МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет	торно-металлургической промышленности и строительства	
Кафедра	металлургических технологий	
	РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Тепломассообмен	
(наименование дисциплины)		
	18.03.01 Химическая технология (код, наименование направления)	
Химич	еская технология природных энергоносителей и углеродных материалов	
	(профиль подготовки)	
Квалификац	ия <u>бакалавр</u> (бакалавр/специалист/магистр)	
Форма обуче	ения очная, заочная	
	(очная. заочная)	

1 Цели и задачи дисциплины

Цели дисциплины: Целью данной дисциплины является подготовка будущего специалиста к решению научно-исследовательских и инженерных задач по расчету коксохимических агрегатов при их проектировании или реконструкции.

Задачи дисциплины:

- изучение основных законов тепломассообмена, теплофизических свойств вещества;
- изучение теплообменных процессов в печах коксохимического производства;
- решение конкретных задач тепломассообмена инженерными методами.

Дисциплина направлена на формирование профессиональной компетенции (ПК-2) выпускника.

2 Место дисциплины в структуре образовательной программы

Логико-структурный анализ дисциплины — курс входит в часть БЛОК 1 «Элективные дисциплины (модули)» подготовки студентов по направлению 18.03.01 Химическая технология (профиль «Химическая технология природных энергоносителей и углеродных материалов»).

Дисциплина реализуется кафедрой металлургических технологий.

Входные знания студента базируются на изученных дисциплинах: «Математика», «Физика», «Общая и неорганическая химия».

Является основой для изучения следующей дисциплины: «Теплоэнергетическое оборудование и электроснабжение химических заводов».

Общая трудоемкость освоения дисциплины для очной формы обучения составляет 3 зачетные единицы, 108 часов. Программой дисциплины предусмотрены лекционные (18 ч.), практические (18 ч.) занятия и самостоятельная работа студента (72 ч.).

Дисциплина изучается на 4 курсе в 7 семестре. Форма промежуточной аттестации – зачет.

Общая трудоемкость освоения дисциплины для заочной формы обучения составляет 3 зачетных единицы, 108 ак.ч. Программой дисциплины предусмотрены лекционные (6 ак.ч.) и практические (6 ак.ч.) занятия и самостоятельная работа студента (96 ак.ч.).

Дисциплина изучается на 3 курсе в 6 семестре. Форма промежуточной аттестации – зачет.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Тепломассообмен» направлен на формирование компетенций, представленных в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание компетенции	Код компетен- ции по ОПОП ВО	Код и наименование индикатора достижения компетенции
Готовность к решению	ПК-2	ПК-2.1. Знает: основное оборудование процессов, принципы
профессиональных,		его работы и правила технической эксплуатации, основные
производственных задач,		процессы и аппараты, устройство и принципы работы
контролю		оборудования.
технологического		ПК-2.2. Умеет: использовать на практике соответствующие
процесса, выбору		аппараты при разработке технологических процессов,
оборудования, разработке		проводить работу по совершенствованию действующих и
технологических		освоению новых технологических процессов,
нормативов на расход		совершенствовать действующие методы проведения
материалов, топлива и		испытаний и
электроэнергии.		исследований.
		ПК-2.3. Владеет: методами инженерных расчётов, связанных с
		выбором соответствующего оборудования, методами по
		ускорению освоения в производстве технологических
		процессов.

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 3 зачётных единицы, 108 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим занятиям, текущему контролю, самостоятельное изучение материала и подготовку к зачету.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам 7	
Аудиторная работа, в том числе:	36	36	
Лекции (Л)	18	18	
Практические занятия (ПЗ)	18	18	
Лабораторные работы (ЛР)	_	_	
Курсовая работа/курсовой проект	_	_	
Самостоятельная работа студентов (СРС), в том числе:	72	72	
Подготовка к лекциям	4	4	
Подготовка к лабораторным работам	_	_	
Подготовка к практическим занятиям / семинарам	18	18	
Расчетно-графическая работа (РГР)	_	_	
Реферат (индивидуальное задание)	12	12	
Домашнее задание	_	_	
Подготовка к контрольной работе	6	6	
Подготовка к коллоквиуму	_	_	
Аналитический информационный поиск	12	12	
Работа в библиотеке	12	12	
Подготовка к зачету	8	8	
Промежуточная аттестация – зачет (3)	3 (2)	3 (2)	
Общая трудоемкость дисциплины			
ак.ч.	108	108	
3.e.	3	3	

5 Содержание дисциплины

С целью освоения компетенций, приведенных в п.3 дисциплина разбита на 6 тем:

- тема 1 (Тепломассообмен как дисциплина);
- тема 2 (Внутренний теплообмен при нагреве материала);
- тема 3 (Граничные условия нагрева массивных тел);
- тема 4 (Тепловые балансы коксовых печей);
- тема 5 (Производительность коксовых печей);
- тема 6 (Использование топлива в коксовых печах).

