Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Вишневский Дмитрий Александрович

Должность: Ректор

Дата подписания: 17.10.2025 15:06:46

Уникальный программный **МИН**ИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОЗ474917c4d012283e5ad996a48a5e70bf8da057

(МИНОБРНАУКИ РОССИИ) (МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет Кафедра

горно-металлургической промышленности и строительства металлургических технологий

> **ТВЕРЖДАЮ** И.о. роректора по учебной работ

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Физико-хиг	мические процессы в химических агрегатах
	(наименование дисциплины)
	18.03.01 Химическая технология
	(код, наименование направления)
Химическая техно	ология природных энергоносителей и углеродных
	материалов
	(профиль подготовки)
Квалификация	бакалавр
	(бакалавр/специалист/магистр)
Форма обучения	очная, заочная
	(очная, очно-заочная, заочная)

1 Цели и задачи дисциплины

Цели и задачи изучения дисциплины «Физико-химические процессы в химических агрегатах»: формирование базовой системы знаний в области коксохимического производства.

Дисциплина направлена на формирование профессиональной компетенции (ПК-2) выпускника.

2 Место дисциплины в структуре образовательной программы

Логико-структурный анализ дисциплины — курс входит в обязательную часть Блока 1 «Дисциплины (модули)» подготовки студентов по направлению 18.03.01 «Химическая технология», профиль «Химическая технология природных энергоносителей и углеродных материалов».

Дисциплина реализуется кафедрой металлургических технологий.

Входные знания студента базируются на изученных дисциплинах: «Математика», «Физика», «Общая, неорганическая, органическая, аналитическая, физическая и коллоидная химия», «Химия и технология органических веществ», «История химии и химической технологии».

Является основой для изучения следующих дисциплин: «Кинетика гетерогенных процессов», «Теоретические основы химической технологии природных энергоносителей и углеродных материалов», «Химическая технология природных энергоносителей и углеродных материалов», «Высокотемпературные процессы химической технологии».

Общая трудоемкость освоения дисциплины для очной формы обучения составляет 4 зачетные единицы, 144 ак.ч. Программой дисциплины предусмотрены лекционные (36 ак.ч.), практические (36 ак.ч.) занятия и самостоятельная работа студента (72 ак.ч.).

Общая трудоемкость освоения дисциплины для заочной формы обучения составляет 4 зачетные единицы, 144 ак.ч. Программой дисциплины предусмотрены лекционные (6 ак.ч.), практические занятия (6 ак.ч.), и самостоятельная работа студента (132 ак.ч.).

Дисциплина изучается на 3 курсе в 5 семестре. Форма промежуточной аттестации – экзамен.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Физико-химические процессы в химических агрегатах» направлен на формирование компетенций, представленных в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание компетенции	Код компетен- ции	Код и наименование индикатора достижения компетенции
Готовность к решению профессиональных, производственных задач, контролю технологического процесса, выбору оборудования, разработке технологических нормативов на расход материалов, топлива и электроэнергии.	ПК-2	ПК-2.1. Знает: основное оборудование процессов, принци- пы его работы и правила технической эксплуатации, ос- новные процессы и аппараты, устройство и принципы ра- боты оборудования. ПК-2.2. Умеет: использовать на практике соответствую- щие аппараты при разработке технологических процессов, проводить работу по совершенствованию действующих и освоению новых технологических процессов, совершен- ствовать действующие методы проведения испытаний и исследований. ПК-2.3. Владеет: методами инженерных расчётов, связан- ных с выбором соответствующего оборудования, метода- ми по ускорению освоения в производстве технологиче- ских процессов.

