МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет информационных технологий и автоматизации			
	производственных процессов		
Кафедра	электроники и радиофизики		
PA	УТВЕРЖДАЮ И.О. проректора по учебной работе Д.В. Мулов		
	Теория измерений		
	(наименование дисциплины)		
	03.04.03 Радиофизика		
	(код, наименование направления)		
Инжене	ерно-физические технологии в промышленности		
	(магистерская программа)		
Квалификация	магистр		
	(бакалавр/специалист/магистр)		
Форма обучения	очная, очно-заочная		
	(очная, очно-заочная, заочная)		

1 Цели и задачи изучения дисциплины

Цели дисциплины. Целью изучения дисциплины «Теория измерений» является создание теоретического фундамента под изучение специальных дисциплин, освоение методов получения достоверной измерительной информации и правильного её использования, алгоритмизация процессов измерения, синтез и анализ математических моделей, системный подход при подготовке и проведении измерений физических величин.

Задачи изучения дисциплины:

- Изучение аксиоматики и методологии теории измерений.
- Освоение методов получения и обработки достоверной измерительной информации.
- Развитие навыков синтеза и анализа математических моделей измерений.
- Формирование системного подхода к подготовке и проведению измерений физических величин.

Дисциплина направлена на формирование общепрофессиональной (ОПК-2) и профессиональной (ПК-2) компетенций выпускника магистратуры.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины — курс входит в формируемую участниками образовательных отношений часть блока 1 подготовки обучающихся по направлению 03.04.03 Радиофизика.

Дисциплина реализуется кафедрой электроники и радиофизики.

Основывается на базе дисциплин: «Высшая математика», «Физический практикум», «Численные методы и математическое моделирование», «Метрология, стандартизация и технические измерения».

Является основой для изучения следующих дисциплин: «Радиофизические системы», «Техническая электродинамика».

Дисциплина способствует углубленной подготовке к решению специальных практических профессиональных задач и формированию необходимых компетенций.

Общая трудоемкость освоения дисциплины составляет 4 зачетные единицы, 144 часа. Программой дисциплины предусмотрены лекционные (36 ак. ч.), практические (36 ак. ч.) занятия и самостоятельная работа обучающегося (72 ак. ч.). Дисциплина изучается в 1 семестре.

Для очно-заочной формы обучения программой дисциплины предусморены лекционные (16 ак.ч.), практические (12 ак.ч.), занятия и самостоятельная работа студента (116 ак.ч.). Дисциплина изучается в 1 семестре.

Форма промежуточной аттестации – экзамен.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Теория измерений» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание компетенции	Код компетенции	Код и наименование индикатора достижения компетенции
Способен определять сферу внедрения результатов прикладных научных исследований в области своей профессиональной деятельности	ОПК-2	ОПК-2.1. Пользуется современными средствами измерения и контроля и обосновывает выбор таких средств для решения конкретных прикладных задач в области профессиональной деятельности
Способен критически анализировать современные инженерно-физические проблемы, ставить задачи и разрабатывать программу исследования, выбирать адекватные способы и методы решения экспериментальных и теоретических задач, анализировать, обобщать и применять полученные результаты	ПК-2	ПК-2.1. Умеет выбирать подходящие методы измерений для конкретных инженерно-физических задач и объектов, понимает навыки работы с измерительным оборудованием и приборами, а также способен оценивать их характеристики. ПК-2.2. Умеет ставить задачи в области профессиональной деятельности, предлагать пути их решения; разрабатывать и применять наиболее подходящие теоретические и экспериментальные методы исследований к конкретной научной задаче и интерпретировать полученные результаты.

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 4 зачетные единицы, 144 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим занятиям, текущему контролю, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам
Аудиторная работа, в том числе:	72	72
Лекции (Л)	36	36
Практические занятия (ПЗ)	36	36
Лабораторные работы (ЛР)	-	-
Курсовая работа/курсовой проект	-	-
Самостоятельная работа студентов (СРС), в том числе:	72	72
Подготовка к лекциям	9	9
Подготовка к лабораторным работам	-	-
Подготовка к практическим занятиям / семинарам	36	36
Выполнение курсовой работы / проекта	1	-
Расчетно-графическая работа (РГР)	1	
Реферат (индивидуальное задание)	ı	-
Домашнее задание (индивидуальное задание)	1	-
Подготовка к контрольной работе	1	-
Подготовка к коллоквиуму	6	6
Аналитический информационный поиск	1	-
Работа в библиотеке	1	-
Подготовка к экзамену	21	21
Промежуточная аттестация – экзамен	Э	Э
Общая трудоемкость дисциплины		
ак.ч.	144	144
3.e.	4	4

5 Содержание дисциплины

С целью освоения компетенций, приведенной в п.3 дисциплина разбита на 6 тем:

- тема 1. Исходные положения.
- тема 2. Аксиомы теории измерений.
- тема 3. Однократное измерение.
- тема 4. Многократные измерения.
- тема 5. Качество измерений.
- тема 6. Методы обработки результатов измерений.

