Документ подписан простой электронной подписью Информация о владельце:

ФИО: Вишневский Дмитрий Александрович

Должность: Рембинистерство науки и высшего образования российской федерации Дата подписания: 17.10.2025 15:06:46

Уникальный программный ключ:

(МИНОБРНАУКИ РОССИИ)

03474917c4d012283e5ad996a48a5e70b8dbb7АЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет

информационных технологий и автоматизации

производственных процессов

Кафедра

автоматизированного управления и инновационных

технологий

УТВЕРЖДАЮ И.о. прорежтора по учебной работе Д.В. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Автоматизация объектов дорожно-транспортной инфраструктуры (наименование дисциплины)

15.04.04 Автоматизация технологических процессов и производств (код, наименование направления)

Автоматизация и управление дорожно-транспортной инфраструктурой (магистерская программа)

Квалификация	магистр	
	(бакалавр/специалист/магистр)	
Форма обучения	очная, заочная	
	(outlag outle seemed account)	

1 Цели и задачи изучения дисциплины

Цели дисциплины. Целью изучения дисциплины «Автоматизация объектов дорожно-транспортной инфраструктуры» является формирование у студентов понимания принципов и технологий автоматизации, необходимых для повышения эффективности, безопасности и управления транспортными потоками на дорогах, а также для оптимизации работы объектов дорожнотранспортной инфраструктуры.

Задачи изучения дисциплины:

- ознакомление с основными понятиями и принципами автоматизации в дорожно-транспортной сфере;
- изучение современных технологий и систем автоматизации, применяемых на объектах дорожно-транспортной инфраструктуры;
- анализ преимуществ и недостатков различных автоматизированных решений для объектов дорожно-транспортной инфраструктуры;
- изучение методов и алгоритмов управления транспортными потоками с помощью автоматизированных систем;
- работы взаимодействия – освоение принципов И различных объектах автоматизированных компонентов систем на дорожноинфраструктуры транспортной (например, датчиков, контроллеров, исполнительных устройств);
- рассмотрение вопросов обеспечения безопасности и надёжности работы автоматизированных систем;
- изучение методов оценки эффективности и оптимизации параметров автоматизированных систем для объектов дорожно-транспортной инфраструктуры;
- развитие навыков проектирования и внедрения автоматизированных систем на объектах дорожно-транспортной инфраструктуры с учётом специфики и требований конкретной территории.

Дисциплина направлена на формирование профессиональной компетенции (ПК-4) выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины — курс входит в БЛОК 1 «Дисциплины (модули)», часть, формируемую участниками образовательных отношений подготовки студентов по направлению 15.04.04 Автоматизация технологических процессов и производств (магистерская программа «Автоматизация и управление дорожно-транспортной инфраструктурой»).

Дисциплина реализуется кафедрой автоматизированного управления и инновационных технологий.

Основывается на базе дисциплин: бакалавриата.

Является основой для изучения следующих дисциплин: «Научноисследовательская работа», «Преддипломная практика», «Магистерская работа».

Для изучения дисциплины необходимы компетенции, сформированные у студента для решения профессиональных задач деятельности, связанных с автоматизацией технологических процессов на автотранспортном предприятии.

Курс является фундаментом для ориентации студентов в сфере построения автоматизированных систем проектирования и управления дорожно-транспортной инфраструктурой.

Общая трудоемкость освоения дисциплины составляет 9 зачетных единицы, 324 ак.ч.

Программой дисциплины предусмотрены:

- при очной форме обучения лекционные (54 ак.ч.), практические (72 ак.ч.), лабораторные (18 ак.ч.) занятия и самостоятельная работа студента (180 ак.ч.);
- при заочной форме обучения лекционные (8 ак.ч.), практические (10 ак.ч.), лабораторные (2 ак.ч.) занятия и самостоятельная работа студента (304 ак.ч.).

Дисциплина изучается на 1 курсе в 1, 2 семестрах. Форма промежуточной аттестации – экзамен.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Автоматизация объектов дорожнотранспортной инфраструктуры» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание компетенции	Код компетенции	Код и наименование индикатора достижения компетенции
Способен собирать и анализировать исходные информационные данные для проектирования инновационных технологических процессов в области автоматизации и управления дорожнотранспортной инфраструктурой	ПК-4	ПК-4.1. способен использовать технические средства (датчики, камеры, радары, индукционные петли) для сбора информации о параметрах транспортных потоков (интенсивность, скорость и т.п.) ПК-4.2 применяет программные комплексы и платформы (SCADA-системы, системы интеллектуального транспорта) для сбора и первичной обработки данных ПК-4.3 определять необходимые исходные данные для проектирования автоматизированных систем (интенсивность движения, состав транспортного потока, техническое состояние дорог, и др.) ПК-4.4 способен сформулировать требования к проектированию инновационных технологических процессов в системах автоматизации (адаптивное регулирование, системы приоритета общественного транспорта, интеллектуальные парковки).