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 4 зачётные единицы, 144 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим занятиям, текущему контролю, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

	Всего ак.ч.	Ак.ч. по
Вид учебной работы		семестрам
	144	5
Аудиторная работа, в том числе:	90	90
Лекции (Л)	36	36
Практические занятия (ПЗ)	36	36
Лабораторные работы (ЛР)	_	_
Курсовая работа/курсовой проект	_	_
Самостоятельная работа студентов	72	72
(СРС), в том числе:	12	12
Подготовка к лекциям	18	18
Подготовка к лабораторным работам	_	_
Подготовка к практическим занятиям	4.0	10
/ семинарам	18	18
Реферат (индивидуальное задание)	_	_
Домашнее задание	_	_
Подготовка к контрольной работе	_	_
Аналитический информационный по-	10	10
иск	10	10
Работа в библиотеке	10	10
Подготовка к экзамену	16	10
Промежуточная аттестация – экзамен(Э)		
ак.ч.	144	144
3.e.	4	4

5 Содержание дисциплины

С целью освоения компетенций, приведенных в п.3 дисциплина разбита на 4темы:

- тема 1 (Физико-химические процессы при подготовке угольной шихты к коксованию);
- тема 2 (Физико-химические процессы при подготовке коксового газа для отопления коксовых батарей);
 - тема 3 (Физико-химические процессы при получении кокса);
- тема 4 (Физико-химические процессы при переработке химических продуктов коксования).

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 3 и 4 соответственно.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоем- кость в ак.ч.	Темы практических занятий	Трудоем- кость в ак.ч.	Темы лабораторных занятий	Трудоем- кость в ак.ч.
1	Физико- химические про- цессы при под- готовке уголь- ной шихты к коксованию	Виды физико-химических процессов в химических агрегатах: Гидромеханические. Тепловые. Массообменные. Химические. Испарение влаги и выделение продуктов разложения. Выделение лёгкой смолы и пирогенетической влаги. Размягчение угля.	8	Физические и физико-химические процессы: нагревание, охлаждение, разделение смесей.	8	_	_
2	Физико- химические про- цессы при под- готовке коксово- го газа для отоп- ления коксовых батарей	Термическое разложение молекул угля. Выделение продуктов разложения. Процессы подготовки коксового газа для отопления коксовых печей. Очистка и подогрев газа. Пропускание газа через выходящий из коксовых печей раскаленный кокс с целью повышения эффективности способа.	8	Влияние на качество кокса условий подготовки угольной шихты: гранулометрического состава, насыпной плотности, влажности	8	_	_
3	Физико- химические про- цессы при полу- чении кокса	Процессы термической деструкции высокомолекулярных соединений сырья. Полимеризация и поликонденсация промежуточных и исходных веществ. Спекание тяжёлых углеродистых остатков разложения угля, образование полукокса. Получение кокса. Пиролиз первичных продуктов разложения.	10	Изучение процессов сушки угля, нагрева, размягчения и плавления.	10	-	_

7

Прод	должение таблицы 3						
	Физико- химические про-	Дистилляция. Деструкция. Гидрирование. Каталитическая переработка.		Изучение процессов затвердевания рас-			
4	цессы при пере-	Каменноугольная смола. Фенолы и пи-	10	плава и образование	10	_	_
-	работке химиче-	ридиновые основания. Бензол. Аммиак.	10	полукокса, кокса.	10	_	
	ских продуктов			Физико-химические			
	коксования			свойства кокса.			
	Всего аудитор	оных часов за семестр	36		36		

Таблица 4 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоем- кость в ак.ч.	Темы практических занятий	Трудо емкость в ак.ч.	Тема лабораторных занятий	Трудоем- кость в ак.ч.
1	Физико- химические процессы при получении кокса.	Процессы термической деструкции высокомолекулярных соединений сырья. Полимеризация и поликонденсация промежуточных и исходных веществ. Спекание тяжёлых углеродистых остатков разложения угля, образование полукокса. Получение кокса. Пиролиз первичных продуктов разложения.	4	Влияние на качество кокса условий подготовки угольной шихты: гранулометрического состава, насыпной плотности, влажности. Изучение процессов сушки угля, нагрева, размягчения и плавления.	4	-	_
2	Физико- химические процессы при переработке химических продуктов коксования.	Физико-химические свойства кокса. Процессы при переработке химических продуктов коксования. Дистилляция. Деструкция. Гидрирование. Каталитическая переработка. Каменноугольная смола. Фенолы и пиридиновые основания. Бензол. Аммиак.		Изучение процессов сушки угля, нагрева, размягчения и плавления. Затвердевание расплава и образование полукокса. Получение кокса.	2	_	_
	Всего аудиторн	ых часов за семестр	6		6	_	_

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
ПК-2	Экзамен	Комплект контролирующих материалов для экзамена

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- текущий контроль всего 40 баллов,
- практические работы всего 60 баллов.

