Документ подписан простой электронной подписью

Форма обучения

Информация о владельнё ИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФИО: Вишневский Дмитрий Александрович (МИНОБРНАУКИ РОССИИ) (МИНОБРНАУКИ РОССИИ)

Должность: Ректор

Дата подписания: 17.10.2025 15:06:46

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

Уникальный программный ключ: ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ 03474917c4d012283e5ad996a48a5e70bf8da057/11

(ФГБОУ ВО «ДонГТУ»)

Факультет Информационных технологий и автоматизации производственных процессов Электромеханики им. А. Б. Зеленова Кафедра

> ТВЕРЖДАЮ И.о. проректора по учебной работе Д.В. Мулов

	COMPANY
PA	АБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ
Автоматиз	ированный электропривод типовых производственных
	механизмов
Parallo Name and All Harris College State (1982)	(наименование дисциплины)
1	3.03.02 Электроэнергетика и электротехника
	(код. наименование направления)
Электропривод	и автоматика промышленных установок и технологических
	комплексов
	(профиль подготовки)
Квалификация	бакалавр
	(бакалавр/специалист/магистр)

очная, заочная (очная, очно-заочная, заочная)

1 Цели и задачи изучения дисциплины

Цели изучения учебной дисциплины:

- выявление комплекса требований, определяющих выбор систем электропривода для типовых производственных механизмов;
- выявление особенностей проектирования электроприводов, отвечающих вышеуказанным требованиям;
- изучение примеров их технической реализации в различных отраслях промышленности, выбираемых с учетом потребностей региона;
- получение умений и навыков построения математических моделей, проведения расчётов и анализа процессов в статике и динамике при работе электроприводов различных производственных механизмов.

Задачи изучения дисциплины:

- знать типовые требования к электроприводам различных типовых производственных механизмов;
- знать и уметь применять методы расчета электроприводов различных типовых производственных механизмов;
- уметь выбирать, проектировать, налаживать и эксплуатировать системы электроприводов промышленных установок в различных отраслях народного хозяйства.

Дисциплина нацелена на формирование:

- профессиональных компетенций (ПК-1, ПК-3, ПК-4) выпускника.

Курс АЭП ТПМ (Б1.В.16) входит в БЛОК 1 «Дисциплины (модули)», часть блока 1, формируемую участниками образовательных отношений подготовки студентов по направлению 13.03.02 «Электроэнергетика и электротехника».

Дисциплина базируется на следующих дисциплинах: «Высшая математика», «Физика», «Теоретические основы электротехники», «Теория «Электрические автоматического управления», машины», «Силовая «Теория электропривода», электроника», «Системы управления электроприводами», «Элементы автоматизированного электропривода».

Дисциплина изучается на 4 курсе в 7 и 8 семестрах (очная форма) и на 5 курсе в 9 и 10 семестрах (заочная форма).

Общая трудоемкость освоения дисциплины для очной формы обучения составляет 3 зачетных единицы, 108 ак.ч (7 семестр) и 3,5 зачетных единицы, 126 ак.ч (8 семестр). Программой дисциплины предусмотрены (7 и 8 семестры): лекционные (36 и 24 ак.ч.), лабораторные (36 и 36 ак.ч.) занятия и самостоятельная работа студента (36 и 66 ак.ч.).

Для заочной формы обучения программой дисциплины предусмотрены (9 и 10 семестры): лекционные (4 и 8 ак.ч.), лабораторные (4 и 8 ак.ч.) занятия и самостоятельная работа студента (100 и 110 ак.ч.).

Знания, полученные по освоению дисциплины, необходимы при выполнении бакалаврской выпускной квалификационной работы.

По завершению освоения данной дисциплины обучающийся должен овладеть следующими компетенциями:

Таблица 1 – Компетенции, обязательные к освоению

Содержание компетенции	Код компетенции	Код и наименование индикатора достижения компетенции				
Способен участвовать в проектировании объектов профессиональной деятельности	ПК-1	ПК-1.1. Выполняет сбор и анализ данных для проектирования, составляет конкурентно-способные варианты технических решений ПК-1.2. Обосновывает выбор проектного решения ПК-1.3. Демонстрирует понимание взаимосвязи задач проектирования и эксплуатации				
Способен оформлять конструкторскую документацию проектов систем электропривода технологического оборудования в различных отраслях промышленности	ПК-3	ПК-3.2. Способен применять методы и технические средства эксплуатационных испытаний и диагностики электроэнергетического оборудования.				
Способен участвовать в эксплуатации технологического оборудования объектов профессиональной деятельности	ПК-4	ПК-4.1. Способен участвовать эксплуатации технологического оборудования объектов профессиональной деятельности ПК-4.2. Способен применять методы и технические средства эксплуатации технологического оборудования объектов профессиональной деятельности				