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 9 зачётные единицы, 324 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим занятиям и лабораторным работам, текущему контролю, выполнение индивидуального задания, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

D	D	Ак.ч. по с	семестрам
Вид учебной работы	Всего ак.ч.	1	2
Аудиторная работа, в том числе:	144	36	108
Лекции (Л)	54	18	36
Практические занятия (ПЗ)	72	18	54
Лабораторные работы (ЛР)	18	_	18
Курсовая работа/курсовой проект	_	_	_
Самостоятельная работа студентов (СРС), в том числе:	180	108	72
Подготовка к лекциям	16	8	8
Подготовка к лабораторным работам	10	-	10
Подготовка к практическим занятиям /	36	18	18
семинарам			
Выполнение курсовой работы / проекта	_		_
Расчетно-графическая работа (РГР)	_		_
Реферат (индивидуальное задание)	20	20	_
Домашнее задание	_	_	_
Подготовка к контрольной работе	_		_
Подготовка к коллоквиуму	9	6	3
Аналитический информационный поиск	20	20	_
Работа в библиотеке	_	_	_
Подготовка к экзамену	69	36	33
Промежуточная аттестация – экзамен (Э)	Э	Э	Э
Общая трудоемкость дисциплины			
ак.ч.	324	144	180
3.e.	9	4	5

5 Содержание дисциплины

С целью освоения компетенции, приведенной в п.3 дисциплина разбита на 8 тем:

- тема 1 (Основы автоматизации дорожно-транспортной инфраструктуры);
 - тема 2 (Системы управления транспортными потоками);
- тема 3 (Автоматизированные системы контроля и управления доступом);
 - тема 4 (Технологии датчиков и сенсоров в автоматизации дорог);
- тема 5 (Интеграция систем автоматизации с информационными технологиями);
- тема 6 (Разработка и проектирование автоматизированных систем управления дорожным движением);
- тема 7 (Моделирование и оптимизация работы автоматизированных систем на дорогах);
- тема 8 (Обеспечение безопасности и надёжности автоматизированных систем в дорожно-транспортной инфраструктуре).

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 3 и 4 соответственно.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

No	Наименование темы	Содержание лекционных	Трудоемкост	Темы практических	Трудоемкость	Тема	Трудоемкость
Π/Π	(раздела) дисциплины	занятий	ь в ак.ч.	занятий	в ак.ч.	лабораторных занятий	1 0
	Основы	Основы управления	2	Разработка	2	_	
1	автоматизации	транспортными		алгоритма			
	дорожно-	потоками: алгоритмы и		управления			
	транспортной	системы регулирования		светофорами на			
	инфраструктуры.	на перекрёстках.		перекрёстке с			
	11 11 11			интенсивным			
				движением.			
		Автоматизация системы	4	Моделирование	2	_	
		управления доступом:		работы системы			
		принципы работы и		управления			
		примеры применения		транспортными			
		(парковки, территории		потоками на			
		предприятий, въезды на		основе данных о			
		магистрали)		загруженности			
				дорог.			
				Настройка	2	_]
				параметров			
				системы			
				управления			
				доступом на			
				основе анализа			
				потока			
				транспортных			
				средств.			
2	Системы управления	Моделирование	4	Разработка	2	_	
	транспортными	транспортных потоков и		системы датчиков			
	потоками.	оптимизация работы		для мониторинга			
		перекрёстков: методы и		состояния			
		инструменты.		дорожного			
				покрытия.			

$N_{\underline{0}}$	Наименование темы	Содержание лекционных	Трудоемкост	Темы практических	Трудоемкость	Тема	Трудоемкость
Π/Π	(раздела) дисциплины	занятий	ь в ак.ч.	занятий	в ак.ч.	лабораторных занятий	в ак.ч.
		Мониторинг и анализ	2	Интеграция	2	_	
		дорожной		датчиков			
		инфраструктуры:		движения с			
		датчики и системы для		системой			
		контроля состояния		управления			
		дорог и транспортных		доступом на			
		потоков.		парковке.			
				Создание модели	2	_	
				автоматизированн			
				ой системы			
				управления			
				дорожным			
				движением для			
				конкретного			
				участка дороги.			
3	Автоматизированные	Интеграция	2	Оптимизация	2	_	-
	системы контроля и	интеллектуальных		работы системы			
	управления	транспортных систем		управления			
	доступом.	(ИТС) для управления		транспортными			
		транспортными		потоками с			
		потоками на макро- и		учётом времени			
		микроуровнях.		суток и дня			
				недели.			

№	Наименование темы	Содержание лекционных	Трудоемкост	Темы практических	Трудоемкость	Тема	Трудоемкость
п/п	(раздела) дисциплины	занятий	ь в ак.ч.	занятий	в ак.ч.	лабораторных занятий	в ак.ч.
		Применение алгоритмов	4	Разработка	4	_	
		машинного обучения и		алгоритма для			
		искусственного		системы			
		интеллекта в системах		управления			
		управления		доступом на			
		транспортными		основе			
		потоками: перспективы		распознавания			
		и вызовы.		номерных знаков			
				транспортных			
				средств.			
	Технологии датчиков	Принципы работы и	2	Создание модели	2	Измерение	2
4	и сенсоров в	классификация датчиков		системы		параметров	
	автоматизации	в системах		управления		дорожного	
	дорог.	автоматизации дорог.		доступом для		движения с	
		_		контроля въезда и		использованием	
				выезда на		сенсоров	
				территорию			
				предприятия.			
				Разработка	2		
				алгоритма для			
				системы			
				управления			
				транспортными			
				потоками на			
				основе данных о			
				погодных			
				условиях.			

No	Наименование темы	Содержание лекционных	Трудоемкост	Темы практических	Трудоемкость	Тема	Трудоемкость
Π/Π	(раздела) дисциплины	занятий	ь в ак.ч.	занятий	в ак.ч.	лабораторных занятий	в ак.ч.
	<u> </u>	Применение сенсоров	2	Моделирование	2	Анализ данных о	2
		для мониторинга		работы системы		движении: сбор и	
		состояния дорожного		управления		обработка	
		покрытия и		доступом на			
		инфраструктуры.		парковке с учётом			
				времени суток.			
				Оптимизация	2	_	
				параметров			
				системы			
				управления			
				транспортными			
				потоками на			
				основе данных о			
				загруженности			
				альтернативных			
				маршрутов.			
		Интеграция технологий	2	Разработка	2	_	
		датчиков в		системы датчиков			
		интеллектуальные		для мониторинга			
		транспортные системы.		уровня шума на			
				дорогах.			
				Создание модели	2	_	
				системы			
				управления			
				доступом на			
				основе данных о			
				наличии			
				свободных мест			
				на парковке.			