Виды занятий по дисциплине и распределение аудиторных часов приведены в таблицах 3 и 4.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
			1-й семестр				
1	Исходные по- ложения тео- рии измерений	Роль измерений в науке и технике. Примеры применения измерений в радиофизике (настройка антенн, анализ электромагнитных полей). Основные понятия. Средства измерений. Погрешность. Классификация измерений.	2	Измерение физических величин с оценкой погрешностей.	2	-	-
2	Аксиомы тео- рии измерений	Формализация измерений. Модель измерения как отображения физической величины в числовую форму. Условия корректности измерений: однозначность, воспроизводимость. Аксиоматика метрологии. Аддитивность. Транзитивность. Инвариантность. Примеры применения аксиом.	4	Решение задач на проверку выполнения аксиом в конкретных экспериментах	4	-	-
3	Однократное измерение: принципы и алгоритмы	Алгоритмы однократных измерений. Выбор средства измерений: точность, диапазон, условия эксплуатации. Учет внешних факторов. Оценка неопределенности. Типы неопределенностей. Примеры из радиофизики.	6	Проработка методов оценки неопределенностей. Метод "наибольшей погрешности". Расчет по паспортным данным различных приборов.	6	-	-
4	Многократные измерения и их особенности	Статистические методы. Расчет среднего арифметического, медианы, моды. Дисперсия, стандартное отклонение (СКО), коэффициент вариации. Доверительные интервалы. Особенности многократных измерений. Учет временной стабильности измерительной системы. Автокорреляция данных: методы обнаружения и устранения.	8	Обработка данных серий измерений различных измерительных систем.	8	-	-

7

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
5	Качество измерений: критерии и оценка	Метрологические характеристики. Точность (близость к истинному значению). Сходимость (повторяемость в одинаковых условиях). Воспроизводимость (повторяемость в разных условиях). Погрешность как интегральный показатель. Чувствительность метода к внешним воздействиям. Требования ГОСТ. Соответствие международным стандартам.	8	Анализ результатов измерений с разных приборов: сравнение точности и сходимости.	8	-	-
6	Методы обра- ботки резуль- татов измере- ний	Линейная и нелинейная регрессия. Оценка адекватности модели (критерий Фишера). Критерий Шовене. Критерий Диксона. Визуальный анализ графиков (выбросы на диаграммах). Построение графиков (линейные, логарифмические шкалы). Гистограммы распределения, диаграммы рассеяния.	8	Обработка данных измерений: исключение выбросов, построение регрессионной модели	8	-	-
Всего аудиторных часов за 1-й семестр		36	36	•	-		
	Всего аудиторных часов за семестр		36	36		-	

Таблица 4 – Виды занятий по дисциплине и распределение аудиторных часов (очно-заочная форма обучения)

<u>№</u> п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч. 1-й семестр	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1	Исходные по- ложения тео- рии измере- ний	Роль измерений в науке и технике. Примеры применения измерений в радиофизике (настройка антенн, анализ электромагнитных полей). Основные понятия. Средства измерений. Погрешность. Классификация измерений.	2	Измерение физических величин с оценкой погрешностей.	2	-	-
2	Аксиомы теории измерений	Формализация измерений. Модель измерения как отображения физической величины в числовую форму. Условия корректности измерений: однозначность, воспроизводимость. Аксиоматика метрологии. Аддитивность. Транзитивность. Инвариантность. Примеры применения аксиом.	2	Решение задач на проверку выполнения аксиом в конкретных экспериментах.	2	-	-
3	Однократное измерение: принципы и алгоритмы	Алгоритмы однократных измерений. Выбор средства измерений: точность, диапазон, условия эксплуатации. Учет внешних факторов. Оценка неопределенности. Типы неопределенностей. Примеры из радиофизики.	2	Проработка методов оценки неопределенностей. Метод "наибольшей погрешности". Расчет по паспортным данным различных приборов.	2	-	-
4	Многократ- ные измере- ния и их осо- бенности	Статистические методы. Расчет среднего арифметического, медианы, моды. Дисперсия, стандартное отклонение (СКО), коэффициент вариации. Доверительные интервалы. Особенностимногократных измерений. Учет временной стабильности измерительной системы. Автокорреляция данных: методы обнаружения и устранения.	4	Обработка данных серий измерений различных измерительных систем.	2	-	-