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 3 и 4 соответственно.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемк ость в ак.ч.	Темы практических занятий	Трудоемкос ть в ак.ч.	Тема лаборатор ных занятий	Трудоемк ость в ак.ч.
1	Тепломассооб мен как дисциплина	Вводное занятие. Задачи, решаемые дисциплиной «Тепломассообмен» в общем процессе обучения по профилю «Химическая технология природных энергоносителей и углеродных материалов».	2	Решение задач	2	-	_
2	Внутренний теплообмен при нагреве материала	Общая характеристика внутреннего теплообмена при нагреве материала. Нестационарное (неустановившееся) и стационарное (установившееся) температурное поле. Теплопроводность материалов. Нагрев тонких тел. Особенности нагрева тонких тел. Критерий Био. Число Старка. Частные случаи нагрева тонких тел: при постоянной температуре греющих газов и при условиях внешнего теплообмена излучением. Нагрев массивных тел. Особенности нагрева массивных тел. Инерционное (иррегулярное) время нагрева. Дифференциальное уравнение теплопроводности Фурье.	6	Определение массивности тел с помощью критерия Био и числа Старка Расчет статей теплового баланса печей Определение относительных температур: поверхности, средней по массе минимальной неограниченной пластины	6	_	_

Продолжение таблицы 3							
№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудо емкос ть в ак.ч.	Темы практических занятий	Трудое мкость в ак.ч.	Тема лаборат орных занятий	Трудое мкость в ак.ч.
3	Граничные условия нагрева массивных тел.	Условия однозначности: начальные и граничные условия нагрева. Краевые условия нагрева. Задачи граничных условий нагрева массивных тел первого, второго и третьего рода. Приближенные методы методы решения краевых задач: нагрев массивных тел при qпов.= const.(граничные условия 2 рода); нагрев массивных тел при Тд.=const. (грани-чные условия 3 рода); нагрев массивных тел при Тпов.= const.(граничные условия 1 рода).	2	Определение относительных температур: поверхности, средней по массе и минимальной неограниченного цилиндра.	2	I	_
4	Тепловые балансы коксовых печей	Тепловые балансы печей непрерывного действия. Тепловые балансы печей периодического действия. Приходные и расходные статьи тепловых балансов.	4	Определение относительного времени нагрева поверхности середины неограниченного цилиндра	2	-	-
5	Производитель ность коксовых печей	Общая и удельная производительность печей. Напряженность габаритного и активного пода печей. Факторы, влияющие на производительность печей.	2	Тепловой расчет многослойной футеровки промышленной печи	4	ŀ	_
6	Использование топлива в коксовых печах	Показатели использования топлива: удельный расход тепла; удельный расход условного топлива; коэффициент полезного действия печи; приведенный удельный расход тепла; приведенный удельный расход условного топлива; коэффициент использования топлива, тепловая мощность печи.	2	∞ Решение задач	2	-	-
В	сего аудиторных час	сов	18		18		_

Таблица 4 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемк ость в ак.ч.	Темы практических занятий	Трудо емкость в ак.ч.	Тема лабораторных занятий	Трудоемкос ть в ак.ч.
1	Внутренни й теплообмен при нагреве материала	Общая характеристика внутреннего теплообмена при нагреве материала. Нестационарное (неустановившееся) и стационарное (установившееся) температурное поле. Теплопроводность материалов. Нагрев тонких тел. Особенности нагрева тонких тел. Критерий Био. Число Старка. Частные случаи нагрева тонких тел: при постоянной температуре греющих газов и при условиях внешнего теплообмена излучением. Нагрев массивных тел. Особенности нагрева массивных тел. Инерционное (иррегулярное) время нагрева. Дифференциальное уравнение теплопроводности Фурье.	4	Определение массивности тел с помощью критерия Био и числа Старка Расчет статей теплового баланса печей Определение относительных температур: поверхности, □ с редней по массе и минимальной неограниченой пластины.	4		
2	Тепловые балансы коксовых печей	Тепловые балансы печей непрерывного действия. Тепловые балансы печей периодического действия. Приходные и расходные статьи тепловых балансов.	2	Тепловой расчет многослойной футеровки промышленной печи	2	_	-
Всего	аудиторных часо	DB	6		6		_

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
ПК-2	Зачет	Комплект контролирующих материалов для зачета

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- практические работы всего 50 баллов;
- контрольные работы всего 20 баллов;
- индивидуальное задание 30 баллов.

