Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Вишневский Дмитрий Александрович

Должность: Ректор

Дата подписания: 17.10.2025 15:06:46 Уникальный программный ключ:

03474917c4d012283e5ad996a48a5e70bf8da057

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет Информационных технологий и автоматизаци					
	производственных процессов				
Кафедра	Электромеханики имени А.Б. Зеленова				
	УТВЕРЖДАЮ И.о. проректора по учесной работе Д.В. Мулов				
P	АБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ				
	Теория автоматического управления				
	(наименование дисциплины)				
	13.03.02 Электроэнергетика и электротехника				
	(код, наименование направления)				
	Электрические машины и аппараты				
	(профиль подготовки)				
. 1					
Квалификация	бакалавр				
	(бакалавр/специалист/магистр)				
Форма обучения	очная, заочная				
	(очная, очно-заочная, заочная)				

1 Цели и задачи изучения дисциплины

Цели дисциплины. Целью изучения дисциплины «Теория автоматического управления» является формирование комплексного представления о решении теоретических и практических задач в профессиональной деятельности, связанной с проектированием, испытанием и эксплуатацией систем автоматического управления.

Задачи изучения дисциплины:

- изучение принципов построения систем автоматического управления;
- изучение протекания процессов в системах автоматического управления;
- освоение методов изучения процессов в системах автоматического управления;
- изучение методов коррекции и синтеза дискретных и непрерывных систем автоматического управления;
- освоение методов изучения и проектирования нелинейных систем автоматического управления.

Дисциплина направлена на формирование общепрофессиональных компетенций (ОПК-3) и профессиональных компетенций (ПК-1) выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины — курс входит в часть Блока I, формируемую участниками образовательных отношений подготовки студентов по направлению 13.03.02 Электроэнергетика и электротехника (профиль «Электрические машины и аппараты»).

Дисциплина реализуется кафедройэлектромеханики им. А.Б. Зеленова. Основывается на базе дисциплин: «Математика», «Физика», «Электротехника».

Является основой для изучения следующих дисциплин: «Моделирование электромеханических систем», «Эксплуатационно-технологическая (производственная) практика», выпускная квалификационная работа.

Для изучения дисциплины необходимы компетенции, сформированные у студента для решения профессиональных задач деятельности, связанных с обеспечением жизни, здоровья и работоспособности во время работы.

Общая трудоемкость освоения дисциплины для очной формы обучения составляет 4,5 зачетных единицы, 162 ак.ч. Программой дисциплины предусмотрены лекционные (18 ак.ч.), практические (18 ак.ч.) и лабораторные (18 ак.ч.) занятия и самостоятельная работа студента (108 ак.ч.).

Для заочной формы обучения программой дисциплины предусмотрены лекционные (6 ак.ч.), практические (2 ак.ч.) и лабораторные (4 ак.ч.) занятия и самостоятельная работа студента (150 ак.ч.).

Дисциплина изучается на очной форме обучения на 3 курсе в 6 семестре, а на заочной форме обучения на 4 курсе в 8 семестре. Форма промежуточной аттестации – экзамен.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Охрана труда и производственная безопасность» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание компетен-	Код	Код и наименование индикатора
ции	компетен-	достижения компетенции
	ции	
Способен применять соответствующий физикоматематический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач	ОПК-3	ОПК-3.1. Применяет соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач
Способен участвовать в проектировании объектов профессиональной деятельности	ПК-1	ПК-1.1. Выполняет сбор и анализ данных для проектирования, составляет конкурентно-способные варианты технических решений. ПК-1.2. Обосновывает выбор проектного решения.

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 5 зачётных единицы, 180 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим и лабораторным занятиям, текущему контролю, выполнение индивидуального задания, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам 6
Аудиторная работа, в том числе:	54	54
Лекции (Л)	18	18
Практические занятия (ПЗ)	18	18
Лабораторные работы (ЛР)	18	18
Курсовая работа/курсовой проект		
Самостоятельная работа студентов (СРС), в том числе:	108	108
Подготовка к лекциям	18	18
Подготовка к лабораторным работам	18	18
Подготовка к практическим занятиям / се-	18	18
минарам		
Выполнение курсовой работы / проекта		
Расчетно-графическая работа (РГР)		
Реферат (индивидуальное задание)		
Домашнее задание	36	36
Подготовка к контрольной работе		
Подготовка к коллоквиуму		
Аналитический информационный поиск	6	6
Работа в библиотеке	4	4
Подготовка к экзамену	4	4
Промежуточная аттестация – экзамен (Э)	Э	Э
Общая трудоемкость дисциплины		
ак.ч.	162	162
3.e.	4,5	4,5

