциплине сдаётся исходя из результатов работы обучающегося в семестре. В случае, если полученная в семестре сумма баллов не устраивает обучающегося, то он может повысить итоговую оценку, сдав экзамен. Экзамен по дисциплине «Моделирование устройств СВЧ и оптического диапазонов» проводится в форме устного экзамена по вопросам, представленным ниже (п.п. 6.4), либо в форме тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	экзамен
0-59	Неудовлетворительно
60-73	Удовлетворительно
74-89	Хорошо
90-100	Отлично

6.2 Домашнее задание

В качестве домашнего задания обучающиеся выполняют:

- проработка лекционного материала;
- подготовка к лабораторным занятиям;
- подготовка к практическим занятиям.

6.3 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

- 1. Как называется электрический диполь с периодически меняющимся моментом и геометрическим параметром значительно меньшим длины волны в вакууме?
- а) Элементарный трансклюкатор.
- б) Элементарный электрический излучатель.
- в) Элементарный трансформатор.
- г) Элементарный генератор.
- 2. Как называется замкнутый виток с током и геометрическими параметрами значительно меньшим длины волны в вакууме?
- а) Элементарным магнетрон.
- б) Элементарным тиратрон.
- в) Элементарный магнитный излучатель.
- г) Элементарный игнитрон.
- 3. Как называется бесконечная металлическая плоскость, в которой прорезана щель с геометрическими параметрами значительно меньшим длины волны в вакууме?
- а) Элементарный фриттер.
- б) Элементарный дегенератор.
- в) Элементарный конгломератор.
- г) Элементарный щелевой излучатель.

- 4. Как называется представление объектов, процессов, явлений средствами специальных компьютерных программ?
- а) Компьютерная модель.
- б) Натурная модель.
- в) Физическая модель.
- г) Математическая модель.
- 5. Как называется область распространения радиоволн, где составляющие электромагнитного поля изменяются обратно пропорционально расстоянию от антенны?
- а) Генеральная зона.
- б) Дальняя зона.
- в) Ближняя зона.
- г) Промежуточная зона.
- 6. Как называется зона дифракции Френеля, в которой ещё не сформировано поле излучения и не установлен баланс энергий электрического и магнитного полей?
- а) Пограничная зона.
- б) Конволютная зона.
- в) Ближняя зона.
- г) Эволютная зона.
- 7. Как называется зона излучения между ближней зоной (индукции) и дальней зоной (интерференции)?
- а) Зона Максвелла.
- б) Зона Фраунгофера.
- в) Зона Френеля.
- г) Зона Рэлея.
- 8. Как называется различие фазовых скоростей линейных волн в зависимости от их частоты при распространении в среде с потерями?
- а) Дисперсия.
- б) Конверсия.
- в) Деменция.
- г) Конвенция.
- 9. Как называется процесс создания моделей реальных объектов и их экспериментальное исследование?
- а) Дифференцирование.
- б) Моделирование.
- в) Интегрирование.
- г) Агрегатирование.

- 10. Как называется упрощённый образец исследуемой технической системы, отражающий какие-то существенные особенности данной системы?
- а) Опытный образец.
- б) Промышленный образец.
- в) Модель.
- г) Технический образец.
- 11. Как называется физическое представление системы, объекта или процесса с целью их исследования?
- а) Система дифференциальных уравнений.
- б) Математическая модель.
- в) Физическая подготовка.
- г) Физическая модель.
- 12. Как называется численный метод решения электродинамических задач, основанный на замене производных разностными схемами?
- а) Метод конечных разностей.
- б) Метод частных производных.
- в) Метод физического моделирования.
- г) Метод математического моделирования.
- 13. Как называется численный метод решения электродинамических задач, заключающийся в том, что область, в которой ищется решение, разбивается на конечное количество элементов?
- а) Метод конечных разностей.
- б) Метод конечных элементов.
- в) Метод конечного моделирования.
- г) Метод конечного интегрирования.
- 14. Как называется метод пространственной дискретизации для численного решения задач электромагнитного поля во временной и частотной области?
- а) Метод конечного моделирования.
- б) Метод конечного дифференцирования.
- в) Метод конечного интегрирования.
- г) Метод конечного проецирования.
- 15. Как называется численный метод в вычислительной электродинамике, который использует проецирование интегрального уравнения на систему линейных уравнений путем применения соответствующих граничных условий?
- а) Метод конечного проецирования.
- б) Метод конечного интегрирования.
- в) Метод линейного проецирования.
- г) Метод моментов.
- 16. Как называется численный метод решения электродинамических задач, основанный на представлении решения краевой задачи, формулируемой как

операторное уравнение, в виде разложения по полной системе функций, образующей базис?

