Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Вишневский Дмитрий Александрович

Должность: Ректор

Дата подписания: 17.10.2025 15:06:46

Уникальный программный к**уми**НИСТЕРСТВО НА УКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ 03474917c4d012283e5ad996a48a5e70bf8da057 (МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет

информационных технологий и автоматизации

производственных процессов

Кафедра

электромеханики им. А. Б. Зеленова

УТВЕРЖДАЮ
И. о. проректора по
учебной работе
Д. В. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

3	Электроника и микропроцессорная техника				
	(наименование дисциплины)				
13	3.03.02 Электроэнергетика и электротехника				
	(код, наименование направления)				
Электропривод и	автоматика промышленных установок и технологических				
	комплексов				
	(профиль подготовки)				
Квалификация	бакалавр				
•	(бакалавр/специалист/магистр)				
Форма обучения	очная, заочная				
	(одняя одно-заодняя заодняя)				

1 Цели и задачи изучения дисциплины

Цель дисциплины. изучение основных приборов и устройств современной электроники и микропроцессорной техники.

Задачи изучения дисциплины: получений знаний и умения читать электронные схемы, выполнять расчет и выбор элементов схем, освоение структуры микропроцессорной системы и получение базовых навыков программирования микропроцессорной техники.

Дисциплина направлена на формирование компетенций ОПК-3, ПК-1, ПК-3, ПК-4 выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины: курс входит в БЛОК 1 «Дисциплины (модули)», часть блока 1 формируемую участниками образовательных отношений подготовки студентов по направлению 13.03.02 Электроэнергетика и электротехника (профиль «Электропривод и автоматика промышленных установок и технологических комплексов»).

Дисциплина основывается на базе дисциплин: «Физика», «Химия», «Теоретические основы электротехники».

Является основой для изучения следующих дисциплин: «Элементы автоматизированного электропривода», «Микропроцессорные средства и системы», «Системы управления электроприводами».

Для изучения дисциплины необходимы компетенции, сформированные у студента для решения профессиональных задач деятельности, связанных с применением вычислительной техники и программного обеспечения в различных сферах деятельности.

Курс является фундаментом для формирования навыков и умений по расчетам и проектированию электромеханических систем.

Общая трудоемкость освоения дисциплины составляет 7,5 зачетных единиц, 270 ак. ч. Программой дисциплины предусмотрены лекционные (63 ак.ч. для групп ЭМС, 10 ак. ч. для группы ЭМС-з), лабораторные занятия (54 ак.ч. для групп ЭМС, 4 ак.ч. для группы ЭМС-з), практические занятия (9 ак.ч. для групп ЭМС, 4 ак.ч. для группы ЭМС-з) и самостоятельная работа студента (144 ак.ч. для групп ЭМС, 152 ак.ч. для группы ЭМС-з).

Дисциплина изучается на 2 курсе в 4 семестре и на 3 курсе в 5 семестре для группы ЭМС и для группы ЭМС-з. Форма промежуточной аттестации — экзамены в каждом семестре.

По дисциплине предусмотрена курсовая работа трудоемкостью 1,5 зачетных единицы, 54 ак. ч. Группы ЭМС и ЭМС-з выполняют курсовую работу в 5 семестре. Программой предусмотрены практические занятия (9 ак.ч. для групп ЭМС, 4 ак.ч. для группы ЭМС-з) и самостоятельная работа студента (43 ак.ч. для групп ЭМС, 50 ак.ч. для группы ЭМС-з)

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Электроника и микропроцессорная техника» направлен на формирование компетенций, представленных в таблице 3.1.

Таблица 3.1 – Компетенции, обязательные к освоению

Содержание компетенции	Код компетенции	Код и наименование индикатора достижения компетенции
Способен применять со- ответствующий физико- математический аппарат, методы анализа и модели- рования, теоретического и экспериментального ис- следования при решении профессиональных задач	ОПК-3	ОПК-3.1. Применяет соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач
Способен участвовать в проектировании объектов профессиональной деятельности	ПК-1	ПК-1.1. Выполняет сбор и анализ данных для проектирования, составляет конкурентно-способные варианты технических решений. ПК-1.2. Обосновывает выбор проектного решения
Способен оформлять конструкторскую документацию проектов систем электропривода технологического оборудования в различных отраслях промышленности	ПК-3	ПК-3.1. Способен участвовать в энергоснабжении и эксплуатации объектов профессиональной деятельности
Способен участвовать в эксплуатации технологического оборудования объектов профессиональной деятельности	ПК-4	ПК-4.3. Способен оценивать техническое состояние и остаточный ресурс оборудования.