9

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
5	Качество из- мерений: кри- терии и оценка	Метрологические характеристики. Точность (близость к истинному значению). Сходимость (повторяемость в одинаковых условиях). Воспроизводимость (повторяемость в разных условиях). Погрешность как интегральный показатель. Чувствительность метода к внешним воздействиям. Требования ГОСТ. Соответствие международным стандартам.	2	Анализ результатов измерений с разных приборов: сравнение точности и сходимости.	2	-	-
6	Методы обработки результатов измерений	Линейная и нелинейная регрессия. Оценка адекватности модели (критерий Фишера). Критерий Шовене. Критерий Диксона. Визуальный анализ графиков (выбросы на диаграммах). Построение графиков (линейные, логарифмические шкалы). Гистограммы распределения, диаграммы рассеяния.	4	Обработка данных измерений: исключение выбросов, построение регрессионной модели	2	-	-
	Всего аудиторных часов за 1-й семестр		16	12			-
	Всего аудиторных часов за семестр			12			-

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетен- ции	Способ оценива- ния	Оценочное средство
ОПК-2, ПК-2	Экзамен	Комплект контролирующих материалов для экзамена

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- тестовый контроль или устный опрос на коллоквиумах (2 коллоквиума) – всего 60 баллов;
 - за выполнение практических работ всего 40 баллов.

Экзамен проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Экзамен по дисциплине проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время экзамена студент имеет право повысить итоговую оценку. Экзамен по дисциплине проводится в форме устного экзамена по вопросам, представленным ниже, либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашнее задание

В качестве домашнего задания обучающиеся выполняют:

- проработка лекционного материала;
- выполнение практических заданий.

6.3 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

- 1. Что такое измеряемая величина?
- 2. Какие виды погрешностей измерений вы знаете?
- 3. Что такое аксиомы теории измерений?
- 4. В чем разница между прямыми и косвенными измерениями?
- 5. Что такое многократные измерения?
- 6. Какие методы используются для оценки качества измерений?
- 7. Что такое доверительный интервал?
- 8. Какие стандарты регулируют проведение измерений?
- 9. Как рассчитать абсолютную и относительную погрешность измерения?
 - 10. Как определить наличие грубых погрешностей в серии измерений?
 - 11. Как построить гистограмму распределения результатов измерений?
 - 12. Как рассчитать доверительный интервал для серии измерений?
- 13. Как провести регрессионный анализ для обработки данных измерений?
 - 14. Как оценить неопределенность однократного измерения?
 - 15. Как выбрать средство измерений для конкретной задачи?

6.4 Вопросы для подготовки к экзамену.

- 1. Что такое измерение?
- 2. Какие основные этапы включает процесс измерения?
- 3. Что такое физическая величина?
- 4. Какие виды единиц измерения вы знаете?

- 5. Что такое средство измерений?
- 6. Какие типы погрешностей измерений существуют?
- 7. Что такое систематическая погрешность?
- 8. Что такое случайная погрешность?
- 9. Что такое грубая погрешность?
- 10. Как классифицируются измерения по способу получения результата?
 - 11. Что такое прямые измерения?
 - 12. Что такое косвенные измерения?
 - 13. Что такое абсолютные измерения?
 - 14. Что такое относительные измерения?
 - 15. Что такое статические измерения?
 - 16. Что такое динамические измерения?
 - 17. Что такое однократное измерение?
 - 18. Что такое многократное измерение?
 - 19. Что такое точность измерений?
 - 20. Что такое сходимость измерений?
 - 21. Что такое воспроизводимость измерений?
 - 22. Что такое неопределенность измерений?
 - 23. Что такое доверительный интервал?
 - 24. Как рассчитывается среднее арифметическое значение?
 - 25. Как рассчитывается дисперсия результатов измерений?
 - 26. Как рассчитывается стандартное отклонение?
 - 27. Что такое коэффициент вариации?
 - 28. Что такое гистограмма распределения?
 - 29. Что такое регрессионный анализ?
 - 30. Как исключить грубые погрешности из результатов измерений?
 - 31. Что такое критерий Шовене?
 - 32. Что такое критерий Диксона?
 - 33. Что такое аксиомы теории измерений?
 - 34. Что такое аддитивность в теории измерений?
 - 35. Что такое транзитивность в теории измерений?
 - 36. Что такое инвариантность в теории измерений?
 - 37. Что такое эталон измерения?
 - 38. Что такое поверка средств измерений?
 - 39. Что такое калибровка средств измерений?
 - 40. Что такое метрологическая характеристика средства измерений?
 - 41. Что такое чувствительность средства измерений?