- а) Метод разделения переменных.
- б) Операторный метод.
- в) Краевой метод.
- г) Метод разложения.

6.4 Вопросы для подготовки к экзамену

- 1. Общие понятия о моделировании.
- 2. Классификация моделей. Виды моделирования.
- 3. Основные уравнения классической электродинамики.
- 4. Параметры сред.
- 5. Начальные и граничные условия.
- 6. Абсорбционные граничные условия.
- 7. Классы задач электродинамики.
- 8. Постановка краевых задач электродинамики.
- 9. Моделирование устройств СВЧ и оптического диапазонов с использованием методов классической макроскопической электродинамики.
- 10. Моделирование устройств СВЧ и оптического диапазонов с использованием численных методов.
- 11. Элементарный электрический излучатель.
- 12. Структура поля элементарного электрического излучателя.
- 13. Дальняя зона элементарного электрического излучателя.
- 14. Ближняя зона элементарного электрического излучателя.
- 15. Промежуточная зона элементарного электрического излучателя.
- 16. Диаграмма направленности элементарного электрического излучателя.
- 17. Мощность излучения элементарного электрического излучателя.
- 18. Элементарный магнитный излучатель.
- 19. Поле элементарного магнитного излучателя в дальней зоне.
- 20. Диаграмма направленности элементарного магнитного излучателя.
- 21. Мощность излучения элементарного магнитного излучателя.
- 22. Элементарный щелевой излучатель.
- 23. Поле элементарного щелевого излучателя в дальней зоне.
- 24. Диаграмма направленности элементарного щелевого излучателя.
- 25. Мощность излучения элементарного щелевого излучателя.
- 26. Распространения электромагнитных волн в неограниченных средах. Основные понятия.

- 27. Распространения электромагнитных волн в идеальных диэлектриках.
- 28. Распространения электромагнитных волн в диэлектриках с малыми потерями.
- 29. Распространения электромагнитных волн в диэлектриках с большими потерями.
- 30. Распространения электромагнитных волн в проводниках.
- 31. Сложение поперечных несинфазных волн.
- 32. Волновые явления на границе раздела двух сред.
- 33. Законы Снеллиуса.
- 34. Коэффициенты Френеля.
- 35. Преломление плоской волны на границе двух диэлектриков.
- 36. Преломление плоской волны на границе с поглощающей средой.
- 37. Параметры отраженной и прошедшей волн.
- 38. Характеристики электромагнитного поля в линиях передачи. Основные понятия и определения.
- 39. Критическая частота, критическая длина волны, длина волны в линии передачи.
- 40. Особенности Н-волн и Е-волн.
- 41. Прямоугольный волновод.
- 42. Н-волны и Е-волны в прямоугольном волноводе.
- 43. Основной тип волны и высшие типы волн в прямоугольном волноводе.
- 44. Одноволновой режим работы прямоугольного волновода.
- 45. Выбор прямоугольного волновода.
- 46. Мощность, переносимая ЭМВ по прямоугольному волноводу.
- 47. Затухание ЭМВ в прямоугольном волноводе.
- 48. Круглый волновод.
- 49. Характеристики круглого волновода.
- 50. Критическая длина Н- и Е-волн в круглом волноводе.
- 51. Основной тип волны и высшие типы волн в круглом волноводе.
- 52. Выбор в круглого волновода.
- 53. Мощность, переносимая ЭМВ по круглому волноводу.
- 54. Затухание ЭМВ в круглом волноводе.
- 55. Конечно-разностные аппроксимации дифференциальных операторов в методе конечных разностей в частотной области.
- 56. Аппроксимация граничных условий операторов в методе конечных разностей в частотной области.
- 57. Методы решения конечно-разностной СЛАУ в методе конечных разностей в частотной области.
- 58. Интегрирование сеточных функций операторов в методе конечных разно-

стей в частотной области.