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 3 и 3,5 зачётных единицы (два семестра), 108 и 126 ак. ч. соответственно.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к лабораторным работам, текущему контролю, выполнение домашнего семестрового задания и курсового проекта, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Ак.ч. Всего	Ак.ч. 7 сем.	Ак.ч. 8 сем.
Аудиторная работа, в том числе:	132	72	60
Лекции (Л)	60	36	24
Практические занятия (ПЗ)	-	-	-
Лабораторные работы (ЛР)	72	36	36
Курсовая работа/курсовой проект	-	-	-
Самостоятельная работа студентов (СРС), в том числе:	102	36	66
Подготовка к лекциям	10	6	4
Подготовка к лабораторным работам	12	6	6
Подготовка к практическим занятиям / семинарам	-	-	-
Выполнение курсовой работы / проекта	36	-	36
Расчетно-графическая работа (РГР)	-	-	-
Реферат (индивидуальное задание)	-	-	-
Домашнее семестровое задание	20	10	10
Подготовка к контрольной работе	-	-	-
Подготовка к коллоквиумам	4	2	2
Аналитический информационный поиск	-	-	-
Работа с литературой	-	-	-
Подготовка к экзамену	20	12	8
Промежуточная аттестация – экзамен (Э), диф.зачет (Д/з)	Э (2), Д/з	Э	Э, Д/з
Ак. ч.	234	108	126
3. e.	6,5	3	3,5

5 Содержание дисциплины

С целью освоения компетенции, приведенной в п.3 дисциплина разбита на следующие темы:

7 семестр:

- тема 1 (Типовые производственные механизмы);
- тема 2 (Общие вопросы автоматизированного электропривода типовых производственных механизмов);
 - тема 3 (Автоматизированный электропривод подъемных кранов);
- тема 4 (Автоматизированный электропривод рольгангов и станинных роликов);
 - тема 5 (Автоматизированный электропривод ножниц);
 - тема 6 (Автоматизированный электропривод пил горячей резки);
 - тема 7 (Автоматизированный электропривод нажимных устройств);
 - тема 8 (Автоматизированный электропривод слитковозов).

8 семестр:

- тема 9 (Производственные механизмы, работающие с отрицательным вязким трением в нагрузке);
- тема 10 (Автоматизированный электропривод толкателей и сталкивателей);
 - тема 11 (Автоматизированный электропривод манипуляторов);
 - тема 12 (Реверсивные станы горячей прокатки);
 - тема 13 (Автоматизированный электропривод правильных машин);
- тема 14 (Автоматизированный электропривод металлорежущих станков).

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 3 и 4 соответственно.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1	Введение. Типовые производственные механизмы	Рабочие машины общепромышленного назначения. Классификация типовых производственных механизмов. Обзор рабочих машин общепромышленного назначения, область применения, основные типовые механизмы	2	-	-	-	-
2	Общие вопросы автоматизированн ого электропривода типовых производственны х механизмов	Современный электрический привод. Обобщенная структура электропривода. Общие понятия. Общие требования, предъявляемые к электроприводу. Электрические машины (типы, назначение, условия эксплуатации). Силовая часть и комплектный тиристорный электропривод. Основные системы управления электропривода. Последовательность проектирования электроприводов типовых производственных механизмов	4	-	-	-	-
3	Автоматизирован ный электропривод подъемных	Назначение и классификация кранов, область применения машин цикличного действия. Типы электрических кранов.	8	-	-	Исследование работы электропривода перемещения	12

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
	кранов	Кинематические схемы механизмов. Режимы работы механизмов, характер нагрузки. Нагрузочные Крановые электродвигателей для крановых механизмов: перемещения тележки, передвижения крана, подъема. Требования к крановым электроприводам. Системы управления электроприводам. Системы управления электроприводами механизмов электроприводами механизмов электроприводами контактная злектроприводами контактная контактная контактная контактная аппаратура. Математическое моделирование переходных процессов в MATLAB				тележки козлового крана Исследование работы электропривода подъема мостового крана	12
4	Автоматизирован ный электропривод рольгангов и станинных роликов	Назначение рольгангов, классификация, область применения. Кинематические схемы, режимы работы, характер нагрузки, нагрузочные диаграммы. Требования к электроприводу рольгангов и станинных роликов. Расчет статических нагрузок, динамических моментов и ускорений. Расчет мощности и выбор электродвигателей рольгангов. Системы управления	6	-	-	Исследование работы электропривода рольганга	12