Зачет проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Зачет по дисциплине «Тепломассообмен» проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время зачетной недели студент имеет право повысить итоговую оценку либо в форме устного собеседования по приведенным ниже вопросам (п.п. 6.5), либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашнее задание

Домашнее задание не предусмотрено

6.3 Темы для индивидуального задания

Задание: Тепловой расчет многослойной футеровки промышленной печи

Исходные данные для расчета:

- 1. Элемент печи Свод.
- 2. Материал рабочего слоя 1– периклазохромит.
- 3. Толщина рабочего слоя $b_1 = 400$ мм.
- 4. Температура, °С:
- 5. Формула для рассчета 4,7-170 · 10⁻⁵ · t

на внутренней поверхности рабочего слоя $t_{\rm BH.}=170{\rm o}$; на наружной поверхности теплоизоляционного слоя 3 $t_{\rm 30BH.}=90$; окружающей среды 45.

6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Варианты заданий для студентов очной формы обучения

Тема 1 Тепломассообмен как дисциплина

- 1) Назовите основные элементы ВТУ.
- 2) Что называется тепловой схемой ВТУ?
- 3) Чем определяется эффективность работы ВТУ?
- 4) Как классифицируются температурные графики?
- 5) От чего зависит интенсивность лучистого теплообмена?
- 6) Приведите расчетную схему теплообмена в пламенной печи.
- 7) Приведите расчетную схему теплообмена в муфельной печи.
- 8) Приведите расчетную схему теплообмена в печи с радиантными трубами.
 - 9) Назовите особенности внешнего теплообмена в слоевых установках.

Тема 2 Внутренний теплообмен при нагреве материала

1) Охарактеризуйте способы передачи теплоты (теплопроводность, конвекция, излучение).

- 2) Дайте определение понятиям: температурное поле, изотермическая поверхность, средний и истинный градиент температур.
- 3) Сформулируйте закон Фурье. Дайте определение понятиям: коэффициент теплопроводности, плотность теплового потока, количество теплоты.
 - 4) Коэффициент теплопроводности, его характеристика.
- 5) Приведите математическую формулировку задачи расчета внутреннего теплообмена и ее решения на примере бесконечной пластины.
- 6) Какой параметр позволяет считать объект тонким или массивным телом?
 - 7) От чего зависит время охлаждения тонкой пластины?
 - 8) Назовите цель составления теплового баланса ВТУ.
 - 9) Назовите приходные статьи теплового баланса.
 - 10) Назовите расходные статьи теплового баланса.
 - 11) Приведите формулы технологического и энергетического КПД.
- 12) Опишите перенос теплоты теплопроводностью при стационарном режиме для однородной плоской стенки.
- 13) Опишите перенос теплоты теплопроводностью при стационарном режиме для многослойной стенки.
- 14) Опишите перенос теплоты теплопроводностью при стационарном режиме для цилиндрической стенки.
- 15) Опишите перенос теплоты теплопроводностью при стационарном режиме для шаровой стенки.

Тема 3 Граничные условия нагрева массивных тел

- 1) Охарактеризуйте теплопроводность в плоской стенке (граничные условия 1-ого рода).
- 2) Опишите теплопередачу через плоскую стенку (граничные условия 3-его рода).
- 3) Опишите теплопроводность в цилиндрической стенке (граничные условия 1-ого рода).
- 4) Дайте характеристику теплопередачи через цилиндрическую стенку (граничные условия 3-его рода).
- 5) Дайте характеристику шаровой стенка (граничные условия 1-ого и 3-его рода).
 - 6) Что такое термические сопротивления?
 - 7) Что такое критический диаметр изоляции?
- 8) Как осуществляется выбор тепловой изоляции по критическому диаметру?
- 9) Охарактеризуйте охлаждение, нагревание неограниченной пластины, цилиндра и шара при граничных условиях 1,2,3 рода.
- 10) Опишите контактное термическое сопротивление и нестационарный процесс теплопроводности.