$N_{\underline{0}}$	Наименование темы	Содержание лекционных	Трудоемкост	Темы практических	Трудоемкость	Тема	Трудоемкость
п/п	(раздела) дисциплины	занятий	ь в ак.ч.	занятий	в ак.ч.	лабораторных занятий	в ак.ч.
5	Интеграция систем	Интеграция датчиков и	2	Оптимизация	2	Создание базы	2
	автоматизации с	систем сбора данных в		работы системы		данных	
	информационными	информационные		управления		транспортных	
	технологиями.	платформы для		транспортными		событий	
		управления дорожным		потоками с			
		движением.		учётом данных о			
				времени реакции			
				водителей на			
				сигналы			
				светофора.			
				Разработка	2	_	
				алгоритма для			
				системы			
				управления			
				доступом на			
				основе данных о			
				пропускной			
				способности			
				въездных и			
				выездных			
				пунктов.			
		Роль интернета вещей	4	Моделирование	2	Изучение GPS-	2
		(ІоТ) и облачных		влияния системы		технологий в	
		технологий в		управления		дорожной	
		интеграции систем		доступом на		автоматизации	
		автоматизации дорог.		снижение			
				времени поиска			
				свободного			
				парковочного			
				места.			

$N_{\underline{0}}$	Наименование темы	Содержание лекционных	Трудоемкост	Темы практических	Трудоемкость	Тема	Трудоемкость
Π/Π	(раздела) дисциплины	занятий	ь в ак.ч.	занятий	в ак.ч.	лабораторных занятий	в ак.ч.
				Оптимизация	2	_	
				параметров			
				системы датчиков			
				для мониторинга			
				состояния			
				дорожных знаков.			
		Стандарты и протоколы	2	Разработка	2	_	
		для обмена данными		системы			
		между датчиками,		управления			
		транспортными		доступом на			
		средствами и центрами		основе данных о			
		управления в системах		времени			
		интеллектуальных		прибытия			
		транспортных систем		транспортных			
		(ИТС).		средств на			
				парковку.			
				Моделирование	2	_	
				работы			
				автоматизированн			
				ой системы			
				управления в			
				условиях			
				ограниченной			
				видимости на			
				дороге.			

$N_{\underline{0}}$	Наименование темы	Содержание лекционных	Трудоемкост	Темы практических	Трудоемкость	Тема	Трудоемкость
Π/Π	(раздела) дисциплины	занятий	ь в ак.ч.	занятий	в ак.ч.	лабораторных занятий	в ак.ч.
6	Разработка и	Основы проектирования	2	Оптимизация	2	Автоматизация	2
	проектирование	автоматизированных		параметров		процесса	
	автоматизированных	систем управления		системы		управления	
	систем управления	дорожным движением:		управления		парковкой	
	дорожным	принципы работы,		доступом на			
	движением.	компоненты и		основе анализа			
		архитектура.		данных о			
				загруженности			
				парковочных зон.			
		Математические модели	4	Разработка	2	_	
		и алгоритмы управления		алгоритма для			
		транспортными		системы			
		потоками в АСУДД.		управления			
				транспортными			
				потоками на			
				основе данных о			
				плотности			
				транспортного			
				потока.	_		
				Моделирование	2	_	
				влияния системы			
				управления			
				транспортными			
				потоками на			
				снижение			
				количества			
				пробок на			
				определённом			
				участке дороги.			

$N_{\underline{0}}$	Наименование темы	Содержание лекционных	Трудоемкост	Темы практических	Трудоемкость	Тема	Трудоемкость
Π/Π	(раздела) дисциплины	занятий	ь в ак.ч.	занятий	в ак.ч.	лабораторных занятий	в ак.ч.
		Интеграция систем	2	Оптимизация	2	Тестирование	2
		управления дорожным		работы датчиков		систем	
		движением с другими		для мониторинга		мониторинга	
		транспортными и		состояния		состояния дороги	
		информационными		дорожного			
		системами: ГИС,		покрытия в			
		системы мониторинга и		условиях			
		прогнозирования		перепадов			
		транспортных потоков.		температур.			
				Разработка	2	_	
				системы			
				управления			
				доступом на			
				основе данных о			
				времени			
				прибытия			
				транспортных			
				средств на			
				территорию			
_			2	предприятия.	4		
7	Моделирование и	Моделирование	2	Моделирование	4	Моделирование	2
	оптимизация работы	транспортных потоков и		работы		транспортных	
	автоматизированных	оптимизация работы		автоматизированн		потоков с	
	систем на дорогах.	дорожных сетей.		ой системы		использованием	
				управления в		программного	
				условиях		обеспечения	
				интенсивного			
				движения на			
				магистрали.			

№	Наименование темы	Содержание лекционных	Трудоемкост	Темы практических	Трудоемкость	Тема	Трудоемкость
Π/Π	(раздела) дисциплины	занятий	ь в ак.ч.	занятий	в ак.ч.	лабораторных занятий	в ак.ч.
				Оптимизация	2	_	
				параметров			
				системы			
				управления			
				транспортными			
				потоками на			
				основе данных о			
				времени суток и			
				загруженности			
				альтернативных			
				маршрутов.			
		Методы и алгоритмы	2	Разработка	2	_	
		оптимизации		системы датчиков			
		управления		для мониторинга			
		транспортными		уровня			
		потоками в		освещённости на			
		автоматизированных		дорогах в ночное			
		системах.		время.			
				Создание модели	2	_	
				системы			
				управления			
				доступом на			ľ
				основе данных о			
				времени			
				пребывания			
				транспортных			
				средств на			
				парковке.			