5 Содержание дисциплины

С целью освоения компетенций, приведенных в п.3 дисциплина разбита на 8 тем:

- тема 1 (Основные термины и понятия теории автоматического управления);
 - тема 2 (Математическое описание автоматических систем);
- тема 3 (Временные и частотные характеристики динамических звеньев);
- тема 4 (Алгебра передаточных функций и правила преобразования структурных схем);
- тема 5 (Критерии устойчивости линейных систем автоматического управления);
- тема 6 (Анализ качества линейных автоматических систем управления);
 - тема 7(Синтез линейных систем автоматического регулирования);
 - тема 8(Оптимизация простых контуров регулирования).

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 3 и 4 соответственно.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/	Наименование темы (раздела) дисци- плины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
1	Основные термины и понятия теории автоматического управления.	Классификация автоматических систем. Задачи теории автоматического управления.	2	Объект управления. Виды задающих и управляющих воздействий.	2	Вступительное занятие. Техника безопасности при проведении лабораторных работ в ауд. 319 главного корпуса.	2
2	Математическое описание автоматических систем	Математическое описание автоматических систем. Примеры составления математических моделей простых динамических звеньев.	2	Составление функциональной и структурной схемы ДПТ с НВ.	2	Моделирование типовых воздействий в пакете Simulink программы Matlab.	2
3	Временные и частотные характеристики динамических звеньев.	Переходная и импульсная переходная временные характеристики и средства их получения.	2	Пропорцио- нальное и инте- грирующее зве- нья	2	Методика снятия переходных и ча- стотных характери- стик линейных ди- намических зве- ньев.	2

~1

4	Алгебра передаточных функций и правила преобразования структурных схем.	единения динамических звеньев.	2	Передаточная функция эквивалентного соединения динамических звеньев.	2	Определение параметров типовых динамических звеньев по переходным характеристикам.	2
5	Критерии устойчивости линейных систем автоматического управления.	Определение устойчивости САУ по алгебраическим критериям Раусса и Гурвица Определение устойчивости САУ по частотным критериям Найквиста и Михайлова.	2	Алгебраиче- ские критерии Рауса и Гурвица. Ча- стотные крите- рии Найквиста, Михайлова.	2	ЛАЧХ и АФЧХ системы автоматического управления	2
6	Анализ качества линейных автоматических систем управления.	Показатели качества работы системы в установившемся режиме Показатели качества работы в переходном режиме.	2	Расчет коэффициентов ошибок в САУ. Астатизм.	2	Исследование влияния постоянных на показатели качества работы САУ	2
7	Синтез линейных систем автоматического регулирования.	Виды корректирующих устройств (КУ)	2	Параллельная коррекция САУ	2	Системы с последовательной коррекцией	6

	Оптимизация про-	Модульный и симметричный оптимумы. Настройка регулятора тока на модульный оптимум	2	ПИ-регулятор2	2	Получение распола- гаемой и желаемой ЛАЧХ	2
8	стых контуров регулирования.	Настройка регулятора скорости на модульный и симметричный оптимумы. Настройка регулятора положения		П-регулятор Линейный регу- лятор	2	Моделирование контура скорости Моделирование контура положения	2
Всего аудиторных часов		18		18		18	

Таблицы 4 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

№ п/ п	Наименование темы (раздела) дисци- плины	Содержание лекционных занятий	Трудоемкость в	Темы практических занятий	Трудоемкость в	Темы лабораторных занятий	Трудоемкость в ак. ч.
1	Основные термины и понятия теории автоматического управления.	Виды систем управления: разомкнутые и замкнутые системы, системы стабилизации, системы программного управления, следящие и адаптивные системы	2	Объект управ- ления. Виды за- дающих и		Вступительное занятие. Техника безопасности при проведении лабораторных работ.	2
2	Временные и частотные характеристики динамических звеньев.	Переходная и импульсная переходная временные характеристики и средства их получения.	2	управляющих воздействий. Пропорциональное и инте-	2	Методика снятия переходных и ча- стотных характери- стик линейных ди- намических звеньев.	2
3	Анализ качества линейных автоматических систем управления.	Показатели качества работы системы в установившемся и переходном режиме	2	грирующее зве- нья		Исследование влияния коэффициента усиления на показатели качества	2
	Всего а	пудиторных часов	6	_	2	_	4