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		электроприводами рольгангов и станинных роликов. Математическое моделирование переходных процессов в МАТLАВ					
5	Автоматизирован ный электропривод ножниц	Назначение ножниц, классификация, применения. Кинематические схемы, режимы работы, характер нагрузки, нагрузочные диаграммы. Требования к электроприводу ножниц. Расчет статических нагрузок для ножниц с параллельными ножами, а также с наклонным ножом. Расчет мощности и выбор электродвигателей ножниц. Системы управления электроприводами ножниц прокатных станов. Математическое моделирование переходных процессов в MATLAB	4	_	-	-	-

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
6	Автоматизирован ный электропривод пил горячей резки	Назначение, классификация, область применения. Кинематические схемы, режимы работы, характер нагрузки, нагрузочные диаграммы. Требования к электроприводам механизмов пил горячей резки. Выбор электродвигателя для вращения пильного диска. Расчет мощности электропривода подачи пилы горячей резки. Математическое моделирование переходных процессов в МАТLАВ	4	-	-	-	-
7	Автоматизирован ный электропривод нажимных устройств	Назначение, классификация, область применения нажимных устройств. Кинематические схемы, характер нагрузки, требования к электроприводу. Расчет статических моментов. Расчет мощности и выбор электродвигателей нажимных устройств. Системы управления электроприводами нажимных устройств. Математическое моделирование переходных процессов в МАТLАВ	4	-	-	_	-

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
8	Автоматизирован ный электропривод слитковозов	Назначение, режимы работы, требования к электроприводу. Расчет мощности и выбор электродвигателя. Системы управления электроприводами слитковозов. Математическое моделирование переходных процессов в МАТLAВ	4	-	-	-	-
	Всего аудиторных ч	насов (7 семестр)	36	-		36	
9	Производственны е механизмы, работающие с отрицательным вязким трением в нагрузке	Понятие отрицательного вязкого трения. Проблема фрикционных автоколебаний в электроприводе. Условия возникновения фрикционных автоколебаний, математическое описание. Способы борьбы с фрикционными автоколебаниями. Особенности математического моделирования отрицательного вязкого трения	2	-	-	Исследование работы электропривода рольганга при наличии отрицательного вязкого трения в нагрузке	12

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
10	Автоматизирован ный электропривод толкателей и сталкивателей	Назначение и область применения толкателей и сталкивателей. Кинематические схемы, характер нагрузки, нагрузочные диаграммы, требования к электроприводу. Расчет мощности и выбор электродвигателей толкателей и сталкивателей. Системы управления электроприводами толкателей и сталкивателей. Математическое моделирование переходных процессов в МАТLАВ	2	-	-	-	-
11	Автоматизирован ный электропривод металлорежущих станков	Назначение, работы, область применения металлорежущих станков. Кинематические схемы, характер нагрузки, требования к электроприводам подачи и главного движения. Расчет мощности и выбор двигателей подачи и главного движения металлорежущих станков. Системы управления электроприводами. Математическое моделирование переходных процессов в MATLAB	8	-	-	Исследование системы стабилизации мощности резания при фрезеровании Исследование системы стабилизации мощности резания с учетом люфта и упругостей передачи	12
12	Реверсивные станы горячей прокатки	Характеристика, технологический процесс, требования к электроприводу. Расчет мощности и выбор двигателей главных	8	-	-	-	-

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
13	Автоматизирован ный электропривод правильных машин	приводов реверсивных прокатных станов. Системы управления электроприводами. Математическое моделирование переходных процессов в МАТLАВ Назначение, классификация, режимы работы, область применения правильных машин. Кинематические схемы, характер нагрузки, требования к электроприводу. Расчет мощности и выбор двигателя главного привода правильной машины. Системы управления электроприводами правильных машин. Математическое	2	_	-	_	-
		моделирование переходных процессов в MATLAB					
14	Автоматизирован ный электропривод манипуляторов	Назначение, режимы работы, область применения манипуляторов. Кинематические схемы, характер нагрузки, требования к электроприводу. Расчет мощности и выбор электродвигателей манипуляторов. Системы управления электроприводами манипуляторов. Математическое моделирование переходных процессов в МАТLАВ	2	-	-	-	-

№ п/п	,	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
	Всего аудиторных часов (8 семестр)		24	-		36	
	Всего аудиторных ч	асов (всего)	60	-		72	

Таблица 4 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

№ п/п	Наименование раздела дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1	Введение. Типовые производственн ые механизмы	Рабочие машины общепромышленного назначения. Классификация типовых производственных механизмов. Обзор рабочих машин общепромышленного назначения, область применения, основные типовые механизмы	2	-	-	-	-
2	Автоматизирова нный электропривод подъемных кранов	Назначение и классификация кранов, область применения машин цикличного действия. Типы электрических кранов. Механизмы кранов. Кинематические схемы механизмов. Режимы работы механизмов, характер нагрузки. Нагрузочные диаграммы. Крановые электродвигатели. Расчет мощности и выбор электродвигателей для крановых механизмов: перемещения тележки, передвижения крана, подъема. Требования к крановым электроприводами механизмов электроприводами механизмов электрических кранов	2	-	-	Исследование работы электропривода перемещения тележки козлового крана	4
	Всего аудиторных	т часов (9 семестр)	4	-	1	4	<u>'</u>