$N_{\underline{0}}$	Наименование темы	Содержание лекционных	Трудоемкост	Темы практических	Трудоемкость	Тема	Трудоемкость
Π/Π	(раздела) дисциплины	занятий	ь в ак.ч.	занятий	в ак.ч.	лабораторных занятий	в ак.ч.
		Анализ и оптимизация логистических маршругов в условиях	2	Оптимизация работы автоматизированн	2	_	
		автоматизированных транспортных систем.		ой системы управления в условиях высокой плотности			
				транспортного потока на перекрёстке.			
8	Обеспечение безопасности и надёжности автоматизированных систем в дорожнотранспортной инфраструктуре.	Основы кибербезопасности в автоматизированных системах управления дорожно-транспортной инфраструктурой.	2	Разработка алгоритма для системы управления транспортными потоками на основе данных о скорости движения транспортных средств.	4	Исследование работы светофорных систем	4
		Методы и средства обеспечения надёжности и отказоустойчивости компонентов автоматизированных систем в дорожнотранспортной инфраструктуре.	4	Моделирование влияния системы управления транспортными потоками на снижение времени проезда через определённый участок дороги.	2	_	

$N_{\underline{o}}$	Наименование темы	Содержание лекционных	Трудоемкост	Темы практических	Трудоемкость	Тема	Трудоемкость
Π/Π	(раздела) дисциплины	занятий	ь в ак.ч.	занятий	в ак.ч.	лабораторных занятий	в ак.ч.
		Стандарты и протоколы	2	Настройка	2	_	
		для обеспечения		системы датчиков			
		безопасности обмена		для мониторинга			
		данными в		уровня			
		автоматизированных		загрязнения			
		системах дорожно-		воздуха на			
		транспортной		дорогах.			
		инфраструктуры.					
	Всего аудиторных часов		54	72			18

Таблицы 4 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

№ π/π	Наименование раздела дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкос ть в ак.ч.
1	Основы автоматизации дорожно- транспортной инфраструктуры.	Автоматизация системы управления доступом: принципы работы и примеры применения (парковки, территории предприятий, въезды на магистрали)	2	Создание модели автоматизированной системы управления дорожным движением для конкретного участка дороги	2	Ι	_
2	Системы управления транспортными потоками.	Моделирование транспортных потоков и оптимизация работы перекрёстков: методы и инструменты	2	Моделирование работы системы управления транспортными потоками	2	I	_
3	Технологии датчиков и сенсоров в автоматизации дорог.	Принципы работы и классификация датчиков в системах автоматизации дорог.	2	Создание модели системы управления доступом для контроля въезда и выезда на предприятие.	2	Измерение параметров дорожного движения с использованием сенсоров	2
4	Разработка и проектирование автоматизированн ых систем	Математические модели и алгоритмы управления транспортными потоками в	2	Разработка алгоритма для системы управления транспортными потоками на основе данных о плотности транспортного потока	2	1	_
4	управления дорожным движением	2	Разработка системы управления доступом на основе данных о времени прибытия транспортных средств на территорию предприятия.	2	_	_	

№ 1/п	Наименование раздела дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкос ть в ак.ч.
Всего аудиторных часов		8	10		2		

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
ПК-4	Экзамен	Комплект контролирующих материалов для экзамена

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- -устный опрос на коллоквиумах всего 40 баллов;
- написание реферата (выполнение контрольной работы для студентов 3ФО) всего 20 баллов;
 - лабораторные работы всего 10 баллов;
 - практические работы всего 30 баллов.

Экзамен проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Экзамен по дисциплине «Автоматизация объектов дорожнотранспортной инфраструктуры» проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время зачетной недели студент имеет право повысить итоговую оценку в форме устного собеседования по приведенным ниже вопросам (п.п. 6.4).

Шкала оценивания знаний при проведении промежуточной аттестации

приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Темы для рефератов (контрольных работ) — индивидуальное задание

- 1) Исследование современных систем управления движением на основе IoT.
- 2) Разработка модели автоматизированной системы учета транспортных средств.
- 3) Анализ применения спутниковых технологий для мониторинга дорожного движения.
- 4) Создание концепции интеллектуального перекрестка с использованием датчиков и камер.
- 5) Моделирование системы управления светофорными объектами с учетом пиковых нагрузок.
- 6) Изучение инновационных технологий для улучшения безопасности пешеходных переходов.
 - 7) Применение Big Data в управлении дорожным движением.
- 8) Анализ влияния автоматических систем на снижение числа дорожных аварий.
- 9) Разработка алгоритма для оптимизации маршрутного движения общественного транспорта.
 - 10) Исследование систем автоматического взимания платы на дорогах.
- 11) Анализ использования беспилотных транспортных средств в городской инфраструктуре.
- 12) Создание системы оповещения водителей о дорожных условиях в реальном времени.
- 13) Моделирование и проектирование системы предсказания заторов на дорогах.
 - 14) Исследование технологий для реализации "умных" парковок.
- 15) Разработка приложения для управления скоростью движения с помощью информационных табло.
 - 16) Анализ эффективности систем мониторинга дорожной

инфраструктуры с помощью дронов.

- 17) Разработка комплекса автоматизации для контроля состояния дорожного покрытия.
- 18) Изучение применения нейронных сетей в прогнозировании дорожного движения.
- 19) Создание системы автоматической обработки жалоб на состояние дорожной инфраструктуры.
- 20) Исследование методов управления грузовыми перевозками в рамках умных городов.
- 21) Разработка сценария внедрения системы "умного" трафика в существующую инфраструктуру.
- 22) Анализ систем раннего оповещения о чрезвычайных ситуациях на дорогах.
- 23) Изучение аспектов защиты данных в автоматизированных транспортных системах.
- 24) Разработка проекта по внедрению автоматизированной системы учета и управления дорожными знаками.
- 25) Исследование международного опыта автоматизации дорожного движения и его применение в России.