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 7,5 зачётных единицы, 270 ак. ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к лабораторным работам, текущему контролю, выполнению курсовой работы, самостоятельное изучение материала и подготовку к зачету.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 4.1.

Таблица 4.1 – Распределение бюджета времени на СРС

D	Всего	Ак .ч. по семестрам		
Вид учебной работы	ак. ч.	4	5	
Аудиторная работа, в том числе:	126	72	54	
Лекции (Л)	63	36	27	
Практические занятия (ПЗ)	_	_	ı	
Лабораторные работы (ЛР)	54	36	18	
Курсовая работа/курсовой проект	9	_	9	
Самостоятельная работа студентов (СРС), в том числе:	144	54	90	
Подготовка к лекциям	36	18	18	
Подготовка к лабораторным работам	27	18	9	
Подготовка к практическим занятиям / семинарам	_	_	-	
Выполнение курсовой работы / проекта	45	0	45	
Расчетно-графическая работа (РГР)	0	0	0	
Реферат (индивидуальное задание)	0	0	0	
Домашнее задание	0	0	0	
Подготовка к контрольной работе	6	3	3	
Подготовка к коллоквиумам	6	3	3	
Аналитический информационный поиск	_	_	_	
Работа в библиотеке	6	3	3	
Подготовка к экзамену	18	9	9	
Промежуточная аттестация – экзамен (Э)	Э	Э	Э	
Общая трудоемкость дисциплины				
Ак. ч.	270	126	144	
3. e.	7,5	3.5	4	

5 Содержание дисциплины

С целью освоения компетенций, приведенных в п. 3 дисциплина разбита на 8 тем:

- тема 1 (Основные направления электроники. Элементы электронных схем. Диоды. Элементы электронных схем. Биполярные транзисторы);
- тема 2 (Схемы подключения биполярного транзистора. h-параметры транзистора. Полевые транзисторы. Схемы их подключения. Тиристоры. Оптоэлектронные приборы);
- тема 3 (Операционные усилители (ОУ). Применение ОУ для выполнения математических операций);
- тема 4 (Аналоговые электронные устройства. Усилители и их характеристики. Обратные связи в усилителях. Усилители на биполярных транзисторах. Усилители на полевых транзисторах);
- тема 5 (Усилители постоянного тока. Усилители по схеме «Модуляция-Демодуляция». Усилители мощности. Трансформаторные и бестрансформаторные);
- тема 6 (Схемы выпрямления. Однофазные и трехфазные схемы выпрямителей. Сглаживающие фильтры. Стабилизаторы напряжения. Компенсационные и импульсные).
- тема 7 (Силовые ключи на биполярных и полевых транзисторах. Генераторы гармонических колебаний. Генераторы импульсных сигналов. Генераторы прямоугольных импульсов. Автоколебательные мультивибраторы. Блокинг-генераторы. Генераторы линейно-изменяющегося напряжения);
- тема 8 (Цифровая электроника. Комбинационные цифровые устройства. Шифраторы. Дешифраторы. Мультиплексоры. Демультиплексоры. Последовательные цифровые устройства. Триггеры. Счетчики импульсов. Регистры. Цифровые запоминающие устройства. Оперативные и постоянные запоминающие устройства. Устройства для формирования и аналого-цифрового преобразования сигналов. Односторонний и двухсторонний амплитудные ограничители. Цифро-аналоговые преобразователи. Аналого-цифровые преобразователи).

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 5.1-5.4 соответственно.