Экзамен проставляется автоматически, если студент набрал в течение семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Экзамен по дисциплине «Физико-химические процессы в химических агрегатах» проводится по результатам работы в семестре. Экзамен проводится в устной форме. Билет включает три вопроса из приводимого ниже перечня. Экзаменационные билеты составляются таким образом, чтобы каждый вопрос относился к различному модулю. Ответ на каждый вопрос оценивается из 33,3 баллов. Студент на экзамене может набрать до 100 баллов.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашнее задание

Домашнее задание не предусмотрено

6.3 Темы для рефератов (презентаций) – индивидуальное задание Рефераты не предусмотрены.

6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Тема 1 Физико-химические процессы при подготовке угольной шихты к коксованию

- 1) Испарение влаги и выделение продуктов разложения.
- 2) Выделение лёгкой смолы и пирогенетической влаги.
- 3) При какой температуре происходит переход угля в пластичное состояние?
 - 4) Какие первичные продукты выделяются при размягчении угля?
- 5) Как влияют на качество кокса условия подготовки угольной шихты: гранулометрический состав, насыпная плотность, влажность?
 - 6) Испарение влаги и выделение продуктов разложения.
 - 7) Выделение лёгкой смолы и пирогенетической влаги.
 - 8) Спекание тяжёлых углеродистых остатков разложения угля.
 - 9) Превращение полукокса в кокс.
 - 10) При какой температуре полукокс превращается в кокс?

Тема 2 Физико-химические процессы при подготовке коксового газа для отопления коксовых батарей

- 1) Какие существуют способы подготовки коксового газа для отопления коксовых печей?
 - 2) Для чего очищают и подогревают коксовый газ?
- 3) Для чего коксовый газ пропускают через выходящий из коксовых печей раскаленный кокс?
- 3) Вычислите ΔH^0 , ΔG^0 в стандартных условиях для реакции CO + $H_2O_{(r)} \leftrightarrow CO_2 + H_2$. Укажите, экзо- или эндотермической является реакция, в каком направлении она будет идти самопроизвольно.
 - 4) Напишите термохимическое уравнение реакции

 ${
m CH_4 + CO_2 = 2CO + 2H_2}$. Рассчитайте изменение энергии Гиббса. Укажите направление самопроизвольного протекания реакции.

Тема 3 Физико-химические процессы при получении кокса

- 1) Какие термофизические процессы происходят при коксовании?
- 2) Основные понятия фазовых равновесий (фаза, компонент, число независимых компонентов).
- 3) В системе существует два компонента и две фазы. Вычислите число степеней свободы, используя математическое выражение правила фаз Гиббса (n=2).46. Укажите пропущенное слово «Относительное понижение давления пара растворителя над раствором численно равно растворённого вещества» а) мольной доле; б) объемной доле; в) равной доле; г) массовой доле; д) общей доле
- 4) Дайте определение термину «каталитическая реакция». Примеры каталитических реакций.
- 5) Вставьте пропущенное слово: Термодинамическое равновесие это состояние системы, которое характеризуется значением всех параметров в любой части системы. а) большим б) одинаковым в) малым г) равным нулю д) отрицательным.
- 6) Чем обменивается с окружающей средой открытая термодинамическая система?а) работой б) объемом в) теплотой г) энергией д) массой.

Тема 4 Физико-химические процессы при переработке химических продуктов коксования

- 1) Какие полезные химические продукты образуются в результате очистки коксового газа?
- 2) Получение сырого кокса, бензина, дизельного топлива процессом разделения коксовых химикатов, т.е.смеси жидкостей и газов. (Дать название процессу).
- 3) Как называется процесс разложения органических соединений при высоких температурах без доступа воздуха?
- 4) Какова характеристика метода получения бензола, толуола гидрогенизацией твёрдого топлива?
 - 5) Каталитическая переработка.