6.3 Оценочные средства для текущего контроля успеваемости и коллоквиумов

Тема 1 Основы автоматизации дорожно-транспортной инфраструктуры

- 1) Что такое автоматизация объектов дорожно-транспортной инфраструктуры?
- 2) Какие основные цели и задачи стоят перед автоматизацией в дорожно-транспортной сфере?
- 3) Какие технологии используются для автоматизации управления транспортными потоками?
 - 4) Какие системы управления движением вы знаете?
- 5) Какие преимущества даёт внедрение систем автоматизации на дорогах?
- 6) Какие факторы необходимо учитывать при выборе технологий для автоматизации дорожных объектов?
- 7) Какие виды датчиков используются для мониторинга состояния дорожного покрытия?
- 8) Какие системы контроля и управления применяются на перекрёстках и светофорах?

- 9) Какие функции выполняют системы видеонаблюдения на дорогах?
- 10) Какие алгоритмы используются для прогнозирования транспортных потоков?

Тема 2 Системы управления транспортными потоками

- 1) Какие технические средства применяются для обеспечения безопасности дорожного движения?
- 2) Какие системы помогают в управлении парковками и контроле за их заполняемостью?
- 3) Какие технологии применяются для мониторинга состояния дорожной инфраструктуры в реальном времени?
- 4) Какие системы информируют водителей о состоянии дорог и пробках?
- 5) Какие преимущества даёт интеграция систем автоматизации в единую информационную среду?
- 6) Какие нормативные документы регулируют внедрение систем автоматизации на транспортных объектах?
- 7) Какие этапы включает в себя процесс проектирования систем автоматизации?
- 8) Какие требования предъявляются к системам автоматизации дорожных объектов?
- 9) Какие методы используются для оценки эффективности систем автоматизации?
- 10) Какие факторы влияют на надёжность работы систем автоматизации?
- Teмa 3 Автоматизированные системы контроля и управления доступом
- 1) Какие меры предпринимаются для обеспечения бесперебойной работы систем автоматизации в условиях неблагоприятных погодных условий?
- 2) Какие системы используются для мониторинга и управления транспортными потоками в крупных городах?
- 3) Какие технологии помогают в оптимизации маршрутов общественного транспорта?
- 4) Какие системы информируют пассажиров о времени прибытия общественного транспорта?
- 5) Какие функции выполняют системы управления освещением на дорогах?

- 6) Какие преимущества даёт использование интеллектуальных систем управления освещением?
- 7) Какие системы используются для автоматического управления светофорами?
- 8) Какие алгоритмы применяются для оптимизации работы светофоров?
- 9) Какие системы помогают в управлении транспортными потоками на автомагистралях?
- 10) Какие технологии используются для обеспечения безопасности на железнодорожных переездах?

Тема 4 Технологии датчиков и сенсоров в автоматизации дорог

- 1) Какие системы применяются для мониторинга состояния мостов и путепроводов?
 - 2) Какие функции выполняют системы управления парковками?
- 3) Какие технологии помогают в оптимизации использования парковочных мест?
- 4) Какие системы информируют водителей о наличии свободных парковочных мест?
- 5) Какие преимущества даёт внедрение систем управления парковочным пространством?
- 6) Какие системы используются для мониторинга загрузки дорог и прогнозирования пробок?
- 7) Какие алгоритмы применяются для анализа данных о транспортных потоках?
- 8) Какие технологии помогают в управлении транспортными потоками в условиях плотного городского трафика?
- 9) Какие системы информируют водителей о дорожных работах и ограничениях скорости?
- 10) Какие преимущества даёт использование систем управления движением на основе данных о транспортных потоках?
- Тема 5 Интеграция систем автоматизации с информационными технологиями
- 1) Какие системы используются для мониторинга состояния дорожной инфраструктуры?
- 2) Какие технологии помогают в прогнозировании состояния дорог и планировании ремонтных работ?
- 3) Какие системы информируют о состоянии дорожного покрытия и необходимости ремонта?

- 4) Какие преимущества даёт применение систем мониторинга состояния дорог?
- 5) Какие системы используются для управления движением на сложных перекрёстках?
- 6) Какие алгоритмы применяются для оптимизации работы перекрёстков?
- 7) Какие технологии помогают в управлении движением на многоуровневых транспортных развязках?
- 8) Какие системы информируют водителей о наличии альтернативных маршрутов?
- 9) Какие преимущества даёт использование систем управления движением на основе данных о транспортных потоках на сложных перекрёстках?
- 10) Какие системы используются для мониторинга и управления транспортными потоками на основе данных о загруженности дорог?

Тема 6 Разработка и проектирование автоматизированных систем управления дорожным движением

- 1) Какие алгоритмы применяются для прогнозирования загруженности дорог?
- 2) Какие технологии помогают в управлении транспортными потоками в условиях высокой интенсивности движения?
- 3) Какие системы информируют водителей о возможных заторах и альтернативных маршрутах?
- 4) Какие преимущества даёт использование систем управления движением на основе данных о загруженности дорог?
- 5) Какие системы используются для мониторинга и управления парковочным пространством на основе данных о загруженности парковок?
- 6) Какие алгоритмы применяются для прогнозирования загруженности парковок?
- 7) Какие технологии помогают в управлении парковочным пространством в условиях высокой загруженности?
- 8) Какие системы информируют водителей о наличии свободных парковочных мест и оптимальных маршрутах до них?
- 9) Какие преимущества даёт использование систем управления парковочным пространством на основе данных о загруженности?
- 10) Какие системы используются для мониторинга состояния дорожных знаков и указателей?