- 59. Конечно-разностные уравнения в прямоугольных координатах в методе конечных разностей во временной области.
- 60. Конечно-разностные уравнения в криволинейных координатах в методе конечных разностей во временной области.
- 61. Начальные и граничные условия в методе конечных разностей во временной области.
- 62. Абсорбционные граничные условия в методе конечных разностей во временной области.
- 63. Метод дополнительных операторов в методе конечных разностей во временной области.
- 64. Конформный метод КРВО в методе конечных разностей во временной области.
- 65. Метод КРВО для сред с временной дисперсией в методе конечных разностей во временной области.
- 66. Алгоритмы КРВО и погрешности в методе конечных разностей во временной области.
- 67. Основные принципы метода конечного интегрирования (FIT).
- 68. Конечно-разностные уравнения в методе конечного интегрирования.
- 69. Начальные и граничные условия в методе конечного интегрирования.
- 70. Преимущества FIT.
- 71. Основные уравнения и граничные условия в методе конечных элементов в частотной области.
- 72. Способы построения сетки и решения глобального матричного уравнения в методе конечных элементов в частотной области.
- 73. Базисные функции в методе конечных элементов в частотной области.
- 74. Построение локальной матрицы в методе конечных элементов в частотной области.
- 75. Составление глобального матричного уравнения в методе конечных элементов в частотной области.
- 76. Численная реализация граничных условий в методе конечных элементов в частотной области.
- 77. Вычисление электромагнитного поля и параметров электродинамических систем в методе конечных элементов в частотной области.
- 78. Методы увеличения эффективности МКЭ.
- 79. Метод коллокаций в методе конечных элементов во временной области.
- 80. Неявные схемы МКЭВО.
- 81. Разрывный метод Галеркина в методе конечных элементов во временной области.

- 82. Погрешности в методе конечных элементов во временной области.
- 83. Основные уравнения при решении задач электродинамики методом моментов.
- 84. Разбиение поверхности, базисные и пробные функции в методе моментов.
- 85. Дискретизация интегральных уравнений в методе моментов.
- 86. Спектральный метод моментов.
- 87. Быстрый метод мультиполей в методе моментов.
- 88. Дискретный принцип Гюйгенса при решении задач электродинамики методом матрицы линий передачи.
- 89. Метод МЛП для двухмерных задач.
- 90. Метод МЛП для трехмерных задач.
- 91. Усовершенствование метода МЛП.
- 92. Погрешности метода МЛП.
- 93. Основные принципы проекционного метода.
- 94. Решение краевых задач электродинамики проекционным методом.
- 95. Прямые проекционные методы.
- 96. Метод частичных областей в проекционном методе.
- 97. Задачи, решаемые с помощью программ электродинамического моделирования.
- 98. Основные этапы моделирования в программных пакетах для электродинамического моделирования.
- 99. Анализ результатов моделирования в программных пакетах для электродинамического моделирования.
- 100. Примеры программ электродинамического моделирования.

6.5 Примерная тематика курсовых работ

Курсовые работы не предусмотрены.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Клюев, С. Б. Электродинамика и распространение радиоволн: учебное пособие / С. Б. Клюев, Е. И. Нефедов. Москва: КУРС, 2024. 464 с. ISBN 978-5-906818-99-7. Текст: электронный. URL: https://znanium.ru/catalog/product/2192309 (дата обращения: 31.03.2024). Режим доступа: по подписке.
- 2. Шебалкова, Л. В. Электродинамика, антенны и СВЧ-устройства СБЛ: учебно-методическое пособие / Л. В. Шебалкова, В. Б. Ромодин. Новосибирск: Изд-во НГТУ, 2020. 75 с. ISBN 978-5-7782-4142-8. Текст: электронный. URL: https://znanium.com/catalog/product/1869111 (дата обращения: 31.03.2024). Режим доступа: по подписке.
- 3. Будагян, И. Ф. Электродинамика: учебное пособие / И.Ф. Будагян, В.Ф. Дубровин, А.С. Сигов. М.: Альфа-М: ИНФРА-М, 2019. 304 с. (Магистратура). ISBN 978-5-98281-329-9. Текст: электронный. URL: https://znanium.com/catalog/product/1010105 (дата обращения: 31.03.2024). Режим доступа: по подписке.