- 11) Приведите уравнение Ньютона-Рихмана. Что такое коэффициент теплоотдачи?
- 12) Охарактеризуйте тепловую проводимость стенки и тепловое термическое сопротивление.
- 13) Опишите охлаждение, нагревание неограниченной пластины, цилиндра и шара при граничных условиях 1,2,3 рода.
- 14) Как осуществляется теплопередача через однослойную и многослойную цилиндрическую стенку?

Тема 4 Тепловые балансы коксовых печей

- 1) Приведите определение огнеупорных материалов.
- 2) Перечислите основные рабочие свойства огнеупоров.
- 3) Приведите классификацию огнеупоров.
- 4) Перечислите технологические параметры нагрева металла.
- 5) Приведите назначение схему работы нагревательного колодца.
- 6) Приведите назначение схему работы методической печи.
- 7) Приведите назначение схему работы термической печи.
- 8) Назовите преимущества и недостатки электротермических установок.
 - 9) Назовите основную задачу регенеративного подогрева воздуха.
 - 10) Перечислите типы конвективных рекуператоров.
- 11) Приведите последовательность расчета щелевого радиационного подогревателя.
 - 12) Какие требования предъявляются в насадке регенератора?
 - 13) Перечислите типы регенераторов.
 - 14) Опишите технологический режим коксовой печи.
 - 15) Как осуществляется управление процессом коксования?
 - 16) Приведите материальный и тепловой баланс коксовой печи.
 - 17) Как происходит управление процессом обогрева?

Тема 5 Производительность коксовых печей Задачи:

1) Коксовый цех из 4-х батарей, в каждой из которых по 65 печей. Полезный объем камер коксования -30 нм^3 . Оборот печей 15 ч. После 18 дней работы баланс выявил невыполнение плана на 2% по валовому коксу.

Определить необходимый оборот коксовых печей для того, чтобы за оставшиеся 12 дней месяца выйти на месячное выполнение плана на 100,1%.

Плотность насыпной массы шихты 0,733 т/нм 3 . Выход валового кокса от шихты составляет 75%.

- 2) Продукты сгорания коксового газа имеют состав, %: CO_2 8,5; O_2 2,5; CO 0,2. Определить значение α .
- 3) В результате совершенствования схемы подготовки углей для коксования плотность насыпной массы возросла с 750 до 780 кг/нм 3 . Ваши действия по регулировке обогрева коксовых печей? Обогрев производится

коксовым газом с теплотой сгорания 18500 кДж/нм³. Расход газа на обогрев следующий:

- машинная сторона 5700 нм $^{3}/$ ч;
- коксовая сторона $-6200 \text{ нм}^3/\text{ч}$.

Напоминаем, что для поддержания степени готовности кокса на постоянном, установленном уровне необходимо обеспечивать стабильность количества тепла, передаваемого угольной загрузке.

4) Плотность насыпной массы шихты уменьшилась с 775 до 760 кг/нм³ при неизменной влаге и других параметрах ее качества.

Определить требуемые изменения расхода газа на обогрев батареи для сохранения постоянного уровня готовности кокса. Прежнее значение общего расхода — $11220 \text{ hm}^3/\text{ч}$.

5) В результате длительных дождей влажность шихты увеличилась на 2%. Марочный состав и технический анализ шихты остаются прежними. Как изменить расход отопительного газа и температуру в контрольных вертикалах, чтобы сохранить заданную готовность кокса?

Влажность шихты – 9%;

Расход отопительного газа — $11000 \text{ нм}^3/\text{ч}$;

Температура в контрольных вертикалах:

- с машинной стороны − 1300 °C;
- с коксовой стороны 1345 °C.

Удельный расход тепла на коксование влажной шихты qв.ш. = 2480 кДж/кг.

Напоминаем, что каждый процент влаги в шихте увеличивает фактический удельный расход тепла на коксование примерно на $33.5~\rm kДж/kг$, а также требует увеличения температуры в простенках на $5-7~\rm ^{\circ}C$.

При решении задачи следует иметь ввиду, что относительное изменение удельного расхода тепла на коксование соответствует требуемым относительным изменениям расхода отопительного газа на обогрев.

6) Влажность шихты с 11% уменьшилась до 7%;

Расход отопительного газа $-12000 \text{ нм}^3/\text{ч};$

Температура в контрольных вертикалах:

- с машинной стороны 1295 $^{\circ}$ C;
- с коксовой стороны 1320° С.