Тема 7 Моделирование и оптимизация работы автоматизированных

систем на дорогах

- 1) Какие технологии помогают в управлении состоянием дорожных знаков и указателей?
- 2) Какие системы информируют водителей об изменениях в дорожных знаках и указателях?
- 3) Какие преимущества даёт использование систем мониторинга состояния дорожных знаков и указателей?
- 4) Какие системы используются для мониторинга состояния дорожной разметки?
- 5) Какие технологии помогают в управлении состоянием дорожной разметки?
- 6) Какие системы информируют водителей об изменениях в дорожной разметке?
- 7) Какие преимущества даёт использование систем мониторинга состояния дорожной разметки?
- 8) Какие системы используются для мониторинга и управления состоянием дорожной инфраструктуры на основе данных о погодных условиях?
- 9) Какие алгоритмы применяются для прогнозирования влияния погодных условий на состояние дорог?
- 10) Какие технологии помогают в управлении состоянием дорог в условиях неблагоприятных погодных условий?
- Тема 8 Обеспечение безопасности и надёжности автоматизированных систем в дорожно-транспортной инфраструктуре
- 1) Какие преимущества даёт использование систем мониторинга состояния дорожной инфраструктуры на основе данных о трафике?
- 2) Какие системы используются для мониторинга и анализа данных о транспортных потоках в реальном времени?
- 3) Какие алгоритмы применяются для обработки и анализа данных о транспортных потоках?
- 4) Какие технологии помогают в управлении транспортными потоками на основе данных, полученных в реальном времени?
- 5) Какие системы информируют водителей о состоянии транспортных потоков в реальном времени?
- 6) Какие преимущества даёт использование систем мониторинга и анализа данных о транспортных потоках в реальном времени?
- 7) Какие системы используются для мониторинга состояния дорожной инфраструктуры с помощью дронов и беспилотных летательных аппаратов?

- 8) Какие технологии помогают в управлении дорожной инфраструктурой с помощью дронов?
- 9) Какие системы информируют о состоянии дорожной инфраструктуры на основе данных, полученных с помощью дронов?
- 10) Какие преимущества даёт использование дронов для мониторинга состояния дорожной инфраструктуры?
- 11) Какие системы используются для мониторинга и анализа данных о дорожно-транспортных происшествиях?
- 12) Какие алгоритмы применяются для обработки и анализа данных о дорожно-транспортных происшествиях?
- 13) Какие технологии помогают в управлении безопасностью дорожного движения на основе данных о дорожно-транспортных происшествиях?
- 14) Какие системы информируют водителей и общество о дорожнотранспортных происшествиях?
- 15) Какие преимущества даёт использование систем мониторинга и анализа данных о дорожно-транспортных происшествиях?

6.4 Вопросы для подготовки к экзамену 1 семестр

- 1) Объясните, что такое автоматизация объектов дорожнотранспортной инфраструктуры.
- 2) Определи основные цели и задачи, которые стоят перед автоматизацией в дорожно-транспортной сфере.
- 3) Опишите технологии, которые используются для автоматизации управления транспортными потоками.
 - 4) Перечислите системы управления движением, которые ты знаешь.
- 5) Объясните, какие преимущества даёт внедрение систем автоматизации на дорогах.
- 6) Укажите, какие факторы необходимо учитывать при выборе технологий для автоматизации дорожных объектов.
- 7) Перечислите виды датчиков, которые используются для мониторинга состояния дорожного покрытия.
- 8) Опишите системы контроля и управления, которые применяются на перекрёстках и светофорах.
 - 9) Объясните функции систем видеонаблюдения на дорогах.
- 10) Назовите алгоритмы, которые используются для прогнозирования транспортных потоков.

- 11) Перечислите технические средства, которые применяются для обеспечения безопасности дорожного движения.
- 12) Опишите системы, которые помогают в управлении парковками и контроле за их заполняемостью.
- 13) Укажите технологии, которые применяются для мониторинга состояния дорожной инфраструктуры в реальном времени.
- 14) Перечислите системы, которые информируют водителей о состоянии дорог и пробках.
- 15) Объясните, какие преимущества даёт интеграция систем автоматизации в единую информационную среду.
- 16) Назовите нормативные документы, которые регулируют внедрение систем автоматизации на транспортных объектах.
- 17) Опишите этапы, которые включает в себя процесс проектирования систем автоматизации.
- 18) Перечислите требования, которые предъявляются к системам автоматизации дорожных объектов.
- 19) Укажите методы, которые используются для оценки эффективности систем автоматизации.
- 20) Перечислите факторы, которые влияют на надёжность работы систем автоматизации.
- 21) Опишите меры, которые предпринимаются для обеспечения бесперебойной работы систем автоматизации в условиях неблагоприятных погодных условий.
- 22) Назовите системы, которые используются для мониторинга и управления транспортными потоками в крупных городах.
- 23) Перечислите технологии, которые помогают в оптимизации маршрутов общественного транспорта.
- 24) Опишите системы, которые информируют пассажиров о времени прибытия общественного транспорта.
 - 25) Объясните функции систем управления освещением на дорогах.
- 26) Укажите преимущества, которые даёт использование интеллектуальных систем управления освещением.
- 27) Назовите системы, которые используются для автоматического управления светофорами.
- 28) Перечислите алгоритмы, которые применяются для оптимизации работы светофоров.
- 29) Опишите системы, которые помогают в управлении транспортными потоками на автомагистралях.