6.5 Вопросы для подготовки к экзамену

- 1) Какие физико-химические процессы происходят при подготовке угольной шихты к коксованию?
- 2) Как характеризуются основные тепловые процессы в химической технологии: нагревание и охлаждение жидкостей и газов, конденсация паров?
- 3) Способы выражения состава фаз. Как определяются равновесные условия и направление переноса вещества из фазы в фазу?
- 4) Классификация и характеристика массообменных процессов. Что такое массопередача и массоотдача?
- 5) Какова роль поверхностных явлений при образовании твердых тел и дисперсных структур?

- 6) Каковы физико-химические основы адсорбционных процессов?
- 7) Каковы термодинамические основы процесса сжатия газов?
- 8) Как классифицируют компрессоры по характеру изменения давления, по величине развиваемого напора (давления), по производительности, по принципу действия?
- 9) При какой температуре происходит спекание тяжёлых углеродистых остатков разложения угля, образование полукокса?
 - 10) Каковы физико-химические свойства кокса?
- 11) Приведите основное уравнение теплопередачи. Каковы принципы составления тепловых балансов?
- 12) Каковы общие сведения о процессе абсорбции? Каково ее промышленное применение?
 - 13) Как характеризуется фазовое равновесие в системе газ-жидкость?
- 14) Гидромеханические, тепловые, массообменные и химические процессы. Каковы общие сведения о них?
- 15) Что означает отстаивание (осаждение) как способ разделения неоднородных систем?
- 16) Каковы общие сведения о процессе перемешивания в жидких средах? Какие существуют способы перемешивания?
- 17) Общая характеристика тепловых процессов. Что такое коэффициент теплопередачи?
 - 18) Что означает перенос теплоты теплопроводностью?
 - 19) Как происходит передача теплоты конвекцией и излучением?
- 20) Схемы движения теплоносителей. Интенсификация переноса теплоты. Как характеризуется движущая сила тепловых процессов?
 - 21) Каковы общие сведения процесса подвода теплоты?
 - 22) Как происходит нагревание водяным паром?
- 23) Как происходит нагревание парами высокотемпературных теплоносителей?
 - 24) Нагревание горячими жидкостями. Что такое перегретая вода?
- 25) Как происходит нагревание высокотемпературными жидкими теплоносителями?
- 26) Типы электропечей. Как происходит нагревание топочными газами?
 - 27) Какова общая характеристика процесса отвода теплоты?
 - 28) В чем состоит сущность и принципы ректификации?
- 29) Каковы принципы расчета материального и теплового баланса сушки?
 - 30) Конвективные сушилки. Какова их область применения?

6.6 Примерная тематика курсовых работ

Курсовые работы не предусмотрены.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендованная литература

Основная литература

1) Баранов, Д. А. Процессы и аппараты химической технологии : учебное пособие / Д. А. Баранов. — 3-е изд., стер. — Санкт-Петербург : Лань, 2020. — 408 с. — ISBN 978-5-8114-4984-2. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/130186 — Режим доступа: для авториз. пользователей.

ЭБС Лань

2) Процессы и аппараты химической технологии: Учебное пособие. Часть

первая. Гидромеханические процессы и аппараты / Благовещенск: Амурский

гос. ун-т, 2019. – 96 с.

https://irbis.amursu.ru/DigitalLibrary/AmurSU Edition/11318.pdf

3) Зуев, А. Ю. Химическая термодинамика: учебник / А. Ю. Зуев, Д. С. Цветков; Министерство науки и высшего образования Российской Федерации, Уральский федеральный университет. — Екатеринбург: Изд-во Урал. унта, 2020. — 183 с. — Библиогр.: с. 182. — 150 экз. — ISBN 978-5-7996-3029-4. — Текст: непосредственный. ISBN 978-5-7996-3029-4

https://elar.urfu.ru/bitstream/10995/93300/1/978-5-7996-3029-4 2020.pdf

Дополнительная литература

- 1) Верховлюк А.М. Физическая химия основа металлургических процессов: учебное пособие / Верховлюк А.М., Верховлюк Г.А.. Москва, Вологда: Инфра-Инженерия, 2021. 216 с. ISBN 978-5-9729-0568-3. Текст: электронный // Цифровой образовательный ресурс IPR SMART https://www.iprbookshop.ru/115194.html
- 2) Процессы и аппараты химической технологии. Гидромеханиче ские процессы : учеб. пособие для студентов учреждений высшего обра зования по направлению «Химическая промышленность» / И. В. Войтов [и др.] ; под ред. И. В. Войтова. Минск : БГТУ, 2018. 352 с.