Удельный расход тепла на коксование влажной шихты qв.ш. = 2495 кДж/кг.

Напоминаем, что каждый процент влаги в шихте увеличивает фактический удельный расход тепла на коксование примерно на 33.5 кДж/кг, а также требует увеличения температуры в простенках на 5-7 °C.

Определить необходимые изменения расхода отопительного газа и температуры в контрольных вертикалах для сохранения готовности кокса на прежнем уровне.

7) В целях повышения прочности кокса по сопротивлению истирающим воздействиям принято решение увеличить степень готовности кокса.

Температуру в осевой плоскости коксового пирога требуется повысить с 1000 до 1050 °C. Удельный расход тепла на коксование при 1000 °C составляет qш = 2520 кДж/кг.

Определить необходимые для этого изменения температуры в обогревательных простенках и расход тепла на коксование в условиях постоянного периода коксования.

Из практики обогрева коксовых печей известно, что для повышения температуры в осевой плоскости коксового пирога на 25–30 °C требуется температуру в контрольных вертикалах повысить на 10 °C, т. е. для повышения температуры на 1 °C в осевой плоскости надо в вертикалах ее увеличить на $10/25 \div 10/30 = 0.4 \div 0.33$ °C. Для увеличения температуры в осевой плоскости на 50 °C в вертикалах надо ее поднять на 17-20 °C (0.33·50 ≈ 17 ; $0.4 \cdot 50 = 20$).

- 8) При обогреве доменным газом и $\alpha = 1,1$ в продуктах сгорания обнаружено 1,2% СО. Их количество составляет на 1 нм³ газа 1,67 нм³. Определить потери тепла в связи с неполным сгоранием газа.
- 9) При обогреве доменным газом изменение коэффициента избытка воздуха с 1,3 на 1,5 привело к увеличению количества продуктов горения на 1 нм³ газа с 1,85 до 2 нм³. Температура продуктов горения 300 °C, их объемная теплоемкость составляет 1,47 кДж/(нм³·К).

Определить дополнительный унос тепла.

- 10) Определить нормальную калориметрическую температуру (th.к) обезводороженного коксового газа. Для этого газа $Qi = 23100 \text{ кДж/нм}^3$, $V_{\Pi.\Gamma.} = 6,79 \text{ нм}^3$.
- 11) Определить по упрощенной методике калориметрическую температуру горения коксового газа, при температуре подогрева воздуха 1000 °C и $\alpha=1$, 3 Для расчета по формуле: воспользуемся следующими исходными данными: Qi = 17700 кДж/нм³; Vвд = 5,54 нм³; Vви = 1,28 нм³; Qэв = $5,54\cdot1$, $41\cdot1000 = 7800$ кДж/нм³.
- 12) Определить калориметрическую температуру горения доменного газа, при температуре подогрева газа и воздуха 1000° С. Для расчета по формуле: воспользуемся следующими исходными данными: Qi = 4070 кДж/нм3; Vв.д. =0,92 нм³; Vв.н. = 0,16 нм³; Qэ.в. = $0,92 \cdot 1,38 \cdot 1000 = 1270$ кДж/нм³; Qэ.г. = $1 \cdot 1,55 \cdot 1000 = 1550$ кДж/нм³.
 - 13) Известно, что qв.ш. = 2700 кДж/кг при W = 10%. Определить qc.ш..
- 14) Определить qп.р., если при влажности шихты W=10% расход тепла qв.ш. = 2640 кДж/кг.

Тема 6 Использование топлива в коксовых печах

- 1) Приведите классификацию вторичных энергетических ресурсов.
- 2) Назначение котла-утилизатора и их примеры.

3) Назовите основные этапы теплового расчета котла-утилизатора.