- 30) Перечислите технологии, которые используются для обеспечения безопасности на железнодорожных переездах.
- 31) Назовите системы, которые применяются для мониторинга состояния мостов и путепроводов.
 - 32) Объясните функции систем управления парковками.
- 33) Перечислите технологии, которые помогают в оптимизации использования парковочных мест.
- 34) Опишите системы, которые информируют водителей о наличии свободных парковочных мест.
- 35) Объясните преимущества, которые даёт внедрение систем управления парковочным пространством.
- 36) Назовите системы, которые используются для мониторинга загрузки дорог и прогнозирования пробок.
- 37) Перечислите алгоритмы, которые применяются для анализа данных о транспортных потоках.
- 38) Укажите технологии, которые помогают в управлении транспортными потоками в условиях плотного городского трафика.
- 39) Назовите системы, которые информируют водителей о дорожных работах и ограничениях скорости.
- 40) Объясните преимущества, которые даёт использование систем управления движением на основе данных о транспортных потоках.
- 41) Назовите системы, которые используются для мониторинга состояния дорожной инфраструктуры.
- 42) Перечислите технологии, которые помогают в прогнозировании состояния дорог и планировании ремонтных работ.
- 43) Опишите системы, которые информируют о состоянии дорожного покрытия и необходимости ремонта.
- 44) Объясните преимущества, которые даёт применение систем мониторинга состояния дорог.
- 45) Назовите системы, которые используются для управления движением на сложных перекрёстках.
- 46) Перечислите алгоритмы, которые применяются для оптимизации работы перекрёстков.
- 47) Опишите технологии, которые помогают в управлении движением на многоуровневых транспортных развязках.
- 48) Назовите системы, которые информируют водителей о наличии альтернативных маршрутов.

- 49) Объясните преимущества, которые даёт использование систем управления движением на основе данных о транспортных потоках на сложных перекрёстках.
- 50) Назовите системы, которые используются для мониторинга и управления транспортными потоками на основе данных о загруженности дорог.

2 семестр

- 1) Перечислите алгоритмы, которые применяются для прогнозирования загруженности дорог.
- 2) Укажите технологии, которые помогают в управлении транспортными потоками в условиях высокой интенсивности движения.
- 3) Назовите системы, которые информируют водителей о возможных заторах и альтернативных маршрутах.
- 4) Объясните преимущества, которые даёт использование систем управления движением на основе данных о загруженности дорог.
- 5) Назовите системы, которые используются для мониторинга и управления парковочным пространством на основе данных о загруженности парковок.
- 6) Перечислите алгоритмы, которые применяются для прогнозирования загруженности парковок.
- 7) Опишите технологии, которые помогают в управлении парковочным пространством в условиях высокой загруженности.
- 8) Назовите системы, которые информируют водителей о наличии свободных парковочных мест и оптимальных маршрутах до них.
- 9) Объясните преимущества, которые даёт использование систем управления парковочным пространством на основе данных о загруженности.
- 10) Назовите системы, которые используются для мониторинга состояния дорожных знаков и указателей.
- 11) Перечислите технологии, которые помогают в управлении состоянием дорожных знаков и указателей.
- 12) Опишите системы, которые информируют водителей об изменениях в дорожных знаках и указателях.
- 13) Объясните, что такое «умные» транспортные системы и какие задачи они решают.
- 14) Перечислите виды датчиков, которые используются для мониторинга состояния транспортных средств.

- 15) Опишите технологии, которые применяются для создания интеллектуальных систем управления движением.
- 16) Назовите системы управления движением на основе искусственного интеллекта.
- 17) Опишите методы оценки эффективности работы систем управления транспортными потоками.
- 18) Перечислите системы, которые помогают в управлении транспортными потоками на железнодорожных переездах.
 - 19) Объясните функции систем управления освещением на дорогах.
- 20) Назовите алгоритмы, которые используются для оптимизации работы светофоров на перекрёстках.
- 21) Опишите технологии, которые помогают в управлении парковочным пространством.
- 22) Назовите системы, которые информируют водителей о состоянии дорожной инфраструктуры.
- 23) Перечислите датчики, которые используются для мониторинга состояния дорожных знаков и указателей.
- 24) Опишите системы, которые помогают в оптимизации маршрутов общественного транспорта.
- 25) Назовите технологии, которые помогают в обеспечении безопасности дорожного движения на пешеходных переходах.
- 26) Перечислите системы, которые информируют пассажиров о времени прибытия общественного транспорта.
 - 27) Опишите системы мониторинга состояния мостов и путепроводов.
- 28) Назовите системы, которые используются для управления движением на сложных многоуровневых транспортных развязках.
 - 29) Приведите алгоритмы для прогнозирования загруженности дорог.
- 30) Опишите технологии, которые помогают в управлении транспортными потоками в условиях высокого трафика.
- 31) Назовите системы, которые информируют водителей о наличии дорожных работ и ограничений скорости.
- 32) Перечислите системы информирования водителей о состоянии дорог и дорожных работах.
- 33) Опишите технологии, которые помогают в управлении транспортной инфраструктурой в условиях изменяющейся городской среды.
 - 34) Назовите системы, которые помогают в управлении парковками.
- 35) Опишите системы для мониторинга загруженности дорог и прогнозирования пробок.

