Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Вишневский Димтрий Александровична УКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБРНАУКИ РОССИИ)

Дата подписания: 17.10.2025 15:06:46 Уникальный программный ключ:

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

03474917c4d012283e5ad996a48a5e70bf8da057 «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

(ФГБОУ ВО «ДонГТУ»)

Факультет

информационных технологий и автоматизации

производственных процессов

Кафедра

автоматизированного управления и инновационных

технологий

УТВЕРЖДАЮ

Д.В. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

	кение и ресурсосбережение в теплоэнергетике (наименование дисциплины)
15.04.04 Автомат	изация технологических процессов и производств (код. наименование направления)
Автоматизирова	анное управление технологическими процессами
	и производствами
	(профиль подготовки)
Квалификация	магистр
N	(бакалавр/специалист/магистр)
Форма обучения	очная, заочная
	(United Unity-Savinated Savinated)

1Цели и задачи изучения дисциплины

Цели дисциплины. Целью изучения дисциплины «Энергосбережение и ресурсосбережение в теплоэнергетике» является формирование у студентов теоретических знаний и практических навыков в области энергосбережения и ресурсосбережения в теплоэнергетике.

Задачей изучения дисциплины является:

- получение знаний о нормативно-правовой и нормативно-технической базе энергосбережения, основах энергоаудита объектов теплоэнергетики, особенностях энергоаудита промышленных предприятий, углубленных энергетических обследованиях;
- приобретение навыков по выполнению основных расчетов по энергосбережению промышленных предприятий, выбору способов и критериев энергетической оптимизации;
- получить навыки по внедрению полученных знаний на производстве в процессе практической деятельности по энергосбережению на объектах теплоэнергетики и высокотемпературных установках.

Дисциплина направлена на формирование профессиональных компетенций ПК-1 выпускника.

2Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины—курс входит в обязательную часть БЛОК 1 «Элективные дисциплины (модули)» подготовки студентов по направлению подготовки 15.04.04 Автоматизация технологических процессов и производств.

Дисциплина реализуется кафедрой автоматизированного управления и инновационных технологий. Основывается на базе дисциплин: «Физика», «Химия», «Термодинамика и теплотехника», «Технологические процессы автоматизированного производства», «Оборудование технологических процессов отрасли», «Энергоснабжение производства в отрасли» бакалавриата.

Является основой для изучения следующих дисциплин: практики, выпускная квалификационная работа.

Для изучения дисциплины необходимы компетенции, сформированные у студента способности проводить научные исследования в области разработки малоотходных, энергосберегающих и экологически чистых технологий, обеспечивающих рациональное использование сырьевых, энергетических и других видов ресурсов

Дисциплина изучается на 2-ом курсе в 3-м семестре. Форма промежуточной аттестации – экзамен.

Общая трудоемкость освоения дисциплины составляет 3 зачетные единицы, 108 ак.ч. Программой дисциплины предусмотрены лекционные занятия (18 ак.ч.), лабораторные занятия(36 ак.ч.) и самостоятельная работа студента (54 ак.ч.).

Программой предусмотрена и заочная форма обучения. Дисциплина изучается на 2-ом курсе в 3-м семестре. Форма промежуточной аттестации – экзамен.

Общая трудоемкость освоения дисциплины составляет 3 зачетные единицы, 108 ак.ч. Программой дисциплины предусмотрены лекционные занятия (2 ак.ч.), лабораторные занятия(4 ак.ч.) и самостоятельная работа студента (102 ак.ч.).

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Энергосбережение и ресурсосбережение в теплоэнергетике» в отрасли» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 — Компетенции, обязательные к освоению

Содержание	Код	Код и наименование индикатора
компетенции	компетенции	достижения компетенции
	компетенции	достижения компетенции
Способен		
составлять		
описание		
принципов		
действия и		
конструкции		
устройств,		
проектируемых		
технических		ПК-1.4. Знает принципы построения и
средств и		функционирования программируемых логических
систем		контроллеров (ПЛК); принципы коммуникации между
автоматизации,		различными устройствами систем автоматизации (ПЛК,
управления,		сенсорными панелями, SCADA узлами)
контроля,		ПК-1.6. Умеет выбирать типовые технические средства
диагностики и		управляющей части систем автоматизации, измерения,
испытаний		необходимые для информационного и метрологического
технологически	ПК-1	обеспечения систем автоматизации и методы
х процессов и		повышения достоверности измерительной информации
производств		ПК-1.8. Владеет навыками эскизного проектирования на
общепромышле		уровне блок-схем и перечнем основных операций по
нного и		организации цикла управления и контроля
специального		ПК-1.9. Владеет навыками наладки, настройки,
назначения для		регулировке и опытной проверке средств и систем
различных		автоматизации, контроля, диагностики, испытаний,
отраслей		управления
национального		
хозяйства,		
проектировать		
их		
архитектурно-		
программные		
комплексы		