- 42. Что такое диапазон измерений?
- 43. Что такое погрешность средства измерений?
- 44. Что такое класс точности средства измерений?
- 45. Что такое нормативные документы в метрологии?
- 46. Что такое ГОСТ?
- 47. Что такое стандарт ISO?
- 48. Что такое метод измерений?
- 49. Что такое методика выполнения измерений?

6.6 Примерная тематика курсовых работ

Курсовые работы не предусмотрены.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

1. Перминов, Б. А. Теория измерений вариационных отклонений параметров: монография / Б. А. Перминов, В. Б. Перминов. - Москва: БИБЛИО-ГЛОБУС, 2019. - 240 с. - ISBN 978-5-907063-52-5. - Текст: электронный. - URL: https://znanium.com/catalog/product/1979067 (дата обращения: 18.05.2024).

Дополнительная литература

- 1. Грибанов, Д. Д. Общая теория измерений: монография / Д.Д. Грибанов. М.: ИНФРА-М, 2018. 116 с. (Научная мысль). www.dx.doi.org/10.12737/11915. ISBN 978-5-16-010766-0. Текст: электронный. URL: https://znanium.ru/catalog/product/947760 (дата обращения: 18.05.2024).
- 2. Арутюнов, П.А. Теория и применение алгоритмических измерений / П.А. Арутюнов. М.: Энергоатомиздат, 1990. 256 с.: ил. ISBN 5-283-1519-X. (2 экз).
- 3. Пиотровский, Я. Теория измерений для инженеров: пер. с польск. / Я. Пиотровский; под ред. Р.Н. Овсянникова. М.: Мир, 1989. 336 с.: ил. + прил. ISBN 5-03-001085-8. (10 экз).

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт. Алчевск. URL: https://library.dontu.ru. Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова: официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст: электронный.
- 3. Консультант студента: электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст: электронный.
- 4. Университетская библиотека онлайн: электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст: электронный.
- 5. IPR BOOKS: электронно-библиотечная система. Красногорск. URL: http://www.iprbookshop.ru/. —Текст: электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям $\Phi\Gamma$ OC BO.

Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местополо- жение) учебных кабинетов
Аудитории для проведения лекционных и практических занятий, для самостоятельной работы:	
Компьютерный класс Персональные компьютеры, локальная сеть с выходом в Internet, проектор Epson, мультимедийный экран	ауд. <u>434</u> корп. <u>главный</u>
Лаборатории физических измерений Электронный осциллограф, тематические стенды	ауд. <u>413, 422</u> корп. <u>главный</u>

Лист согласования РПД

Разработал старший преподаватель кафедры электроники и радиофизики (должность)

(подпись)

Р.В. Эссельбах (Ф.И.О.)

И.о. заведующего кафедрой электроники и радиофизики

(подпись)

<u>А.М.Афанасьев</u> (Ф.И.О.)

Протокол № $\underline{1}$ заседания кафедры электроники и радиофизики от $\underline{30}$ \underline{CS} . \underline{ADAll}_{1}

И.о. декана факультета информационных технологий и автоматизации производственных процессов

(подиись)

В.В. Дьячкова

Согласовано

Председатель методической комиссии по направлению подготовки 03.04.03 Радиофизика (магистерская программа «Инженерно-физические технологии в промышленности»)

ись)

<u>А.М.Афанасьев</u>

Начальник учебно-методического центра

(подпись)

О.А. Коваленко

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения изменений					
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:				
, ,					
Осно	зание:				
Central	saime.				
Подпись лица, ответственного за внесение изменений					