Таблица 5.1 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения, 4 семестр)

№ п/ п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
1	Основные направления электроники. Элементы электронных схем. Диоды. Элементы электронных схем. Биполярные транзисторы	Основные направления электроники. Элементы электронных схем. Диоды. Элементы электронных схем. Биполярные транзисторы	8	_	_	Исследование и получение характеристик биполярного и полевого транзисторов	8
2	Схемы подключения би- полярного транзистора. h-параметры транзи- стора. Полевые транзи- сторы. Схемы их под- ключения. Тиристоры. Оптоэлектронные	Схемы подключения биполярного транзистора. h-параметры транзистора. Полевые транзисторы. Схемы их подключения. Тиристоры. Оптоэлектронные	8	_	_	Исследование и получение характеристик транзисторных усилителей переменного тока	10
3	Операционные усилители (ОУ). Применение ОУ для выполнения математических операций	Операционные усилители (ОУ). Применение ОУ для выполнения математических операций	8	_	_	Исследование линейных и нелинейных схем на операционных усилителях	8
4	Аналоговые электронные устройства. Усилители и их характеристики. Обратные связи в усилителях. Усилители на биполярных транзисторах. Усилители на полевых транзисторах	Аналоговые электронные устройства. Усилители и их характеристики. Обратные связи в усилителях. Усилители на биполярных транзисторах. Усилители на полевых транзисторах	8	_	_	Логические элементы и их применение для выполнения логических операций	10

№ п/ п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
5	Усилители постоянного тока. Усилители по схеме «Модуляция-Демодуляция». Усилители мощности. Трансформаторные и бестрансформаторные	Усилители постоянного тока. Усилители по схеме «Модуляция-Демодуляция». Усилители мощности. Трансформаторные и бестрансформаторные	4				
	Всего	аудиторных часов	36	_	_	_	36

Таблица 5.2 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения, 5 семестр)

№ п/ п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
6	Схемы выпрямления. Однофазные и трехфазные схемы выпрямителей. Сглаживающие фильтры. Стабилизаторы напряжения. Компенсационные и импульсные	Схемы выпрямления. Однофазные и трехфазные схемы выпрямителей. Сглаживающие фильтры. Стабилизаторы напряжения. Компенсационные и импульсные	8	_	_	Исследование комбинационных цифровых устройств	6

№ п/ п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
7	Силовые ключи на би- полярных и полевых транзисторах. Генера- торы гармонических ко- лебаний. Генераторы импульсных сигналов. Генераторы прямо- угольных импульсов.	Силовые ключи на биполярных и полевых транзисторах. Генераторы гармонических колебаний. Генераторы импульсных сигналов. Генераторы прямо-угольных импульсов. Автоколебательные мультивибраторы. Блокинг-генераторы. Генераторы линейно-изменяющегося напряжения	8	I	l	Исследование цифровых схем с мультиплексорами, демультиплексорами	6
8	Цифровая электроника. Комбинационные цифровые устройства. Шифраторы. Дешифраторы. Мультиплексоры. Демультиплексоры	Цифровая электроника. Комбинационные цифровые устройства. Шифраторы. Дешифраторы. Мультиплексоры. Демультиплексоры. Последовательные цифровые устройства. Триггеры. Счетчики импульсов. Регистры. Цифровые запоминающие устройства. Оперативные и постоянные запоминающие устройства. Устройства для формирования и аналого-цифрового преобразования сигналов. Односторонний и двухсторонний амплитудные ограничители. Цифро-аналоговые преобразователи. Аналого-цифровые преобразователи.	11	Выполнение курсо- вой работы	9	Исследование цифровых схем с триггерами, регистрами и счетчиками имплульсов	6
	Всего	аудиторных часов	27	_	9	_	18

Таблица 5.3 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения, 4 семестр)

№ п/ п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
1	Основные направления электроники. Элементы электронных схем.	Основные направления электроники. Элементы электронных схем.	4	_	_	Исследование и получение характеристик биполярного и полевого транзисторов	4
	Всего	аудиторных часов	4	_	_	_	4

Таблица 5.4 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения, 5 семестр)

№ п/ п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
1	Схемы выпрямления. Однофазные и трехфазные схемы выпрямителей. Сглаживающие фильтры. Стабилизаторы напряжения. Компенсационные и импульсные	Схемы выпрямления. Однофазные и трехфазные схемы выпрямителей. Сглаживающие фильтры. Стабилизаторы напряжения. Компенсационные и импульсные	6	Выполнение кур- совой работы	4	_	_
	Всего	аудиторных часов	6	_	4	_	_

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf).