Решение задач по курсу

- 1) Вычислить секундный расход теплоты (Q, Вт) через кирпичную стенку высотой h, длиной l и толщиной δ. Температуры поверхностей стен равны t1 и t2.
- 2) Плоская стенка выполнена из шамотного кирпича толщиной δ . Температуры ее поверхности равны t1 и t2. Коэффициент теплопроводности шамотного кирпича зависит от температуры и определяется зависимостью $\lambda = 0.838(1 + 0.0007 \cdot t)$ Вт/(м·К). Вычислить и изобразить в масштабе распределение температуры в стенке.
- 3) Стены сушильной камеры выполнены из слоя красного кирпича толщиной δ и слоя строительного войлока. Температуры на внешней поверхности кирпичного слоя равны t1 и на внешней поверхности войлока t2. Коэффициенты теплопроводности красного кирпича λ 1 и строительного войлока λ 2. Вычислить температуру в плоскости 19 соприкосновения слоев и найти толщину войлочного слоя при условии, чтобы тепловые потери через 1 м 2 стенки не превышал qпот.
- 4) Вычислить секундный расход теплоты (Q, Bт) через стенку трубы из жаропрочной стали, имеющей внутренний диаметр d1, мм и наружный диаметр d2, мм. Температура наружной поверхности трубы t2, °C, температура внутренней поверхности t1, °C.
- 5) Паропровод диаметром d1/d2 с коэффициентом теплопроводности λ1 покрыт изоляцией в два слоя δ1 и δ2. Температуры внутренней поверхности трубы t1 и наружной поверхности изоляции t4. Определить потери теплоты через изоляцию с 1 пог. м трубы и температуру на поверхности соприкосновения слоев изоляции, если первый слой 20 изоляции, поверхность трубы, выполнен из материала с накладываемый на коэффициентом теплопроводности $\lambda 2$, а второй слой – из материала с коэффициентом теплопроводности λ3.
- 6) По воздуховоду, размером h×b движется воздух со скоростью w. Температура воздуха t. Определить критерии Re, Pe, Pr.
- 7) Для изучения движения воздуха в трубе, диаметром d1, со средней скоростью w, использовали модель с диаметром d2. Какую скорость воздуха нужно создать в модели, чтобы осуществить в ней подобие с натурой?
- 8) Найти потери теплоты с одного погонного метра паропровода, который охлаждается свободным потоком воздуха. Наружный диаметр паропровода равен d, температура его поверхности, t1, температура воздуха вдали от паропровода tz. Потери теплоты излучением не учитывать.
- 9) Определить средний коэффициент теплоотдачи соприкосновением от поперечного потока дымовых газов к трубам водяного экономайзера парового котла. Трубы расположены в шахматном порядке. Наружный диаметр труб, d мм, число рядов труб вдоль потока газов равно n. Шаг труб

поперек потока газов, x1 = 95 мм. Шаг труб вдоль потока, x2=75 мм. Температура газов перед экономайзером t1, после него t2. Средняя скорость газов w.

- 10) Определить коэффициент теплоотдачи от стенки трубки конденсатора паротурбинной установки к охлаждающей воде, количество передаваемой теплоты и длину трубки, если средняя по ее длине температура стенки tc, внутренний диаметр трубки d, температура воды на входе и выходе из трубки равны соответственно t1 и t2. Средняя скорость воды равна w.
- 11) Найти коэффициент теплоотдачи при кипении воды на трубке испарителя, работающей с плотностью теплового потока q, если температура поверхности трубки t, а вода находится при температуре насыщения под давлением P. Наружный диаметр трубки d.
- 12) Определить коэффициент теплоотдачи от конденсирующего пара к стенке труб вертикального подогревателя, обогреваемого паром, давлением Р. Высота труб подогревателя Н, диаметр трубок, d. Температура стенки трубы, t.
- 13) По траншее, выложенной кирпичом, проложен трубопровод горячего воздуха. Температура наружной поверхности стенки трубопровода равна t. Наружный диаметр трубопровода равен d. Траншея имеет ширину b и высоту h. Температура ее кирпичных стен равна t2. Определить количество теплоты, отдаваемой излучением трубопровода стенам изоляции, отнеся ее к одному погонному метру трубопровода.
- 14) Дымовые газы проходят пучок труб при средней температуре газов t. Температура стенок труб tc. Состав газовой смеси rco2, rH2O. Трубы расположены в вершинах равностороннего треугольника. Диаметр труб 83 теплоты, передаваемой излучением, MM. Вычислить количество коэффициент теплоотдачи излучением, если расстояние между поверхностями труб x = 83 мм.
- G2 15) Воздух расходом нагревается трубчатом воздухоподогревателе парового котла от температуры t'в до t"в. Воздух движется поперек трубного пучка со средней скоростью в узком сечении wв. Трубы расположены в шахматном порядке с 25 шагами s1=s2. Дымовые газы (13 % CO2; 11 % H_20) в количестве G1 движутся внутри стальных труб диаметром d2/d1 со средней скоростью wr. Температура газов на входе в воздухоподогреватель tг. Определить необходимую поверхность теплообмена.