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины в семестре составляет 3 зачётные единицы, 108 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к текущему контролю, подготовка к лабораторным занятиям, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы, и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам 7
Аудиторная работа, в том числе:	54	54
Лекции (Л)	18	18
Практические занятия (ПЗ)	_	_
Лабораторные работы (ЛР)	36	36
Курсовая работа/курсовой проект	_	_
Самостоятельная работа студентов (СРС), в том числе:	54	54
Подготовка к лекциям	8	8
Подготовка к лабораторным работам	12	12
Подготовка к практическим занятиям / семинарам		
Выполнение курсовой работы / проекта	-	-
Расчетно-графическая работа (РГР)	-	-
Реферат (индивидуальное задание)	-	-
Домашнее задание	-	-
Подготовка к контрольной работе (в виде тестирования)	10	10
Подготовка к коллоквиуму (защита лабораторных работ)	10	10
Аналитический информационный поиск	4	4
Работа в библиотеке	4	4
Подготовка к экзамену	6	6
Промежуточная аттестация – экзамен (Э)	Э	Э
ак.ч.	108	108
3.e.	3	3

5 Содержание дисциплины

С целью освоения компетенции, приведенной в п.3 дисциплина разбита на 8 тем:

- тема 1 (Нормативно-методическое обеспечение энергосбережения);
- тема 2 (Основы энергосбережения в вопросах теплообмена);
- тема 3 (Энергосбережение в теплогенерирующих установках);
- тема 4 (Энергосбережение в котельных и системах теплоснабжения);
- тема 5 (Энергосбережение в зданиях и сооружениях);
- тема 6 (Использование вторичных энергоресурсов и альтернативных источников энергии);
 - тема 7 (Теплотехнологические системы);
 - тема 8 (Энергоэффективность теплотехнологических установок)

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1	Тема 1 Нормативно- методическое обеспечение энергосбережения	Основные термины и понятия энергосбережения. Действующие нормативные Законы Российской Федерации и постановления Правительства Российской Федерации по энергосбережению. Основные принципы энергосберегающей политики России и управления в области энергосбережения	2	-	-	Лабораторная работа «Исследовани е свойств теплоизоляции »	4
2	Тема 2 Основы энергосбережения в вопросах теплообмена	Основные положения теплообмена. Основные положения и законы теплопроводности. Основные положения конвективного теплообмена. Основные положения и законы лучистого теплообмена. Теплообмен при кипении и конденсации. Теплопередача. Интенсификация процессов теплопередачи. Тепловая изоляция. Общий или сложный теплообмен. Теплообменные аппараты.	2	-	-	Лабораторная работа Влияние параметров пара на КПД энергоустанов ки и расход топлива	4

~

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
3	Тема 3 Энергосбережение в теплогенерирующих установках	Теплота сгорания топлива. Способы сжигания топлива. Коэффициент полезного действия и расход топлива теплогенератора. Тепловые потери. Мероприятия по энергосбережению в теплогенерирующих энергоустановках. Эксплуатационные испытания котлов.	2	-	-	Лабораторная работа Сопоставление энергетическо й ценности различных видов топлива	4
4	Тема 4 Энергосбережение в котельных и системах теплоснабжения	Энергосбережение в производственно отопительных котельных с паровыми котлоагрегатами, в отопительных котельных с водогрейными котлоагрегатами, в котельных с паровыми и водогрейными котлоагрегатами	4	-	-	Лабораторная работа Исследование влияния перегрева пара на тепловую экономичност ь ТЭС	4
5	Тема 5 Энергосбережение в зданиях и сооружениях	Энергетическая эффективность зданий и сооружений. Классификация систем отопления, вентиляции и кондиционирования воздуха. Мероприятия по энергосбережению в зданиях и сооружениях, в	2	-	-	Лабораторная работа Исследование влияния схемных решений на тепловую экономичност ь ТЭС	4