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 6.1.

Таблица 6.1 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компе- тенции	Способ оценивания	Оценочное средство
ОПК-3, ПК-1, ПК-3, ПК-4	Экзамен	Комплект контролирующих материалов для экзамена
ОПК-3, ПК-1, ПК-3, ПК-4	Дифференциро- ванный зачет	Комплект контролирующих материалов для защиты курсовой работы

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- тестовый контроль или устный опрос на коллоквиумах (1 коллоквиум) всего 40 баллов;
 - лабораторные работы всего 60 баллов.

Экзамен проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60 % от максимального.

Экзамен по дисциплине «Электроника и микропроцессорная техника» проводятся по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время сессии студент имеет право повысить итоговую оценку либо в форме устного собеседования по приведенным ниже вопросам (п. 6.4), либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.2.

Таблица 6.2 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашние задания

Для студентов очной формы обучения домашние задания не предусмотрены. Студены заочной формы обучения в каждом семестре выполняют контрольную работу по имеющимся методическим указаниям.

6.3 Темы рефератов

Написание рефератов при изучении дисциплины не предусмотрено.

6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Тема 1 Основные направления электроники. Элементы электронных схем. Диоды. Элементы электронных схем. Биполярные транзисторы

- 1) Какие основные направления развития электроники существуют на сегодняшний день?
 - 2) Какие элементы электронных схем являются базовыми?
 - 3) Как работает диод и каковы его основные характеристики?
 - 4) Какие типы диодов существуют и где они применяются?
 - 5) Что такое биполярный транзистор и как он устроен?
 - 6) Какие режимы работы биполярного транзистора существуют?
 - 7) Как обозначаются биполярные транзисторы на схемах?
 - 8) Каковы основные параметры биполярных транзисторов?

Тема 2 Схемы подключения биполярного транзистора. h-параметры транзистора. Полевые транзисторы. Схемы их подключения. Тиристоры. Оптоэлектронные приборы

- 1) Какие схемы подключения биполярного транзистора существуют?
- 2) Что такое h-параметры транзистора и как они используются?
- 3) Чем полевые транзисторы отличаются от биполярных?
- 4) Какие схемы подключения используются для полевых транзисторов?
- 5) Что такое тиристор и как он работает?

- 6) Какие типы тиристоров существуют и где они применяются?
- 7) Что такое оптоэлектронные приборы и каковы их особенности?
- 8) Какие примеры оптоэлектронных приборов вы знаете?

Тема 3 Операционные усилители (ОУ). Применение ОУ для выполнения математических операций

- 1) 1 Что такое операционный усилитель (ОУ) и каковы его основные характеристики?
 - 2) Какие схемы включения операционных усилителей существуют?
 - 3) Как ОУ используется для выполнения операции суммирования?
 - 4) Как ОУ применяется для выполнения операции дифференцирования?
 - 5) Какие математические операции можно выполнять с помощью ОУ?
- 6) Что такое коэффициент усиления ОУ и как он влияет на работу схемы?
 - 7) Какие особенности имеют идеальные операционные усилители?
- 8) Какие практические применения ОУ в электронных устройствах вы знаете?

Тема 4 Аналоговые электронные устройства. Усилители и их характеристики. Обратные связи в усилителях. Усилители на биполярных транзисторах. Усилители на полевых транзисторах

- 1) Какие типы аналоговых электронных устройств существуют?
- 2) Какие основные характеристики усилителей вы знаете?
- 3) Что такое обратная связь в усилителях и как она влияет на их работу?
- 4) Какие схемы усилителей на биполярных транзисторах наиболее распространены?
 - 5) Какие преимущества имеют усилители на полевых транзисторах?
 - 6) Как классифицируются усилители по частотному диапазону?
 - 7) Какие проблемы могут возникать в усилителях и как их устраняют?
- 8) Какие примеры применения усилителей в реальных устройствах вы знаете?