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
ОПК-3, ПК-1	Экзамен	Комплект контролирующих материалов для экзамена

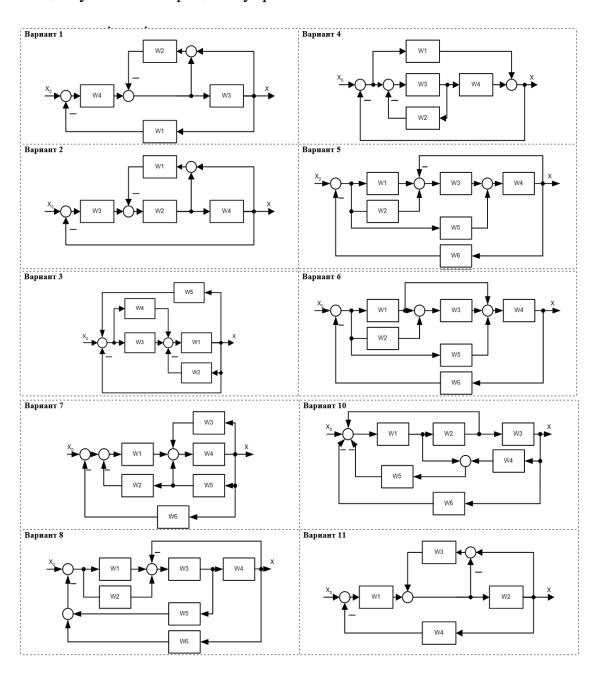
Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- лабораторные работы всего 40 баллов;
- за выполнение домашнего задания всего 60 баллов.

Экзамен проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Экзамен по дисциплине «Теория автоматического управления» проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время зачетной недели студент имеет право повысить итоговую оценку либо в форме устного собеседования по приведенным ниже вопросам (п.п. 6.5), либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.


Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашнее задание

В качестве домашнего задания студенты выполняют:

- определение (согласно варианта) по структурной схеме системы передаточной функции разомкнутой системы, передаточной функции системы по ошибке и передаточной функции по возмущению;
- проверку системы на устойчивость по заданному критерию устойчивости;
- определение показателей качества работы системы в установившемся режиме;
- определение прямых и косвенных показателей качества работы системы в переходном режиме;
 - оценку качества процесса управления.

6.3 Темы для рефератов (презентаций) – индивидуальное задание Рефераты по дисциплине отсутствуют.

6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Teма 1. Основные термины и понятия теории автоматического управления.

- 1. Каковы термины и понятия теории автоматического управления?
- 2. Какова классификация автоматических систем?
- 3. Какова основная задача теории автоматического управления?
- 4. Для чего в ТАУ применяют преобразование Лапласа?
- 5. Какие есть характеристики задающих и возмущающих воздействий? Тема 2. Математическое описание автоматических систем.
- 1. Как математически описывают автоматические системы?
- 2. Как составить модель простых динамических звеньев?
- 3. Как составить структурную схему объекта управления по математической модели в форме системы дифференциальных уравнений?
- *Тема 3. Временные и частотные характеристики динамических зве*ньев.
- 1. Что такое переходная характеристика динамического звена? Как ее получить?
- 2. Что такое импульсная переходная характеристика динамического звена? Как ее получить?
- 3. Как получить частотные характеристики динамических звеньев? Для чего?
- 4. Как получить логарифмические частотные характеристики (ЛАЧХ и ЛФЧХ)? Что такое асимптотическая ЛАЧХ?
- Тема 4. Алгебра передаточных функций и правила преобразования структурных схем.
- 1. Чему равна передаточная функция САУ при последовательном соединении звеньев?
- 2. Чему равна передаточная функция САУ при параллельном соединении звеньев?
- 3. Чему равна передаточная функция САУ при встречно-параллельном соединении звеньев?
 - 4. Каковы правила преобразования структурных схем?
 - 5. Какова алгебра передаточных функций?
 - 6. Какие бывают обратные связи?

- *Тема 5. Критерии устойчивости линейных систем автоматического управления.*
- 1. Какие существуют критерии устойчивости линейных систем автоматического управления?
 - 2. Какова математическая трактовка устойчивости линейных систем?
 - 3. В чем заключаются алгебраические критерии Рауса и Гурвица?
 - 4. Частотные критерии Найквиста, Михайлова.
- 5. Чем различаются структурно-устойчивые и структурно-неустойчивые системы?

Тема 6. Анализ качества линейных автоматических систем управления.