Полные данные для расчетов находятся у преподавателя.

6.5 Вопросы для подготовки к зачету

- 1) Дайте общую характеристику внутреннего теплообмена при нагреве материала.
- 2) Охарактеризуйте нестационарное (неустановившееся) и стационарное (установившееся) температурное поле.

- 3) Что такое теплопроводность материалов?
- 4) Как осуществляют определение теплопроводности металлов опытным путем?
 - 5) В чем заключаются особенности нагрева тонких тел?
 - 6) Охарактеризуйте критерий Био и число Старка.
- 7) Назовите частные случаи нагрева тонких тел: при постоянной температуре греющих газов и при условиях внешнего теплообмена излучением.
 - 8) В чем заключаются особенности нагрева массивных тел?
 - 9) Что такое инерционное (иррегулярное) время нагрева?
 - 10) Приведите дифференциальное уравнение теплопроводности Фурье.
- 11) Охарактеризуйте условия однозначности: начальные и граничные условия нагрева.
 - 12) Опишите краевые условия нагрева.
- 13) назовите задачи граничных условий нагрева массивных тел первого, второго и третьего рода.
- 14) В чем заключаются приближенные методы решения краевых задач: нагрев массивных тел при qпов.= const. (граничные условия 2 рода)?
- 15) В чем заключаются приближенные методы решения краевых задач: нагрев массивных тел при при Тд.= const.(граничные условия 3 рода)?
- 16) В чем заключаются приближенные методы решения краевых задач: нагрев массивных тел при Тпов..= const. (граничные условия 1 рода)?
- 17) Охарактеризуйте тепловые балансы коксовых печей непрерывного действия.
- 18) Охарактеризуйте тепловые балансы коксовых печей периодического действия.
 - 19) Что такое динамика газов?
 - 20) Опишите приходные и расходные статьи тепловых балансов.
 - 21)Охарактеризуйте производительность коксовых печей.
 - 22) В чем заключается общая и удельная производительность печей?
 - 23) Опишите напряженность габаритного и активного пода печей.
 - 24) Какие факторы влияют на производительность коксовых печей?
- 25) Как происходит использование топлива в металлургических печах? Опишите показатели использования топлива.
- 26) Охарактеризуйте удельный расход тепла, удельный расход условного топлива.
 - 27) Что такое коэффициент полезного действия печи?
 - 28) Что такое приведенный удельный расход тепла?
 - 29) Что такое приведенный удельный расход условного топлива?

6.6 Примерная тематика курсовых работ

Курсовые работы не предусмотрены.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендованная литература

Основная литература

- 1. Ведерникова, М. И. Тепловые и массообменные процессы: учебнометодическое пособие / М. И. Ведерникова, Л. Г. Старцева, И. К. Гиндулин; Министерство науки и высшего образования Российской Федерации, Уральский государственный лесотехнический университет. Екатеринбург: УГЛТУ, 2023. 158 с. Режим доступа: https://elar.usfeu.ru/bitstream/123456789/12711/1/Vedernikova_23.pdf
- 2. Основы высокотемпературной теплотехнологии: учебное пособие / А.В. Бараков, Д.А. Прутских, А.А. Надеев, В.Ю. Дубанин; ФГБОУ ВО «Воронежский государственный технический университет». Воронеж: Издво ВГТУ, 2022. 91 с. Режим доступа: https://cchgeu.ru/upload/iblock/1a5/ccc2xcqb8tlywzcmves7ehfpn7c9h3h7/Osnovy-vysokotemp.-teplotekhn. Ucheb.-posobie 2022- VTPiU .pdf