processy i apparaty himicheskoj tehnologii 2018.pdf

Учебно-методическое обеспечение

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

1. Научная библиотека ДонГТУ: официальный сайт.— Алчевск. — URL: <u>library.dstu.education.</u>— Текст: электронный.

- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст: электронный.
- 3. Консультант студента: электронно-библиотечная система. Mockва. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст: электронный.
- 4. Университетская библиотека онлайн: электронно-библиотечная система.— URL: http://biblioclub.ru/index.php?page=main_ub_red.— Текст: электронный.
- 5. IPR BOOKS: электронно-библиотечная система.— Красногорск. URL: http://www.iprbookshop.ru/. —Текст: электронный.
- 6. ЭБС Издательства "Университетская библиотека онлайн" http://e.lanbook.com/
 - 7. ЭБС Издательства "ЛАНЬ": [сайт]. https://e.lanbook.com/
- 8. Цифровая библиотека IPR SMART: [сайт]. https://www.iprbookshop.ru/
 - 9. Национальная электронная библиотека: [сайт]. https://rusneb.ru/
 - 10. Российская Государственная Библиотека: [сайт]. https://diss.rsl.ru/
- 11. Научная электронная библиотека «КиберЛенинка»: [сайт]. https://cyberleninka.ru/
- 12. Научная электронная библиотека eLIBRARY: [сайт]. https://elibrary.ru/defaultx.asp?/
- 13. Электронная библиотека «Астраханский государственный университет» https://biblio.asu.edu.ru
 - 14. ЭБС «Университетская Библиотека Онлайн» https://biblioclub.ru
- 15. Информационно-библиотечный комплекс «Политех» https://library.spbstu.ru

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО. Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местоположение) учебных кабинетов
Вытяжной шкаф; Прибор КФК; Спектрофотометр; Термостат; Муфельная печь; Аппарат для встряхивания жидкости; Универсальный иономер ЭВ-74; Калориметр ОХ-12; Весы аналитические WA21; Весы технические, разновесы; Весы электронные торговые CAAZ; Фотоколориметр КF -77; Вакуумный насос; Магнитная мешалка; Холодильник «Ярна»; Плитка электрическая; Доска аудиторная; Таблица элементов Д.И.Менделеева; Наглядные пособия; Набор химических реактивов.	306 главный корпус Лаборатория физической химии и аналитического контроля
Интерактивная доска, компьютеры, планшеты, раздаточный материал для лабораторных работ, вытяжной шкаф, лабораторный стол преподавателя, лабораторные столы для студентов, учебный стенд, оборудование для лабораторных работ. Численность посадочных мест- 22 человека	406 главный корпус Лаборатория общей химии

Лист согласования РПД

Разработал старший преподаватель кафедры металлургических технологий (должность)	(подпись)	Е.С. <u>Божанова</u> (Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
И.о. заведующего кафедрой металлургических технологий	Hellienf (подпись)	<u>Н.Г. Митичкина</u> (Ф.И.О.)
Протокол №1 заседания кафедры металлургических технологий		от 30.08.2024г.
И.о. декана факультета горно-металлургическ промышленности и строительства	ой ОЛЛ В (подпись)	— О.В. <u>Князьков</u> (Ф.И.О.)
Согласовано		
Председатель методической комиссии по направлению подготовки 18.03.01 «Химическая технология» Профиль «Химическая технология природны энергоносителей и углеродных материалов	X ————————————————————————————————————	Н.Г. <u>Митичкина</u> (Ф.И.О.)
Начальник учебно-методического центра	(подпись)	О.А. Коваленко (Ф.И.О.)

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения			
изменений			
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:		
Основ	Основание:		
Подпись лица, ответственного за внесение изменений			