№ π/π	Наименование раздела дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
3	Производственн ые механизмы, работающие с отрицательным вязким трением в нагрузке	Понятие отрицательного вязкого трения. Проблема фрикционных возникновения фрикционных автоколебаний, математическое отисание. Способы борьбы с фрикционными автоколебаниями. Особенности математического моделирования отрицательного вязкого трения	2	1	-	Исследование работы электропривода рольганга при наличии отрицательного вязкого трения в нагрузке	4
4	Автоматизирова нный электропривод металлорежущи х станков	Назначение, работы, область применения металлорежущих станков. Кинематические схемы, характер нагрузки, требования к электроприводам подачи и главного движения. Расчет мощности и выбор двигателей подачи и главного движения металлорежущих станков. Системы управления электроприводами. Математическое моделирование переходных процессов в МАТLAВ	6	-	-	Исследование системы стабилизации мощности резания при фрезеровании	4
	Всего аудиторных часов (10 семестр)		8	-		8	
	Всего аудиторных часов (всего)		12	-		12	

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf).

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство	
ПК-1, ПК-3, ПК-4	Экзамен Диф. зачет	Комплект контролирующих материалов для экзамена и диф. зачета	

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- выполнение и защита лабораторных работ 60 баллов;
- выполнение и защита семестрового домашнего задания 40 баллов.

Экзамен проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального. В случае, если полученная в семестре сумма баллов не устраивает студента, он имеет право повысить итоговую оценку на экзамене.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале	
учебной деятельности	зачёт/экзамен	
0-59	Не зачтено/неудовлетворительно	
60-73	Зачтено/удовлетворительно	
74-89	Зачтено/хорошо	
90-100	Зачтено/отлично	

6.2 Домашнее семестровое задание

В качестве домашнего семестрового задания студенты выполняют расчет автоматизированного электропривода для одного из типовых производственных механизмов:

- козловые и мостовые краны;
- толкатели и сталкиватели;
- рольганги и станинные ролики;
- нажимные устройства;
- токарные и фрезерные станки;
- ножницы горячей резки

6.3 Темы рефератов

Написание рефератов при изучении дисциплины не предусмотрено.

6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Тема 1 Введение. Типовые производственные механизмы

- 1. Назовите основные типовые производственные механизмы в металлургической промышленности.
 - 2. Чем отличаются механизмы циклического и непрерывного действия?
- 3. Дайте определение механизма, рабочей машины, исполнительного органа рабочей машины.
- *Тема 2 Общие вопросы автоматизированного электропривода типовых производственных механизмов*
- 1. Что представляет собой современный электрический привод (ЭП), структура, классификация, общие требования к ЭП типовых производственных механизмов?
 - 2. Назовите основные СУЭП в металлургической промышленности.
- 3. Какова последовательность действий при проектировании ЭП типовых производственных механизмов?
 - 4. Назовите достоинства и недостатки ЭП переменного тока.
 - 5. Назовите достоинства и недостатки ЭП постоянного тока.

Тема 3 Автоматизированный электропривод подъемных кранов

- 1. Каковы назначение, классификация, основные параметры и область применения электрических кранов?
- 2. Перечислите механизмы электрических кранов, их кинематические схемы, режимы работы, характер нагрузки.
- 3. Механизм подъема мостового крана: каковы особенности расчета мощности и выбора двигателей, требования к ЭП?
- 4. Механизм перемещения тележки мостового крана: каковы особенности расчета мощности и выбора двигателей, требования к ЭП?
- 5. Механизм передвижения мостового крана: каковы особенности расчета мощности и выбора двигателей, требования к ЭП?
- 6. Механизм подъема грейферного крана: каковы особенности расчета мощности и выбора двигателей, требования к ЭП?

- 7. Сравните достоинства и недостатки двигателей постоянного и переменного тока при использовании их в крановых ЭП.
- 8. Что представляют собой крановые магнитные контроллеры и крановая контактная аппаратура?
- 9. Каковы особенности математического моделирования работы крановых ЭП в MATLAB / Simulink?

Тема 4 Автоматизированный электропривод рольгангов и станинных роликов

- 1. Каково назначение рольгангов и станинных роликов? Классификация, область применения, требования к ЭП.
 - 2. Расчет мощности и выбор двигателей ЭП транспортных рольгангов.
- 3. Расчет мощности и выбор двигателей ЭП рольгангов с коническими роликами.
- 4. От чего зависит выбор типа ЭП рольганга? Достоинства и недостатки группового и индивидуального ЭП. Сравнение ЭП рольгангов с двигателями постоянного и переменного тока.
- 5. Каковы особенности математического моделирования работы ЭП различных рольгангов в MATLAB / Simulink?