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		системах отопления, вентиляции и кондиционирования воздуха.					
6	Тема 6 Использование вторичных энергоресурсов и альтернативных источников энергии	Мероприятия по энергосбережению за счет использования вторичных энергоресурсов. Теплонасосные установки. Термоэлектрические установки. Гелио-, фото-, ветроэнергетические установки.	2	-	-	Лабораторная работа Оценка потенциалов энергосбереже ния в котельных	6
7	Тема 7 Теплотехнологические системы	Мероприятия по энергосбережению за счет использования вторичных энергоресурсов. Теплонасосные установки. Термоэлектрические установки. Гелио-, фото-, ветроэнергетические установки.	2	-	-	Лабораторная работа Оценка экономии теплоты в системах пара и горяче-го водоснабжени	6

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
8	Тема 8 Энергоэффективность теплотехнологических установок	Энергетическая эффективность теплотехнологических установок. Энергоэффективность топок, ограждающих конструкций теплотехнологических установок. Тепловой баланс.	2	-	-	Лабораторная работа Расчет экономии энергоресурсо в в промышленно сти	4
	Всего аудит	орных часов	18				36

Таблица 4 –Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

№ п/п	Наименование раздела дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1	Тема 8 Энергоэффектив ность теплотехнологич еских установок	Энергетическая эффективность теплотехнологических установок. Энергоэффективность топок, ограждающих конструкций теплотехнологических установок. Тепловой баланс.	2			Лабораторная работа Расчет экономии энергоресурсов в промышленности	4
	Всего ау	удиторных часов	2	-	-		4

6Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license-certificate/polog-kred-modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
ПК-1	Экзамен	Комплект контролирующих материалов для экзамена

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- выполнение контрольных работ (в виде тестирования) всего 50 баллов;
- выполнение и защита лабораторных работ всего 50 баллов.

Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Экзамен по дисциплине «Энергосбережение и ресурсосбережение в теплоэнергетике» проводится по результатам работы в семестре и может быть проставлен автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. В случае, если полученная в семестре сумма баллов не устраивает студента, то студент имеет право повысить итоговую оценку в день экзамена.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашнее задание

Домашнее задание по дисциплине не предусмотрено.

6.3 Индивидуальное задание

Индивидуальное задание по дисциплине не предусмотрено.

6.4 Перечень тематик заданий для самостоятельной работы при подготовке к защите лабораторных работ

Раздел 1. Нормативно-методическое обеспечение энергосбережения

- 1. Какие документы являются нормативно-правовыми?
- 2. Какие документы являются нормативно-техническими?
- 3. Какие документы относятся к документам федерального значения, а какие к отраслевым?
- 4. Дайте определение понятиям энергосбережение, энергоэффективность, энергетический ресурс, энергосберегающая технология, энергосберегающая политика?
 - 5. Что такое показатель энергоэффективности?
 - 6. Каковы основные положения энергетической стратегии РФ?
- 7. Что такое потенциал энергосбережения, и каков потенциал энергосбережения экономики России?
 - 8. По каким показателям оцениваются различные виды топлива?

Раздел 2. Основы энергосбережения в вопросах теплообмена

- 1. Как уменьшить потери при передаче теплоты от греющей к нагреваемой среде?
 - 2. Как сделать лучистый теплообмен более интенсивным?
 - 3. Как сделать лучистый теплообмен менее интенсивным?
 - 4. Какими способами можно повлиять на условия теплоотдачи?
 - 5. Какие материалы считаются теплоизолирующими?
 - 6. От чего зависит правильный подбор тепловой изоляции?
 - 7. Что такое критический диаметр тепловой изоляции?

- 8. При каких условиях конденсация пара проходит интенсивнее?
- 9. Что такое кризис теплообмена?
- 10. Как влияет гидравлические условия течения жидкости на теплообмен?

Раздел 3. Энергосбережение в теплогенерирующих установках

- 1. Как уменьшить потери при передаче теплоты от греющей к нагреваемой среде?
 - 2. Как сделать лучистый теплообмен более интенсивным?
 - 3. Как сделать лучистый теплообмен менее интенсивным?
 - 4. Какими способами можно повлиять на условия теплоотдачи?
 - 5. Какие материалы считаются теплоизолирующими?
 - 6. От чего зависит правильный подбор тепловой изоляции?
 - 7. Что такое критический диаметр тепловой изоляции?
 - 8. При каких условиях конденсация пара проходит интенсивнее?
 - 9. Что такое кризис теплообмена?
- 10. Как влияет гидравлические условия течения жидкости на теплообмен?