Тема 5 Усилители постоянного тока. Усилители по схеме «Модуляция-Демодуляция». Усилители мощности. Трансформаторные и бестрансформаторные

- 1) Что такое усилители постоянного тока и где они применяются?
- 2) Как работает схема «Модуляция-Демодуляция» в усилителях?
- 3) Какие особенности имеют усилители мощности?
- 4) Чем отличаются трансформаторные усилители от бестрансформаторных?

- 5) Какие преимущества и недостатки имеют трансформаторные усилители?
 - 6) Какие параметры важны при выборе усилителя мощности?
 - 7) Какие проблемы могут возникать в усилителях постоянного тока?
 - 8) Какие примеры применения усилителей мощности вы знаете?

Тема 6 Схемы выпрямления. Однофазные и трехфазные схемы выпрямителей. Сглаживающие фильтры. Стабилизаторы напряжения. Компенсационные и импульсные.

- 1) Какие схемы выпрямления существуют и как они работают?
- 2) Чем отличаются однофазные и трехфазные схемы выпрямителей?
- 3) Что такое сглаживающие фильтры и как они работают?
- 4) Какие типы стабилизаторов напряжения вы знаете?
- 5) Как работают компенсационные стабилизаторы напряжения?
- 6) Какие преимущества имеют импульсные стабилизаторы?
- 7) Какие параметры важны при выборе схемы выпрямления?
- 8) Какие примеры применения стабилизаторов напряжения вы знаете?

Тема 7 Силовые ключи на биполярных и полевых транзисторах. Генераторы гармонических колебаний. Генераторы импульсных сигналов. Генераторы прямоугольных импульсов. Автоколебательные мультивибраторы. Блокинг-генераторы. Генераторы линейно-изменяющегося напряжения.

- 1) Какие схемы выпрямления существуют и как они работают?
- 2) Чем отличаются однофазные и трехфазные схемы выпрямителей?
- 3) Что такое сглаживающие фильтры и как они работают?
- 4) Какие типы стабилизаторов напряжения вы знаете?
- 5) Как работают компенсационные стабилизаторы напряжения?
- 6) Какие преимущества имеют импульсные стабилизаторы?
- 7) Какие параметры важны при выборе схемы выпрямления?
- 8) Какие примеры применения стабилизаторов напряжения вы знаете?

Тема 8 Цифровая электроника. Комбинационные цифровые устройства. Шифраторы. Дешифраторы. Мультиплексоры. Демультиплексоры. Последовательные цифровые устройства. Триггеры. Счетчики импульсов. Регистры. Цифровые запоминающие устройства. Оперативные и постоянные запоминающие устройства для формирования и аналогоцифрового преобразования сигналов. Односторонний и двухсторонний амплитудные ограничители. Цифро-аналоговые преобразователи. Аналого-цифровые преобразователи

- 1) Какие схемы выпрямления существуют и как они работают?
- 2) Чем отличаются однофазные и трехфазные схемы выпрямителей?

- 3) Что такое сглаживающие фильтры и как они работают?
- 4) Какие типы стабилизаторов напряжения вы знаете?
- 5) Как работают компенсационные стабилизаторы напряжения?
- 6) Какие преимущества имеют импульсные стабилизаторы?
- 7) Какие параметры важны при выборе схемы выпрямления?
- 8) Какие примеры применения стабилизаторов напряжения вы знаете?

6.5 Вопросы для подготовки к экзаменам

Вопросы для подготовки к экзамену за 4 семестр

- 1) Какие основные направления развития электроники существуют на сегодняшний день?
 - 2) Какие элементы электронных схем являются базовыми?
 - 3) Как работает диод и каковы его основные характеристики?
 - 4) Какие типы диодов существуют и где они применяются?
 - 5) Что такое биполярный транзистор и как он устроен?
 - 6) Какие режимы работы биполярного транзистора существуют?
 - 7) Как обозначаются биполярные транзисторы на схемах?
 - 8) Каковы основные параметры биполярных транзисторов?
 - 9) Какие схемы подключения биполярного транзистора существуют?
 - 10) Что такое h-параметры транзистора и как они используются?
 - 11) Чем полевые транзисторы отличаются от биполярных?
 - 12) Какие схемы подключения используются для полевых транзисторов?
 - 13) Что такое тиристор и как он работает?
 - 14) Какие типы тиристоров существуют и где они применяются?
 - 15) Что такое оптоэлектронные приборы и каковы их особенности?
 - 16) Какие примеры оптоэлектронных приборов вы знаете?
- 17) Что такое операционный усилитель (ОУ) и каковы его основные характеристики?
 - 18) Какие схемы включения операционных усилителей существуют?
 - 19) Как ОУ используется для выполнения операции суммирования?
- 20) Как ОУ применяется для выполнения операции дифференцирования?
 - 21) Какие математические операции можно выполнять с помощью ОУ?
- 22) Что такое коэффициент усиления ОУ и как он влияет на работу схемы?
 - 23) Какие особенности имеют идеальные операционные усилители?
- 24) Какие практические применения ОУ в электронных устройствах вы знаете?