Тема 5 Автоматизированный электропривод ножниц

- 1. Каково назначение ножниц поперечной резки? Классификация, область применения, кинематические схемы, нагрузочные диаграммы, требования к ЭП ножниц.
 - 2. Расчет мощности и выбор двигателей ЭП ножниц с параллельными ножами.
 - 3. Расчет мощности и выбор двигателей ЭП ножниц с наклонным ножом.
- 4. Каковы особенности математического моделирования работы ЭП ножниц в MATLAB / Simulink?

Тема 6 Автоматизированный электропривод пил горячей резки

- 1. Каково назначение пил горячей резки? Классификация, область применения, кинематические схемы, нагрузочные диаграммы, требования к ЭП.
 - 2. Расчет мощности и выбор двигателей ЭП вращения пильного диска.
 - 3. Расчет мощности и выбор двигателей ЭП подачи пил горячей резки.
- 4. Каковы особенности математического моделирования работы ЭП пил горячей резки в MATLAB / Simulink?

Тема 7 Автоматизированный электропривод нажимных устройств

- 1. Каково назначение нажимных устройств? Классификация, область применения, кинематические схемы, нагрузочные диаграммы, требования к ЭП.
 - 2. Расчет мощности и выбор двигателей ЭП нажимных устройств.
 - 3. Каковы особенности СУЭП нажимных устройств?
- 4. Какие особенности математического моделирования работы ЭП нажимных устройств в MATLAB / Simulink?

Тема 8 Автоматизированный электропривод слитковозов

- 1. Каково назначение и режимы работы слитковозов? Требования к ЭП.
- 2. Расчет мощности и выбор двигателей ЭП слитковозов.
- 3. Какие особенности математического моделирования работы ЭП слитковозов в MATLAB / Simulink?

Тема 9 Производственные механизмы, работающие с отрицательным вязким

трением в нагрузке

- 1. Каковы особенности работы промышленных ЭП при наличии отрицательного вязкого трения в нагрузке?
- 2. Что такое фрикционные автоколебания? Причины их возникновения в промышленных ЭП, негативный эффект, способы устранения?
- 3. Каковы условия возникновения фрикционных автоколебаний в одномассовых и двухмассовых ЭП, математическое описание?
- 4. Какие особенности математического моделирования отрицательного вязкого трения в MATLAB / Simulink?

Тема 10 Автоматизированный электропривод толкателей и сталкивателей

- 1. Каково назначение и область применения толкателей и сталкивателей? Кинематические схемы, нагрузочные диаграммы, требования к ЭП.
 - 2. Расчет мощности и выбор двигателей ЭП толкателей и сталкивателей.
- 3. Каковы особенности математического моделирования работы ЭП толкателей и сталкивателей в MATLAB / Simulink?

Тема 11 Автоматизированный электропривод манипуляторов

- 1. Каково назначение и режимы работы манипуляторов? Требования к ЭП.
- 2. Расчет мощности и выбор двигателей ЭП манипуляторов.
- 3. Каковы особенности математического моделирования работы ЭП манипуляторов в MATLAB / Simulink?

Тема 12 Реверсивные станы горячей прокатки

- 1. Что представляют собой реверсивные станы горячей прокатки? Характеристика, технологический процесс, требования к ЭП.
- 2. Определение оптимальных параметров и мощности прокатных двигателей реверсивных станов горячей прокатки.
- 3. Каковы особенности систем управления главных ЭП реверсивных станов горячей прокатки?
- 4. Каковы особенности математического моделирования работы главных ЭП реверсивных станов горячей прокатки в MATLAB / Simulink?
 - 5. Какие двигатели применяются для главных ЭП обжимных станов?

Тема 13 Автоматизированный электропривод правильных машин

- 1. Каково назначение правильных машин? Классификация, режимы работы, область применения, кинематические схемы, требования к ЭП.
 - 2. Расчет мощности и выбор двигателей главных ЭП правильных машин.
- 3. Каковы особенности математического моделирования работы главных ЭП правильных машин в MATLAB / Simulink?

Тема 14 Автоматизированный электропривод металлорежущих станков

- 1. Каково назначение, классификация, режимы работы, область применения металлорежущих станков?
- 2. Каковы требования к ЭП подачи и ЭП главного движения металлорежущих станков? Диапазон регулирования скорости.
 - 3. Расчет мощности и выбор двигателей ЭП подачи металлорежущих станков.
- 4. Расчет мощности и выбор двигателей ЭП главного движения металлорежущих станков.
 - 5. Каковы особенности систем управления ЭП подачи металлорежущих

станков?