- 1. Что такое запасы устойчивости? Как их определяют?
- 2. Каковы показатели качества работы системы в установившемся режиме?
 - 3. В чем заключается метод коэффициентов ошибок?
 - 4. Какие есть прямые показатели качества работы в переходном режиме?
- 5. Какие есть косвенные показатели качества работы в переходном режиме?

Тема 7. Синтез линейных систем автоматического регулирования.

- 1. Какие существуют виды корректирующих устройств?
- 2. Что такое последовательная и параллельная коррекция?
- 3. Как осуществляется синтез последовательного корректирующего устройства?
 - 4. Что такое корректирующие устройства?
- 5. Как осуществляется синтез желаемой ЛАЧХ (низкочастотного, среднечастотного и высокочастотного участков)?

Тема 8. Оптимизация простых контуров регулирования.

- 1. Что предполагает настройка на модульный и симметричный оптимумы?
- 2. Как настроить регулятора тока на модульный оптимум? Почему регулятор тока настраивают именно на модульный оптимум?
- 3. Как настроить регулятор скорости на модульный и симметричный оптимумы?
 - 4. Как настраивается регулятор положения?

6.5 Вопросы для подготовки к экзамену

- 1. Каковы термины и понятия теории автоматического управления?
- 2. Какова классификация автоматических систем?
- 3. Какова основная задача теории автоматического управления?
- 4. Для чего в ТАУ применяют преобразование Лапласа?

- 6. Как математически описывают автоматические системы?
- 7. Как составить модель простых динамических звеньев?
- 8. Как составить структурную схему объекта управления по математической модели в форме системы дифференциальных уравнений?
- 9. Что такое переходная характеристика динамического звена? Как ее получить?
- 10. Что такое импульсная переходная характеристика динамического звена? Как ее получить?
- 11. Как получить частотные характеристики динамических звеньев? Для чего?
- 12. Как получить логарифмические частотные характеристики (ЛАЧХ и ЛФЧХ)? Что такое асимптотическая ЛАЧХ?
- 13. Чему равна передаточная функция САУ при последовательном соединении звеньев?
- 14. Чему равна передаточная функция САУ при параллельном соединении звеньев?
- 15. Чему равна передаточная функция САУ при встречно-параллельном соединении звеньев?
 - 16. Каковы правила преобразования структурных схем?
 - 17. Какова алгебра передаточных функций?
 - 18. Какие бывают обратные связи?
- 19. Какие существуют критерии устойчивости линейных систем автоматического управления?
 - 20. Какова математическая трактовка устойчивости линейных систем?
 - 21. В чем заключаются алгебраические критерии Рауса и Гурвица?
 - 22. Частотные критерии Найквиста, Михайлова.
- 23. Чем различаются структурно-устойчивые и структурно-неустойчивые системы?
 - 24. Что такое запасы устойчивости? Как их определяют?
- 25. Каковы показатели качества работы системы в установившемся режиме?
 - 26. В чем заключается метод коэффициентов ошибок?
- 27. Какие есть прямые показатели качества работы в переходном режиме?
- 28. Какие есть косвенные показатели качества работы в переходном режиме?
 - 29. Какие существуют виды корректирующих устройств?
 - 30. Что такое последовательная и параллельная коррекция?

- 31. Как осуществляется синтез последовательного корректирующего устройства?
 - 32. Что такое корректирующие устройства?
- 33. Как осуществляется синтез желаемой ЛАЧХ (низкочастотного, среднечастотного и высокочастотного участков)?
- 34. Что предполагает настройка на модульный и симметричный оптимумы?
- 35. Как настроить регулятора тока на модульный оптимум? Почему регулятор тока настраивают именно на модульный оптимум?
- 36.. Как настроить регулятор скорости на модульный и симметричный оптимумы?
 - 37.. Как настраивается регулятор положения?

6.6 Примерная тематика курсовых работ

Курсовые работы не предусмотрены.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Коновалов, Б. И. Теория автоматического управления : учебное пособие для вузов / Б. И. Коновалов, Ю. М. Лебедев. 6-е изд., стер. Санкт-Петербург : Лань, 2022. 220 с. ISBN 978-5-507-44643-8. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/ book/238508 (дата обращения: 10.08.2024). Режим доступа: для авториз. пользователей. Текст : электронный
- 2. Федотов, А. В. Основы теории автоматического управления : учебное пособие / А. В. Федотов. 2-е изд. Саратов : Ай Пи Эр Медиа, 2019. 278 с. ISBN 978-5-4486-0570-3. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/83344.html (дата обращения: 10.08.2024). Режим доступа: для авториз. пользователей. Текст : электронный