Дополнительная литература

- <u>1. Суслов В.А. Тепломассообмен: учеб. пособие / СПбГТУРП. СПб.,</u> 2016. Часть 1. 98 с. Режим доступа: https://nizrp.narod.ru/metod/kpte/19.pdf
- 2. Суслов В.А. Тепломассообмен: учеб. пособие. 2-е изд., испр. и доп.-ВШТЭ СПбГУПТД: СПб., 2017. Часть 2. 82 с. Режим доступа: https://nizrp.narod.ru/metod/kpte/20.pdf
- 3. Готовский М.А. Тепломассообмен в технологических установках / М.А. Готовский, В.А. Суслов. СПб: Из-дат Политех ун-та.— 2017. —420с. Режим доступа: http://i.uran.ru/webcab/system/files/bookspdf/teplomassoobmen-v-teplotehnicheskih-ustanovkah/teplomassoobmen.pdf
- <u>4. Кудинов, А. А. Тепломассообмен : учебное пособие / А. А. Кудинов.</u>
 <u>– М. : ИНФРА-М, 2012. 375 с. Режим доступа:</u>
 https://rusneb.ru/catalog/000199_000009_005022655/
- <u>5. Цветков, Ф. Ф. Тепломассообмен : учебное пособие для вузов / Ф. Ф. Цветков, Б. А. Григорьев. М. : МЭИ, 2011. 562 с. Режим доступа: https://djvu.online/file/NfdTTARk91E15</u>
- 6. Красных, В.Ю. Тепломассообмен. Основные формулы, задачи и способы их решения: сборник задач / В.Ю. Красных, В.Н. Королев. Екатеринбург: УрФУ, 2012. 64 с. — Режим доступа: https://study.urfu.ru/Aid/Publication/11407/1/Krashyuh_Korolev.pdf

Методическое обеспечение

1. Тепломассообмен: учебно-методическое пособие для самостоятельной работы студентов / сост. В.А. Суслов, В.Н. Белоусов, С.В. Антуфьев, А.Н. Кузнецов, В.А. Кучмин, М.Н.Чайка / ВШТЭ СПбГУПТД.-СПб., 2018. — 37 с. https://nizrp.narod.ru/metod/kpte/2018 05 08 01.pdf

- 7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы
- 1. Научная библиотека ДонГТУ: официальный сайт.— Алчевск. URL: library.dstu.education.— Текст: электронный.
- <u>2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст: электронный.</u>
- 3. Консультант студента: электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст: электронный.
- 4. Университетская библиотека онлайн: электронно-библиотечная система.— URL: http://biblioclub.ru/index.php?page=main ub red.— Текст: электронный.
- <u>5. IPR BOOKS: электронно-библиотечная система. Красногорск. URL: http://www.iprbookshop.ru/. —Текст: электронный.</u>
 - 6. ЭБС Издательства "Университетская библиотека онлайн" http://e.lanbook.com/
 - 7. ЭБС Издательства "ЛАНЬ": [сайт]. https://e.lanbook.com/
- <u>8. Цифровая библиотека IPR SMART: [сайт]. https://www.iprbookshop.ru/</u>
 - 9. Национальная электронная библиотека: [сайт]. https://rusneb.ru/
 - 10. Российская Государственная Библиотека: [сайт]. https://diss.rsl.ru/
- 11. Научная электронная библиотека «КиберЛенинка»: [сайт]. https://cyberleninka.ru/
- <u>12. Научная электронная библиотека eLIBRARY: [сайт]. https://elibrary.ru/defaultx.asp?/</u>
- 13. Электронная библиотека «Астраханский государственный университет» https://biblio.asu.edu.ru
 - 14. ЭБС «Университетская Библиотека Онлайн» https://biblioclub.ru
- 15. Информационно-библиотечный комплекс «Политех» https://library.spbstu.ru

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО. Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местоположение) учебных кабинетов
Интерактивная доска, компьютеры, планшеты, раздаточный материал для лабораторных работ, вытяжной шкаф, лабораторный стол преподавателя, лабораторные столы для студентов, учебный стенд, оборудование для лабораторных работ. Численность посадочных мест- 30 человек	406 главный корпус Лаборатория общей химии

Лист согласования РПД

Разработал		
старший преподаватель кафедры)	
металлургических технологий	Paul E	Ю. Рамазанова
(должность)	(подпись)	(Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
И.о. заведующего кафедрой	1	
металлургических технологий	<u> Hilleemf H.</u> (подпись)	<u>Г. Митичкина</u> (Ф.И.О.)
Протокол № 1 заседания кафедры		
металлургических технологий	от 30.0	<u>)8.2024г</u> .
И.о декана факультета горнометаллургической промышленности и строительства	(nomings)	7 - О.В. Князьков (Ф.И.О)
Председатель методической комиссии по направлению подготовки 18.03.01 «Химическая технология» Профиль «Химическая технология природных энергоносителей и		
углеродных материалов»	Jelle mf 1	<u>Н.Г. Митичкина</u> (Ф.И.О.)
Начальник учебно-методического центра	(подпись)	О.А. <u>Коваленко</u> (Ф.И.О.)

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения изменений				
изменении				
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:			
Основ	Основание:			
Подпись лица, ответственного за внесение изменений				