- 6. Каковы особенности систем управления ЭП главного движения металлорежущих станков?
- 7. Каковы особенности математического моделирования работы ЭП подачи металлорежущих станков в MATLAB / Simulink?
- 8. Каковы особенности математического моделирования работы ЭП главного движения металлорежущих станков в MATLAB / Simulink?

6.5 Вопросы для подготовки к экзамену

- 1. Назовите основные типовые производственные механизмы в металлургической промышленности.
- 2. Что представляет собой современный электрический привод (ЭП), структура, классификация, общие требования к ЭП типовых производственных механизмов?
 - 3. Назовите основные СУЭП в металлургической промышленности.
- 4. Какова последовательность действий при проектировании ЭП типовых производственных механизмов?
- 5. Каковы назначение, классификация, основные параметры и область применения электрических кранов?
- 6. Перечислите механизмы электрических кранов, их кинематические схемы, режимы работы, характер нагрузки.
- 7. Механизм подъема мостового крана: каковы особенности расчета мощности и выбора двигателей, требования к ЭП?
- 8. Механизм перемещения тележки мостового крана: каковы особенности расчета мощности и выбора двигателей, требования к ЭП?
- 9. Механизм передвижения мостового крана: каковы особенности расчета мощности и выбора двигателей, требования к ЭП?
- 10. Механизм подъема грейферного крана: каковы особенности расчета мощности и выбора двигателей, требования к ЭП?
- 11. Сравните достоинства и недостатки двигателей постоянного и переменного тока при использовании их в крановых ЭП.
- 12. Что представляют собой крановые магнитные контроллеры и крановая контактная аппаратура?
- 13. Каковы особенности математического моделирования работы крановых ЭП в MATLAB / Simulink?
- 14. Каково назначение рольгангов и станинных роликов? Классификация, область применения, требования к Π .
 - 15. Расчет мощности и выбор двигателей ЭП транспортных рольгангов.
- 16. Расчет мощности и выбор двигателей ЭП рольгангов с коническими роликами.
- 17. От чего зависит выбор типа ЭП рольганга? Достоинства и недостатки группового и индивидуального ЭП. Сравнение ЭП постоянного и переменного тока.
- 18. Каковы особенности математического моделирования работы ЭП различных рольгангов в MATLAB / Simulink?

- 19. Каково назначение ножниц поперечной резки? Классификация, область применения, кинематические схемы, нагрузочные диаграммы, требования к ЭП ножниц.
- 20. Расчет мощности и выбор двигателей ЭП ножниц с параллельными ножами.
 - 21. Расчет мощности и выбор двигателей ЭП ножниц с наклонным ножом.
- 22. Каковы особенности математического моделирования работы ЭП ножниц в MATLAB / Simulink?
- 23. Каково назначение пил горячей резки? Классификация, область применения, кинематические схемы, нагрузочные диаграммы, требования к ЭП.
 - 24. Расчет мощности и выбор двигателей ЭП вращения пильного диска.
 - 25. Расчет мощности и выбор двигателей ЭП подачи пил горячей резки.
- 26. Каковы особенности математического моделирования работы ЭП пил горячей резки в MATLAB / Simulink?
- 27. Каково назначение нажимных устройств? Классификация, область применения, кинематические схемы, нагрузочные диаграммы, требования к ЭП.
 - 28. Расчет мощности и выбор двигателей ЭП нажимных устройств.
 - 29. Каковы особенности СУЭП нажимных устройств?
- 30. Какие особенности математического моделирования работы ЭП нажимных устройств в MATLAB / Simulink?
 - 31. Каково назначение и режимы работы слитковозов? Требования к ЭП.
 - 32. Расчет мощности и выбор двигателей ЭП слитковозов.
- 33. Какие особенности математического моделирования работы ЭП слитковозов в MATLAB / Simulink?
- 34. Каковы особенности работы промышленных ЭП при наличии отрицательного вязкого трения в нагрузке?
- 35. Что такое фрикционные автоколебания? Причины их возникновения в промышленных ЭП, негативный эффект, способы устранения?
- 36. Каковы условия возникновения фрикционных автоколебаний в одномассовых и двухмассовых ЭП, математическое описание?
- 37. Какие особенности математического моделирования отрицательного вязкого трения в MATLAB / Simulink?
- 38. Каково назначение и область применения толкателей и сталкивателей? Кинематические схемы, нагрузочные диаграммы, требования к ЭП.
 - 39. Расчет мощности и выбор двигателей ЭП толкателей и сталкивателей.
- 40. Каковы особенности математического моделирования работы ЭП толкателей и сталкивателей в MATLAB / Simulink?
 - 41. Каково назначение и режимы работы манипуляторов? Требования к ЭП.
 - 42. Расчет мощности и выбор двигателей ЭП манипуляторов.
- 43. Каковы особенности математического моделирования работы ЭП манипуляторов в MATLAB / Simulink?
- 44. Что представляют собой реверсивные станы горячей прокатки? Характеристика, технологический процесс, требования к ЭП.
- 45. Определение оптимальных параметров и мощности прокатных двигателей реверсивных станов горячей прокатки.