Дополнительная литература

- 1. Первозванский, А. А. Курс теории автоматического управления : учебное пособие / А. А. Первозванский. 3-е изд., стер. Санкт-Петербург : Лань, 2021. 624 с. ISBN 978-5-8114-0995-2. Текст : электронный // Лань : электроннобиблиотечная система. URL: https://e.lanbook.com/book/168873 (дата обращения: 07.08.2024). Режим доступа: для авториз. пользователей. Текст : электронный
- 2. Ивченко, В. Д. Теория автоматического управления : учебнометодическое пособие / В. Д. Ивченко, В. Н. Арбузов. Москва : РТУ МИРЭА, 2020. 275 с. Текст : электронный // Лань : электроннобиблиотечная система. URL: https://e.lanbook.com/book/167590 (дата обращения: 04.08.2024). Режим доступа: для авториз. пользователей. Текст : электронный
- 3. Певзнер, Л. Д. Теория автоматического управления. Задачи и решения : учебное пособие / Л. Д. Певзнер. Санкт-Петербург : Лань, 2021. 604 с. ISBN 978-5- 8114-2161-9. Текст : электронный // Лань : электроннобиблиотечная система. URL: https://e.lanbook.com/book/168937 (дата обращения: 03.08.2024). Режим доступа: для авториз. пользователей. Текст : электронный.

Учебно-методическое обеспечение

1. Методические указания к домашним заданиям по курсу «Теория

- автоматического управления» / Сост. Сергиенко Н.Н.. Алчевск: ДонГТУ, 2013. 54 с. URL: $\frac{\text{https://moodle.dstu.education/course/view.php?id=1369\#section-5}}{\text{доступа: для авториз. пользователей.}} Текст: электронный.$
- 3. Теория автоматического управления: Практикум. / Сост.: Н.Н. Сергиенко. Алчевск: ДонГТУ, 2015. 79 с. URL: https://moodle.dstu.education/course/view.php?id=1369#section-5. Режим доступа: для авториз. пользователей. Текст: электронный.

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт. Алчевск. URL: library.dstu.education. Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст : электронный.
- 3. Консультант студента: электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст: электронный.
- 4. Университетская библиотека онлайн : электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст : электронный.
- 5. IPR BOOKS : электронно-библиотечная система. Красногорск. URL: http://www.iprbookshop.ru/. Текст : электронный.
- 6. Федеральная служба по экологическому, технологическому и атомному надзору (Ростехнадзор) : официальный сайт. Москва. https://www.gosnadzor.ru/. Текст : электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

	Адрес (местополо-
Наименование оборудованных учебных кабинетов	жение) учебных
	кабинетов
Специальные помещения:	
Компьютерный класс кафедры:	ауд 319, главный
- ПТК AMD AthlonX2 255 (4 шт.);	корп.
- С/б Sempron 140 2.71 (1 шт.), монитор Hanns'g (1 шт.);	
- ПТК Intel Ce1eron E3300 2,5 ГГц (3 шт.);	
- ПТК AMD Athlon 64×2 360 (1 шт.);	
- ПТК AMD Athlon (1 шт.);	
- ПТК Intel Ce1eron 1.60 GHz (1 шт.);	
- ПТК AMD Athlon 64×2 5200+ (1 шт.);	
- ПТК IntelCore 2Duo E7500 (1 шт.);	
- лабораторная мебель: столы, стулья для студентов (по количе-	
ству обучающихся), рабочее место преподавателя.	

Лист согласования РПД

Разработала		
доц. кафедры электромеханики		
им. А. Б. Зеленова	Alexander 1	М.А. Ямковая
(должность)	_(подпись)	(Ф.И.О.)
. (должность)	(подпись)	(Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
Заведующий кафедрой	Muno	Д. И. Морозов
	(подпись)	(Ф.И.О.)
Протокол № 1 заседания кафедры электромеханики им. А.Б. Зеленова	от 22.08.	.2024 г.
Декан факультета	В. Е	3. <u>Дьячкова</u> (Ф.И.О.)
Согласовано		
Председатель методической комиссии по направлению подготовки 13.03.02 Электроэнергетика и электротехника	<u>Коге</u> <u>П</u>	<u>Г.Н. Комаревцева</u> (Ф.И.О.)
Начальник учебно-методического центра	(подпись)	О.А. Коваленко (Ф.И.О.)

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения изменений				
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ: ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:				
Осно	вание:			
Подпись лица, ответственного за внесение изменений				