- 25) Какие типы аналоговых электронных устройств существуют?
- 26) Какие основные характеристики усилителей вы знаете?
- 27) Что такое обратная связь в усилителях и как она влияет на их работу?
- 28) Какие схемы усилителей на биполярных транзисторах наиболее распространены?
 - 29) Какие преимущества имеют усилители на полевых транзисторах?
 - 30) Как классифицируются усилители по частотному диапазону?
 - 31) Какие проблемы могут возникать в усилителях и как их устраняют?
- 32) Какие примеры применения усилителей в реальных устройствах вы знаете?
 - 33) Что такое усилители постоянного тока и где они применяются?
 - 34) Как работает схема «Модуляция-Демодуляция» в усилителях?
 - 35) Какие особенности имеют усилители мощности?
- 36) Чем отличаются трансформаторные усилители от бестрансформаторных?
- 37) Какие преимущества и недостатки имеют трансформаторные усилители?
 - 38) Какие параметры важны при выборе усилителя мощности?
 - 39) Какие проблемы могут возникать в усилителях постоянного тока?
 - 40) Какие примеры применения усилителей мощности вы знаете? Вопросы для подготовки к экзамену за 5 семестр
 - 1) Какие схемы выпрямления существуют и как они работают?
 - 2) Чем отличаются однофазные и трехфазные схемы выпрямителей?
 - 3) Что такое сглаживающие фильтры и как они работают?
 - 4) Какие типы стабилизаторов напряжения вы знаете?
 - 5) Как работают компенсационные стабилизаторы напряжения?
 - 6) Какие преимущества имеют импульсные стабилизаторы?
 - 7) Какие параметры важны при выборе схемы выпрямления?
 - 8) Какие примеры применения стабилизаторов напряжения вы знаете?
 - 9) Что такое силовые ключи и как они работают?
- 10) Какие особенности имеют силовые ключи на биполярных транзисторах?
 - 11) Как работают генераторы гармонических колебаний?
 - 12) Какие типы генераторов импульсных сигналов существуют?
 - 13) Как устроены генераторы прямоугольных импульсов?
 - 14) Что такое автоколебательные мультивибраторы и как они работают?
 - 15) Какие особенности имеют блокинг-генераторы?
 - 16) Как работают генераторы линейно-изменяющегося напряжения?

- 17) Что такое комбинационные цифровые устройства и как они работают?
 - 18) Какие функции выполняют шифраторы и дешифраторы?
 - 19) Как работают мультиплексоры и демультиплексоры?
 - 20) Что такое триггеры и какие типы триггеров существуют?
 - 21) Как работают счетчики импульсов и где они применяются?
 - 22) Какие функции выполняют регистры в цифровых устройствах?
- 23) Чем отличаются оперативные и постоянные запоминающие устройства?
- 24) Как работают аналого-цифровые и цифро-аналоговые преобразователи?

6.6 Примерная тематика курсовых работ (проектов)

По дисциплине предусмотрен курсовая работа на тему «Расчет компенсационного стабилизатора последовательного типа».

Методические указания к выполнению курсовой работы по дисциплине "Электроника и микропроцессорная техника" (для студентов направления 13.03.02 Электроэнергетика и электротехника, профиль подготовки "Электропривод и автоматика промышленных установок и технологических комплексов") / Сост. И.А. Карпук. — Алчевск, ДонГТУ, 2024. — 36 с. https://moodle.dstu.education/pluginfile.php/56715/mod_resource/content/1/KP%20ЭМПТ%20v12.pdf.