Раздел 4. Энергосбережение в котельных и системах теплоснабжения

- 1. Перечислите потери теплоты в котельной установке.
- 2. Какие характеристики имеет органическое топливо?
- 3. Как пересчитать натуральной топливо в условное?
- 4. Как влияет температура уходящих газов на КПД теплогенерирующей установки?
- 5. Как рассчитывается КПД брутто и нетто теплогенерирующей установки?
- 6. Перечислите задачи энергосбережения в теплогенерирующих установках?
- 7. Приведите типовые мероприятия по энергосбережению в теплогенерирующих установках?
 - 8. Какие энергоустановки являются наиболее энергоэффективными?
- 9. Что снижает энергетические показатели котлов во время эксплуатации?
- 10. Какие компоненты входят в тепловой баланс теплоэнергетической установки?
- 11. Чему соответствует наиболее эффективный режим работы теплогенерирующей установки?

Раздел 5. Энергосбережение в зданиях и сооружениях

- 1. Какие системы рассматривата при энергосбережении в зданиях и сооружениях?
 - 2. Какие достоинства и недостатки в системах воздушного отопления?
- 3. На каком основании проводится оценка энергоэффективности зданий и сооружений?
- 4. Достоинства и недостатки систем панельно-лучистого отопления. Достоинства и недостатки инфракрасных излучателей?
 - 5. Как используются воздушные завесы?
 - 6. Для чего нужен приборный учет энергии и теплоносителя?
 - 7. Какие потери теплоты могут быть в зданиях?
- 8. Что приводит к непроизводительным затратам теплоты и электроэнергии во внутиридомовых инженерных сетях?
 - 9. Как регулируется температура воздуха в помещениях?
- 10. Как можно повысить эффективность системы кондиционирования воздуха?
 - 11. Как рассчитываются нагрузки систем отопления и вентиляции?

Раздел 6. Использование вторичных энергоресурсов и альтернативных источников энергии

- 1. Что называется вторичным энергоресурсом?
- 2. На какие виды делятся вторичные энергоресурсы?
- 3. Какие устройства используются для утилизации тепловых отходов?
- 4. Устройство и принцип действия тепловых трубок. Устройство и принцип действия тепловых насосов.
- 5. Для каких устройств вторичным энергоресурсом является избыточное давление?
- 6. Что является источниками биогаза? Опишите схему получения биогаза?
- 7. Принцип действия фотоэлектрических и термоэлектрических установок.
- 8. Какие мероприятия являются энергосберегающими за счет вторичных энергоресурсов?
- 9. Достоинства и недостатки использования энергии ветра для нужд энергосбережения.
- 10. Какова возможность использования гелиоустановок для нужд отопления?
 - 11. Что такое газификация твердого топлива?
 - 12. Как рассчитывается выход вторичных энергоресурсов?

Раздел 7. Теплотехнологические системы

1. Что такое теплотехнологический процесс?

- 2. Какими характеристиками обладают топки?
- 3. Какие существуют методы снижения удельного расхода топлива в топках?
 - 4. Что входит в расходную и приходную части теплового баланса топок?
 - 5. От чего зависят потери теплоты в теплотехнологических установках?
 - 6. Что такое технологическое топливное число?

Раздел 8. Энергоэффективность теплотехнологических установок

- 1. Что качественно характеризует совершенство общей организации использования теплоты источников энергии в теплотехнологической установке?
 - 2. Что такое теплотехнологическая система?
 - 3. Какие вторичные энергоресурсы генерирует металлургия?
 - 4. Как можно использовать вторичные энергоресурсы на предприятии?
- 5. Что представляют температурный и тепловой графики теплотехнологического процесса?
 - 6. Что такое энерготехнологический агрегат?
- 7. Какие бывают топки? Из каких материалов состоит конструкция топок?
 - 8. Как совершенствовать топочные процессы?

6.5 Оценочные средства (тесты) для проведения промежуточной аттестации

Для организации текущего контроля полученных студентами знаний по данной дисциплинеиспользуются тесты. Каждый тест состоит из нескольких разнотипных вопросов.