Дополнительная литература

- 1. Баскаков, С.И. Электродинамика и распространение радиоволн: Учебное пособие для вузов. / С.И. Баскаков. М.: Высш. шк., 1992. 416 с.
- 2. Вольман, В.И. Техническая электродинамика: учеб. пособие / В.И. Вольман, Ю.В. Пименов. М.: «Связь», 1971. 486 с.
- 3. Пименов, Ю.В. Техническая электродинамика: учебное пособие для вузов. / Ю.В. Пименов, В.И. Вольман, А.Д. Муравцов. М.: «Радио и связь», 2000.-536 с.
- 4. Григорьев, А.Д. Электродинамика и техника СВЧ: учебник для вузов / А.Д. Григорьев. Москва: Высшая школа, 1990. 335 с.
- 5. Григорьев А.Д. Методы вычислительной электродинамики: монография / А.Д. Григорьев. Москва: ФИЗМАТЛИТ, 2013. 432 с.
- 6. Гринев А.Ю Математические основы и методы решения задач электродинамики: учебное пособие / А.Ю. Гринев, А.И. Гиголо. Москва: Радиотехника, 2015. -216 с.
- 7. Митра Р. Вычислительные методы в электродинамике: монография / Р. Митра. Москва: Мир, 1977. 487 с.

Учебно-методическое обеспечение

1. Методические указания к лабораторным работам по дисциплине «Моделирование устройств СВЧ и оптического диапазонов» (для студентов направления подготовки 03.04.03 «Радиофизика» всех форм обучения) / Сост. А. И. Литвинов. — Алчевск, ГОУ ВПО ЛНР «ДонГТУ», 2017. — 56 с.

2. Методические указания к практическим занятиям по дисциплине «Моделирование устройств СВЧ и оптического диапазонов» (для студентов направления подготовки 03.04.03 «Радиофизика» всех форм обучения) / Сост. А. И. Литвинов. — Алчевск, ГОУ ВПО ЛНР «ДонГТУ», 2017. — 32 с.

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт. Алчевск. URL: library.dstu.education. Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова: официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст: электронный.
- 3. Консультант студента: электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст: электронный.
- 4. Университетская библиотека онлайн: электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст: электронный.
- 5. IPR BOOKS: электронно-библиотечная система. Красногорск. URL: http://www.iprbookshop.ru/. Текст: электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местоположение) учебных кабинетов
Специальные помещения: Аудитория для проведения лекционных и практических занятий (20 посадочных мест), оборудованная специализированной (учебной) мебелью, доска аудиторная, мультимедийная доска — 1 шт.	ауд.436 корп. <u>главный</u>

Лист согласования РПД

Разработал: Старший преподаватель кафедры электроники и радиофизики (должность)	(подпись)	<u>А.И. Литвинов</u> (Ф.И.О.)
И.о. заведующего кафедрой электроники и радиофизики	(подпись)	<u>А.М.Афанасьев</u> (Ф.И.О.)
Протокол № <u>1</u> заседания кафедры электроники и радиофизики от <u>30.0</u>	OS. DOSPiz	
И.о. декана факультета информационных технологий и автоматизации производственных процессов	(нолумсь)	<u>В.В. Дьячкова</u> (Ф.И.О.)
Согласовано: Председатель методической комиссии		
по направлению подготовки 03.04.03 Радиофизика (магистерская программа «Инженерно-физич технологии в промышленности»)	еские (подпись)	<u>А.М.Афанасьев</u> (Ф.И.О.)

(подпись)

Начальник учебно-методического центра

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения				
изменений				
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:			
Ogwanaway				
Основание:				
Подпись лица, ответственного за внесение изменений				