- 46. Каковы особенности систем управления главных ЭП реверсивных станов горячей прокатки?
- 47. Каковы особенности математического моделирования работы главных ЭП реверсивных станов горячей прокатки в MATLAB / Simulink?
 - 48. Какие двигатели применяются для главных ЭП обжимных станов?
- 49. Каково назначение правильных машин? Классификация, режимы работы, область применения, кинематические схемы, требования к ЭП.
 - 50. Расчет мощности и выбор двигателей главных ЭП правильных машин.
- 51. Каковы особенности математического моделирования работы главных ЭП правильных машин в MATLAB / Simulink?
- 52. Каково назначение, классификация, режимы работы, область применения металлорежущих станков?
- 53. Каковы требования к ЭП подачи и ЭП главного движения металлорежущих станков? Диапазон регулирования скорости.
- 54. Расчет мощности и выбор двигателей ЭП подачи металлорежущих станков.
- 55. Расчет мощности и выбор двигателей ЭП главного движения металлорежущих станков.
- 56. Каковы особенности систем управления ЭП подачи металлорежущих станков?
- 57. Каковы особенности систем управления ЭП главного движения металлорежущих станков?
- 58. Каковы особенности математического моделирования работы ЭП подачи металлорежущих станков в MATLAB / Simulink?
- 59. Каковы особенности математического моделирования работы ЭП главного движения металлорежущих станков в MATLAB / Simulink?
- 60. Для управления какими производственными механизмами используются трехконтурные СУЭП? Привести структурную схему такого ЭП.
- 61. Для управления какими производственными механизмами используются двухконтурные СУЭП? Привести структурную схему такого ЭП.
- 62. Для управления какими производственными механизмами применяется двухзонное регулирование скорости? Привести структурную схему такого ЭП.

6.6 Тематика и содержание курсового проекта

Примерная тематика курсовых проектов:

- автоматизированный ЭП подъема электрического крана (мостового, козлового, грейферного);
- автоматизированный ЭП перемещения тележки электрического крана (мостового, козлового, грейферного);
- автоматизированный ЭП передвижения электрического крана (мостового, козлового, грейферного);
 - автоматизированный ЭП рольганга или станинных роликов;
 - автоматизированный ЭП ножниц;
 - автоматизированный ЭП подачи пилы горячей резки;

- автоматизированный ЭП вращения диска пилы горячей резки;
- автоматизированный ЭП нажимного устройства (для черновой или чистовой клети);
 - автоматизированный ЭП слитковоза;
 - автоматизированный ЭП сталкивателя или печного толкателя;
 - автоматизированный ЭП манипулятора;
- автоматизированный ЭП стана горячей прокатки (для черновой или чистовой клети);
 - автоматизированный ЭП правильной машины (главный привод);
- автоматизированный ЭП подачи металлорежущего станка (токарного или фрезерного);
- автоматизированный ЭП главного движения металлорежущего станка (токарного или фрезерного).

Разработке подлежат следующие вопросы: краткая характеристика механизма, требования к ЭП; расчет мощности, выбор и проверка двигателя; обоснование и выбор силовой части, расчет параметров объекта управления; синтез СУЭП и математическое моделирование переходных процессов в MATLAB / Simulink; анализ полученных результатов.

Графическая часть (слайды, презентация): кинематическая схема механизма, структурная и функциональная схема ЭП, схема математической модели, графики переходных процессов.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Электропривод типовых производственных механизмов: учебное пособие для вузов / Ю. Н. Дементьев, В. М. Завьялов, Н. В. Кояин, Л. С. Удут. Москва: Издательство Юрайт, 2024. 403 с. ISBN 978-5-534-06847-4. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/540898.html (дата обращения: 20.08.2024).
- 2. Асинхронный частотно-регулируемый электропривод типовых производственных механизмов: учебное пособие / Ю. Н. Дементьев, В. М. Завьялов, Н. В. Кояин, Л. С. Удут. – Томск: Томский политехнический университет, 2019. – электронный // Цифровой 978-5-4387-0774-5. Текст: ISBN _ образовательный **IPR** SMART: [сайт]. URL: pecypc https://www.iprbookshop.ru/84008.html (дата обращения: 20.08.2024).