1. ГАЭС бывают

Выберите один ответ:

- а. все ответы верны
- b. с сезонным регулированием
- с. с суточным регулированием
- d. с недельным регулированием
- 2. Тепловая машина, служащая для привода электрических генераторов современных электростанций, это

- а. паровая машина
- b. газовая турбина
- с. паровая турбина
- d. двигатель внутреннего сгорания

3. Паровой котельный НЕ характеризуется...

Выберите один ответ:

- а. давлением питательной воды
- b. давлением и температурой производимого пара
- с. температурой питательной воды
- d. паропроизводительностью
- 4. Что НЕ относится к нетрадиционным возобновляемым источникам энергии?

Выберите один ответ:

- а. Солнце
- b. теплота земных недр
- с. ветер
- d. вода
- 5. Рабочим телом ГТУ является?

Выберите один ответ:

- а. газ и торф
- b. доведенная до температуры кипения жидкость
- с. нагретые до высокой температуры газы
- d. охлажденные до 0 градусов газы
- 6. К невозобновляемым источникам энергии относится *Выберите один ответ*:
- а. ядерная энергия
- b. ветер
- с. тепло недр Земли
- d. вода
- 7. Пароперегреватель предназначен для

Выберите един ответ:

- а. повышения температуры пара, поступающего из испарительной системы котла
- поддержания температуры пара на постоянном уровне
- с. удаления лишнего пара
- d. подогрева воздуха, поступающего в топочную камеру
- 8. Каких паровых котлов НЕ существует?

- а. барабанные с естественной циркуляцией
- b. барабанные с многократной принудительной циркуляцией
- с. прямоточные
- d. барабанные с многократной естественной циркуляцией
- 9. У каких турбин с изменением нагрузки резке уменьшается КПД? Выберите один ответ:
- а. у радиально-осевых
- b. у поворотно-лопастных
- с. у пропеллерных
- d. у двухперовых
- 10. Схемы АЭС бывают

Выберите един ответ:

- а. одно-, двух- и трехконтурные
- b. двухконтурные и трехконтурные
- с. одноконтурные и двухконтурные
- d. многоконтурные
- 11. По наплавлению потока пара различают

Выберите один ответ:

- а. активные и реактивные турбины
- b. осевые и аксиальные турбины
- с. одноступенчатые и многоступенчатые турбины
- d. осевые и радиальные турбины
- 12. Наибольшие потери парового котла это потери

Выберите один ответ:

- а. теплоты с уходящими газами
- b. от механической неполноты сгорания топлива
- с. в окружающую среду
- d. от химической неполноты сгорания топлива
- 13. ГАЭС предназначена для...

- а. постройки в короткие сроки с использованием унифицированных гидроагрегатов
- транспортировки воды в удаленные пункты
- с. перераспределения во времени мощности и энергии в системе

d. перекачки воды с низких отметок на высокие

14. К арматуре котла НЕ относится

Выберите один ответ:

- а. люки
- b. водоуказательные приборы
- с. манометры
- d. регулирующие и запорные устройства

15. Где образуется пар в одноконтурной АЗС?

Выберите один ответ:

- а. в теплообменнике
- b. в реакторе
- с. в турбине

16. Потребителем электроэнергии является

Выберите один ответ:

- а. ПЭС
- b. малые ГЭС
- c. HC
- d. ГЭС

17. К уменьшению используемого теплоперепада в турбине приводят Выберите один ответ:

- а. внутренние потери
- b. внутренние и внешние потери
- с. внешние потери

18. Пароперегреватели бывают

Выберите один ответ:

- а. радиационные
- b. впрыскивающие
- с. поверхностные
- d. водные

19. Рабочим гелем ПГУ является?

- а. газ и водяной пар
- b. газ и вода

- с. газ
- d. пар
- 20. Электростанции по виду используемой энергии делятся на:

Выберите один ответ:

- а. ГЭС, ТЭС, АЭС
- b. СЭС, ПЭС, ГТУ
- с. ТКЭС, ГТУ, ГЭС, ВЭС
- d. ПГУ, ГТУ, АЭС
- 21. Котельные агрегаты, использующие теплоту отходящих из печей газов или других основных и основных продуктов различных технологических процессов, называется...