- 36) Приведите алгоритмы для анализа данных о транспортных потоках.
- 37) Опишите технологии, которые помогают в управлении транспортными потоками в условиях плотного городского трафика.
- 38) Назовите системы, которые используются для информирования водителей о дорожных работах и ограничениях скорости.
- 39) Объясните функции систем мониторинга состояния дорожной инфраструктуры.
- 40) Опишите технологии для прогнозирования состояния дорог и планирования ремонтных работ.
- 41) Назовите системы, которые помогают в управлении движением на сложных перекрёстках.
- 42) Приведите алгоритмы для оптимизации работы многоуровневых транспортных развязок.
- 43) Опишите технологии, которые помогают в управлении движением в условиях высокой интенсивности движения.
- 44) Назовите системы для мониторинга и управления парковочным пространством на основе данных о загруженности парковок.
- 45) Приведите алгоритмы для прогнозирования загруженности парковок.
- 46) Опишите технологии, которые помогают в управлении парковочным пространством в условиях высокой загруженности.
- 47) Назовите системы, которые информируют водителей о наличии свободных парковочных мест и оптимальных маршрутах до них.
- 48) Назовите системы, которые контролируют соблюдение правил парковки.
- 49) Опишите технологии для мониторинга и управления транспортными потоками на основе данных о загруженности дорог.
- 50) Назовите системы, которые информируют водителей о возможных заторах и альтернативных маршрутах.
- 51) Перечислите системы для мониторинга состояния дорожной инфраструктуры в реальном времени.
- 52) Приведите алгоритмы для прогноза состояния дорог и планирования ремонтных работ.
- 53) Назовите системы, которые помогают в управлении распределением транспортных потоков по различным маршрутам.
- 54) Перечислите системы для мониторинга состояния транспортной инфраструктуры в реальном времени.

- 55) Опишите технологии для обеспечения бесперебойной работы систем автоматизации в условиях низких температур.
- 56) Назовите системы, которые помогают в управлении транспортными потоками в условиях низкой видимости (туман, снегопад).
- 57) Приведите алгоритмы для оптимизации маршрутов общественного транспорта с учётом времени суток и дня недели.
- 58) Назовите системы, которые информируют водителей о времени прибытия на различные пункты назначения.
- 59) Опишите технологии для мониторинга состояния дорожных покрытий в реальном времени.
- 60) Назовите системы, которые помогают в управлении транспортными потоками на основе данных о пробках и заторах.

6.5 Примерная тематика курсовых работ

Курсовые работы не предусмотрены.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература *Основная литература*

- 1. Баланов, А. Н. Транспорт и логистика. Автоматизация и оптимизация процессов : учебное пособие для вузов / А. Н. Баланов. Санкт-Петербург : Лань, 2024. 404 с. ISBN 978-5-507-49375-3. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/421445 (дата обращения: 03.07.2024). Режим доступа: для авториз. пользователей.
- 2. Изюмский, А. А. Информационные технологии на транспорте : учебное пособие / А. А. Изюмский, М. А. Кузьмина, О. М. Евич. Краснодар : КубГТУ, 2022. 295 с. ISBN 978-5-8333-1182-0. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/318956 (дата обращения: 03.07.2024). Режим доступа: для авториз. пользователей.
- 3. Капский, Д. В. Основы автоматизации интеллектуальных транспортных систем: учебник / Д. В. Капский. Вологда: Инфра-Инженерия, 2022. 412 с. ISBN 978-5-9729-0988-9. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/281231. (дата обращения: 03.07.2024). Режим доступа: для авториз. пользователей.

Дополнительная литература

- 1. Баланов, А. Н. Оптимизация и автоматизация бизнес-процессов : учебное пособие для вузов / А. Н. Баланов. Санкт-Петербург : Лань, 2024. 628 с. ISBN 978-5-507-49731-7. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/430124 (дата обращения: 03.07.2024). Режим доступа: для авториз. пользователей.
- 2. Смирнов, Ю. А. Основы автоматизации дорожного строительства и строительно-дорожных машин: учебное пособие для вузов / Ю. А. Смирнов, В. А. Детистов. Санкт-Петербург: Лань, 2022. 308 с. ISBN 978-5-8114-9313-5. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/221141 (дата обращения: 03.07.2024). Режим доступа: для авториз. пользователей.

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

1. Научная библиотека ДонГТУ: официальный сайт. — Алчевск. —

- URL: <u>library.dstu.education.</u> Текст : электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст : электронный.
- 3. Университетская библиотека онлайн : электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст : электронный.
- 4. BOOR.RU : электронно-библиотечная система. URL: https://book.ru/ Текст : электронный.
- 5. Лань : электронно-библиотечная система. URL: https://e.lanbook.com Текст : электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО. Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местоположение)
Паименование оборудованных учесных касинетов	учебных кабинетов
Специальные помещения:	
Лекционная аудитория. (60 посадочных мест)	ауд. <u>302</u> корп. <u>1</u>
Аудитории для проведения лабораторных занятий, для	
самостоятельной работы:	
компьютерный класс (учебная аудитория) для проведения	ауд. <u>206</u> корп. <u>1</u>
лабораторных, практических занятий, групповых и	
индивидуальных консультаций, организации самостоятельной	
работы, в том числе, научно-исследовательской, оборудованная	
учебной мебелью, компьютерами с неограниченным доступом к	
<u>сети Интернет, включая доступ к ЭБС</u>	
Персональные компьютеры Sepron 3200, Int Celeron 420, принтер	
LBP2900, локальная сеть с выходом в Internet	

Лист согласования РПД

Разработал

и инновационных технологий (должность)	(пбдпись)	<u>Т.В. Яковенко</u> (Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
И.о. заведующего кафедрой автоматизированного управления и инновационных технологий	(подпись)	<u>Е.В. Мова</u> (Ф.И.О.)
Протокол № 1 заседания кафедры автоматизированного управления и инновационных технологий		от 09.07.20 <u>24</u> г.
Согласовано		

Председатель методической комиссии по направлению подготовки 15.03.04 Автоматизация технологических

процессов и производств

Начальник учебно-методического центра

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения			
изменений			
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:		
0			
Основание:			
Подпись лица, ответственного за внесение изменений			