Кроме этого, используется литература, приведенная в разделе 7.1.

Курсовая работа состоит из расчетно-пояснительной записки объемом 25-40 страниц. В ней должны содержаться следующие разделы:

Введение;

Обзор и анализ источников питания;

Выбор и анализ структурной схемы;

Разработка принципиальной электрической схемы;

Расчет схемы электрической принципиальной;

Исходные данные для расчета;

Расчет схемы компенсационного стабилизатора;

Расчет схемы защиты КСН от перегрузок;

Разработка схемы КСН на базе ИМС.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Шеманаева, Л. И. Электроника и микропроцессорная техника : учебно-методическое пособие / Л. И. Шеманаева. Москва : Ай Пи Ар Медиа, 2023. 148 с. ISBN 978-5-4497-1882-2. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/126280.html (дата обращения: 20.08.2024).
- 2. Миловзоров, О. В. Электроника: учебник для вузов / О. В. Миловзоров, И. Г. Панков. 8-е изд., перераб. и доп. Москва: Издательство Юрайт, 2024. 397 с. (Высшее образование). ISBN 9785534186048. URL: https://urait.ru/bcode/559878 (дата обращения: 20.08.2024)).

Дополнительная литература

- 1. Лазарева Н. М., Яров В. М., Белов Г. А.. Компьютерное моделирование. SimPowerSystems: практикум [для 2 курса по специальности "Промышленная электроника"]. Чебоксары: Изд-во Чуваш. ун-та, 2016. 67с.
- 2. Исследование нечетких систем управления в среде Matlab [Электронный ресурс]: Учебное пособие. Таганрог: Южный федеральный университет, 2015. 54 с. Режим доступа: http://www.iprbookshop.ru/78671.html.

Учебно-методическое обеспечение

1. Методические указания к выполнению лабораторных работ по курсу «Электроника и микропроцессорная техника»: (для студ. напр. подготовки 13.03.02 «Электроэнергетика и электротехника») / сост. И.А. Карпук ; Каф. электромеханики им. А.Б.Зеленова . — Алчевск: ФГБОУ ВО «ДонГТУ», 2024 . — 32 с. https:// moodle.dstu.education/pluginfile.php/62452/mod_resource/content/1/MУ%20ЭМПТ.pdf

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ : официальный сайт. Алчевск. URL: library.dstu.education. Текст : электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст : электронный.
- 3. Консультант студента: электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст: электронный.

- 4. Университетская библиотека онлайн : электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст : электронный.
- 5. IPR BOOKS : электронно-библиотечная система. Красногорск. URL: http://www.iprbookshop.ru/. Текст : электронный.
- 6. Федеральная служба по экологическому, технологическому и атомному надзору (Ростехнадзор) : официальный сайт. Москва. https://www.gosnadzor.ru/. Текст : электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 8.

Таблица 8.1 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местополо- жение) учебных кабинетов
Специальные помещения:	ауд 319, корп. глав-
Компьютерный класс кафедры АЭМС - Персональный компьютер — 17 шт - Принтер HP1100 - Сканер	ный

Лист согласования РПД

доц. кафедры электромеханики		
ст. преп. кафедры электромеханики им. А. Б. Зеленова (должность)	<u>(додпись)</u> <u>И.А. Карпук</u> (Ф.И.О.)	
(должность)	(подпись) (Ф.И.О.)	
(должность)	(подпись) (Ф.И.О.)	+
Заведующий кафедрой	Д. И. Морозоп (подпись) (Ф.И.О.)	<u>B</u>
Протокол № 1 заседания кафедры электромеханики им. А.Б. Зеленова	от 22.08.2024г.	
Декан факультета Согласовано	В.В.Дьячков (Ф.И.О.)	<u>a_</u>
Председатель методической комиссии по направлению подготовки 13.03.02 Электроэнергетика и электротехника	<u>Л.Н. Комаревцев</u> (Ф.И.О.)	<u>a</u>
Начальник учебно-методического центра	О.А. Коваленко (Ф.И.О.)	

Лист согласования РПД

Разработал

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения изменений		
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	
Основание:		
Подпись лица, ответственного за внесение изменений		