Выберите один ответ:

- а. котлы-утилизаторы
- b. водогрейные котлы
- с. пароперегреватели
- d. паровые котлы
- 22. КПД ТЭС составляет?

Выберите един ответ:

- a. 45-55%
- b. 55-65%
- c. 25-35%
- d. 20%
- 23. В состав котла НЕ входит...

Выберите един ответ:

- а. воздухоподогреватель
- b. пароперегреватель
- с. топка
- d. тягодутьевая машина
- 24. При допустимой высоте отсасывания гидравлической турбины гарантируется:

- а. КПД, указанный в эксплуатационных характеристиках
- b. безопасность здания ГЭС
- с. максимальный срок эксплуатации плотины

- d. наиболее высокий КПД
- 25. По принципу действия рекуперативным и регенеративным может быть... *Выберите один ответ:*
- а. пароперегреватель
- b. парогенератор
- с. воздухоподогреватель
- d. экономайзер
- 26. Какое из этих условий НЕ является обязательным для реакции синтеза (термоядерная реакция)?

Выберите один ответ:

- а. максимальная температура топлива при необходимой его плотности должна удерживаться на протяжении десятых долей секунды
- b. температура должна быть не менее 100 млн. градусов Цельсия
- с. строго определенное количество ядер гелия
- d. топливо должно быть чистым и состоять из легких ядер
- 27. Для парогенераторов производительностью 95т/ч и выше дополнительно устанавливают...

Выберите один ответ:

- а. дымососы
- b. пароперегреватели
- с. дутьевые вентиляторы
- d. осевые многоступенчатые дымососы
- 28. Что нашло наибольшее применение на ТЭС?

Выберите один ответ:

- а. уголь
- b. мазут
- с. торф
- d. газ
- 29. Схема ВВЭР

- а. двухконтурная
- b. одноконтурная
- с. трехконтурная

30. На основе какого физического явления устроены солнечные электростанции?

Выберите один ответ:

- а. разность потенциалов
- b. диффузия
- с. термоэлектронная эмиссия
- d. фотоэффект
- 31. Совершенство тепловой работы парового котла оценивается коэффициентом полезного действия

Выберите один ответ:

- а. брутто
- b. френеля
- с. барреля
- d. нетто
- 32. К внешним потерям в турбине относят

Выберите один ответ:

- а. потери энергии на удар
- b. потери энергии на трение
- с. потери энергии на вихри
- d. механические потери
- 33. КПД ТЭЦ составляет

Выберите один ответ:

- a. 70-80 %
- b. 60-70 %
- c. 40-50 %
- d. 50-60 %
- 34. Основное назначение дымовой трубы

Выберите один ответ:

- а. вывод дымовых газов в более высокие слои атмосферы
- b. понижение температуры газов
- с. повышение температуры газов
- d. получение дымовых газов
- Энергетика это...

- а. совокупность созданных человеком систем, предназначенных для получения и распределения энергетических ресурсов всех видов b.совокупность природных систем, предназначенных для получения, преобразования и распределения энергетических ресурсов всех видов с. совокупность больших естественных и искусственных систем, предназначенных для получения, преобразования, распределения и использования энергетических ресурсов всех видов
- 36. К основным потерям теплоты перового котла НЕ относятся Выберите один ответ:
- а. от химического недожога
- b. от механического недожога
- с. потери теплоты с уходящими газами
- d. от физического недожога

6.6 Задания для подготовки к экзамену

- 1. Основные термины и понятия энергосбережения.
- 2. Нормативно-методическое обеспечение энергосбережения.
- 3. Классификация топливно-энергетических ресурсов.
- 4. Единицы измерения топливно-энергетических ресурсов.
- 5. Динамика топливно-энергетического баланса и показатели потребления энергоресурсов в стране.
 - 6. Актуальность энергосбережения в России.
 - 7. Основные направления энергосбережения в вопросах теплообмена.
 - 8. Методы уменьшения потерь при теплопроводности.
 - 9. Энергосбережение при конвективном теплообмене.
 - 10. Энергосбережение в лучистом теплообмене.
 - 11. Интенсификация теплопередачи.
 - 12. Характеристики и выбор теплоизоляции.
 - 13. Повышение эффективности работы теплообменников.
 - 14. Повышение эффективности процессов кипения и конденсации.
- 15. Классификация методов и критериев оценки эффективности использования энергии.
- 16. Термодинамические показатели оценки энергетической эффективности.
 - 17. Технические показатели оценки энергетической эффективности.
- 18. Применение показателей энергоэффективности в теплоэнергетике и теплотехнологиях.