Дополнительная литература

- 1. Коцюбинский, В.С. Выбор мощности электропривода общепромышленных механизмов: учебное пособие, 2-е изд., перераб. и доп./ В.С. Коцюбинский. Алчевск: ДонГТУ, 2007. 205 с. URL: https://moodle.dstu.education/course/view.php?id=535 . Режим доступа: для авториз. пользователей. Текст: электронный.
- 2. Белов, М.П. Автоматизированный электропривод типовых производственных механизмов и технологических комплексов: учебник для студентов высших учебных заведений / М.П. Белов, В.А. Новиков, Л.П. Рассудов. 3-е изд., испр. М.: Издательский центр «Академия», 2007. 576 с. URL: https://moodle.dstu.education/course/view.php?id=535 . Режим доступа: для авториз. пользователей. Текст: электронный.
- 3. Кузьмин, А.В. Справочник по расчетам механизмов подъемнотранспортных машин: 2-е изд., перераб. и доп. / А.В. Кузьмин, Ф.Л. Марон. Мн: Выш. шк., 1983. 350 с. URL: https://moodle.dstu.education/course/view.php?id=535 . Режим доступа: для авториз. пользователей. Текст: электронный.

Учебно-методическое обеспечение

- 1. Методические указания к выполнению лабораторных работ по курсу «Автоматизированный электропривод типовых производственных механизмов» (для студентов специальности 13.03.02 «Электроэнергетика и электротехника» всех форм обучения) / Сост.: А. Г. Щелоков. Алчевск, ГОУ ВПО ЛНР «ДонГТУ», 2020. 40 с. URL: https://moodle.dstu.education/course/view.php?id=535 . Режим доступа: для авториз. пользователей. Текст: электронный.
- 2. Методические указания к выполнению курсового проекте по курсу «Системы управления электропривода» (для студентов специальности «Электромеханические системы автоматизации и электропривод», всех форм

обучения) / Сост.: А.И. Мотченко, В.Н. Столяров - Алчевск: ДонГТУ, 2014. — 64 с. — URL: https://moodle.dstu.education/course/view.php?id=535 . — Режим доступа: для авториз. пользователей. — Текст: электронный.

7.2 Перечень ресурсов информационно-телекоммуникационной сети Интернет, необходимых для освоения дисциплины

- 1. Сайт дистанционного обучения ФГБОУ ВО «ДонГТУ» https://3kl.dontu.ru/
- 2. Научная библиотека ФГБОУ ВО «ДонГТУ» https://library.dontu.ru/
- 3. Электронно-библиотечная система ФГБОУ ВО «БГТУ им. В.Г. Шухова» http://ntb.bstu.ru
- 4. Электронно-библиотечная система Консультант студента: http://www.studentlibrary.ru/cgi-bin/mb4x
 - 5. Электронно-библиотечная система IPR BOOKS: http://www.iprbookshop.ru/
- 6. Сайт дистанционного обучения ФГБОУ ВО «ДонГТУ» https://moodle.dstu.education/

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

	Адрес	
Наименование оборудованных учебных кабинетов	(местоположение)	
панменование оборудованных у пеоных каоннегов	учебных	
	кабинетов	
Специальные помещения:		
Научно-исследовательская лаборатория «Теории	Ауд. 118, корп.	
электропривода» (25 посадочных мест), оборудованная учебной	главный	
мебелью и лабораторными стендами		
Научно-исследовательская лаборатория «Теории	Ауд. 115, корп.	
автоматического управления», оборудованная учебной мебелью	главный	
и лабораторными стендами		
Компьютерный класс (25 посадочных мест), оборудованный	Ауд. 319, корп.	
учебной мебелью, компьютерами с неограниченным доступом к	главный	
сети Интернет		

Лист согласования РПД

Разработал		
доц. кафедры электромеханики		
нм. А. Б. Зеленова	А.Г. Щел	оков
(должность)	(подпись) (Ф.И.О.)	
(должность)	(подпись) (Ф.И.С	Э.)
(должность)	(подпись) (Ф.И.С	Э.)
	10	
	Muller II II Mo	
Заведующий кафедрой	Д. И. МО	
	(подпись) (Ф.И.С	J.)
Протокол № 1 заседания кафедры		
электромеханики им. А.Б. Зеленова	от 22.08.2024	Γ.
	4	
Декана факультета	В. В. Дья	ячкова
1 3	(подпись) (Ф.И.	
	/	
Согласовано		
Председатель методической		
комиссии по направлению подготовки	y	
13.03.02 Электроэнергетика и	, / -	
	Л.Н. Комаре	DHADA
электротехника	(целпись) (Ф.И.	О.)
Начальник учебно-методического центра	Уже О.А. Ковал	іенко
7	(подпись) (Ф.И.	