- 19. Экономические показатели энергоэффективности.
- 20. Виды энергобалансов.
- 21. Балансы потребления и использования энергии на промышленном предприятии.
 - 22. Энергетический паспорт потребителей ТЭР.
 - 23. Энергетический баланс и энергетический паспорт здания.
- 24. Нормирование потребления энергоресурсов в зданиях и сооружениях.
 - 25. Нормирование потребления энергоресурсов в промышленности.
- 26. Нормативные эксплуатационные технологические затраты и потери теплоты в тепловых сетях
 - 27. Характеристики топлива и условия его горения.
 - 28. Тепловой баланс теплогенератора.
 - 29. Коэффициент полезного действия и расход топлива теплогенератора.
 - 30. Тепловые потери теплогенерирующей установки.
- 31. Мероприятия по энергосбережению в теплогенерирующих установках.
- 32. Влияние теплотехнических испытаний котлов на их энергоэффективность.
 - 33. Виды источников теплоты.
 - 34. Классификация тепловых схем котельных.
- 35. Энергосбережение в производственно-отопительных котельных с паровыми котельными агрегатами
- 36. Энергосбережение в производственно-отопительных котельных с водогрейными котельными агрегатами
 - 37. Мероприятия по энергосбережению в котельных.
- 38. Особенности энергосбережения на ТЭЦ промышленных предприятий.
 - 39. Общие сведения о передаче тепловой энергии.
 - 40. Схемы присоединения потребителей к тепловым сетям.
 - 41. Потери энергии и ресурсов в тепловых сетях.
 - 42. Меры по сокращению потерь энергии и ресурсов в тепловых сетях.
- 43. Принципиальные схемы технологий и структуры энергообеспечения предприятий.
- 44. Классификация теплотехнологических установок, схем и источников энергии
 - 45. Энергосбережение в высог пературных технологиях.
 - 46. Энергетическая эффективность теплотехнологических установок.
 - 47. Энергетическая эффективность топок теплотехнологических

установок.

- 48. Энергетическая эффективность ограждающих конструкций теплотехнологических установок.
- 49. Рациональное энергоиспользование в низкотемпературных технологиях.
- 50. Инженерные системы обеспечения жизнедеятельности в зданиях и сооружениях.
 - 51. Общие принципы энергосбережения в зданиях и сооружениях.
- 52. Мероприятия по энергосбережению в системах отопления, вентиляции и кондиционирования воздуха.
 - 53. Энергосбережение тепловыми трубками.
 - 54. Виды ВЭР и направления их использования.
 - 55. Экономия энергии при утилизации ВЭР.
- 56. Принципиальные возможности использования вторичных энергоресурсов.
- 57. Мероприятия по энергосбережению за счет использования вторичных энергоресурсов.
- 58. Использование низкопотенциальной теплоты с помощью теплонасосных установок.
 - 59. Использование ВЭР в целях получения холода.
 - 60. Применение детандергенераторных агрегатов.
- 61. Мероприятия по энергосбережению за счет использования альтернативных источников энергии.
- 62. Общие сведения о системах электроснабжения промышленных предприятий и объектов ЖКХ,
 - 63. Определение нагрузок при потреблении электроэнергии.
- 64. Качество электроэнергии и его влияние на работу потребителей, затраты энергии и ресурсов.
 - 65. Направления эффективного использования электрической энергии.
- 66. Основы экономии электроэнергии при проектировании и эксплуатации электроустановок.
 - 67. Значимость учета энергетических ресурсов.
 - 68. Приборы учета тепловой энергии и теплоносителя.
 - 69. Учет тепловой энергии в различных системах теплоснабжения

6.7 Примерная тематика курсовых работ

Курсовая работа не предусм25 на.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Рег, Д. Промышленная электроника : учебное пособие :/ Д. Рег ; пер. с англ. 2-е изд. М : ДМК Пресс, 2023. 1138 с. : ил., табл., схем., граф. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=706501 (дата обращения: 28.10.2024). ISBN 978-5-89818-366-0. Текст : электронный.
- 2. Барочкин, Е.В. Общая энергетика: учебное пособие: / Е. В. Барочкин, М. Ю. Зорин, А. Е. Барочкин. 3-е изд. перераб. идоп. М:Вологда: Инфра-Инженерия, 2021. 316 с. Режим доступа: по подписке. URL: https://www.litres.ru/book/aleksey-barochkin/obschaya-energetika-65951949/. Текст: электронный.
- 3. Демидова Г.Л., ЛукичевД.В. Введение в специальность. Электроэнергетика иэлектротехника: учеб. пособие для студентов вузов [Текст] / Г. Л. Демидова, Д. В. Лукичев. СПб: Университет ИТМО, 2016. 108 с.— URL: https://books.ifmo.ru/file/pdf/2032.pdf.

Дополнительная литература:

- 1. Энергосбережение и энергоэффективность [Электронный ресурс] : учеб. пособие / Ю. Л. Жуковский. СПб.: Горн. ун-т, 2013. 100 с. —URL: <a href="http://irbis.spmi.ru/jirbis2/index.php?option=com_irbis&view=irbis&Itemid=402&task=set_static_req&bns_string=NWPIB,ELC,ZAPIS&req_irb=<.>I=%2D742095 <. Текст : электронный.
- 2. Энергосбережение в системах теплогазоснабжения, вентиляции и кондиционирова-ния воздуха: Уч. пос. / А.М. Протасевич. М.: НИЦ ИНФРА-М; Мн.: Нов. знание, 2013. 286 с. URL: http://znanium.com/bookread2.php?book=405334. Текст: электронный.
- 3. Федеральный закон «Об энергосбережении и о повышении энергетической эффективности, и о внесении изменений в отдельные законодательные акты Российской Феде-рации» ФЗ-261 от 23.11.2009.

Учебно-методическое обеспечение

- 1. Энергосбережение в теплоэнергетике и теплотехнологиях: Методические указания к лабораторным работам электр. ресурс/ Лебедев В.А. СПб, «Горный», 2017. 43 с. Режим доступа: http://ior.spmi.ru/profile/pers/kafedra/2019/token/15399479061539958706, свободный.
- 2. Энергосбережение в теплоэнергетике и теплотехнологиях: Методические указания к практическим занятиям / Санкт-Петербургский горный университет. Сост. Андреев В.В., СПб, 2016. 46 с. Режим доступа: http://ior.spmi.ru/profile/pers/kafedra/2019/token/15399479061539958706 ,

свободный.

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ : официальный сайт.— Алчевск. —URL: library.dstu.education.— Текст : электронный.
- 2. Научно-техническая библиотека БГТУим. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст : электронный.
- 3. Консультант студента :электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст : электронный.
- 4. Университетская библиотека онлайн : электронно-библиотечная система.— URL: http://biblioclub.ru/index.php?page=main_ub_red.— Текст : электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО. Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местоположение) учебных кабинетов
Специальные помещения: Мультимедийная аудитория. (60 посадочных мест), компьютер Intel Celeron E-3300;	ауд. <u>220</u> корп. <u>1</u>
- мультимедийный проектор BENG M-5111; - демонстрационный экран; - посадочные места по количеству обучающихся; - рабочее место преподавателя. Аудитории для проведения лабораторных работ: Оборудование компьютерного класса каф. АУИТ: - персональные компьютеры Sepron 3200, IntelCeleron 420 в количестве 10шт., локальная сеть с выходом в Internet; - принтер LBP2900; - лабораторная мебель: столы, стулья для студентов (по количеству обучающихся); -рабочее место преподавателя.	ауд. <u>206</u> корп. <u>1</u>

Лист согласования РПД

Разработал

управления и инновационных технол (должность)	(подпись)	<u>М.В. Канчукова</u> (Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
И.о. заведующего кафедрой	16	
автоматизированного управления и инновационных технологий (подпись) (Ф.И.О.)	E.B. Mor	<u>3a</u>
инновационных технологий		<u>ва</u> от <u>09. 07</u> . 20 <u>24</u> г.

процессов и производств

Председатель методической комиссии по направлению

Начальник учебно-методического центра

15.03.04 Автоматизация технологических

(подпись)

O.A. Коваленко (Ф.И.О.)

29	

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения				
изменений				
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:			
Оамарамиа				
Основание:				
Подпись лица, ответственного за внесение изменений				