Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Вишневский Дмитрий Александрович

Должность: Ректор МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Дата подписания: 20.10.2025 10:05:52

Уникальный программный ключ:

(МИНОБРНАУКИ РОССИИ)

03474917c4d012283e5ad996a48a5e70bf8ФЁДЕР АЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ
ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ
«ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
(ФГБОУ ВО «ДонГТУ»)

Факультет информационных технологий и автоматизации производственных процессов Кафедра электроники и радиофизики УТВЕРЖДАЮ И. о. проректора по учебной работе Д.В. Мулов РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Физические методы неразрушающего контроля (наименование дисциплины) 03.03.03 Радиофизика (код, наименование направления) Инженерно-физические технологии в промышленности (профиль подготовки) Квалификация бакалавр (бакалавр/специалист/магистр) Форма обучения очная, очно-заочная (очная, очно-заочная, заочная)

1 Цели и задачи изучения дисциплины

Цели дисциплины. Целью изучения дисциплины «Физические методы неразрушающего контроля» является:

- формирование теоретических и практических знаний о различных методах и приборах неразрушающего контроля различного рода материалов и изделий на разных стадиях их производства и эксплуатации;
- формирование способности обоснованного выбора технического и методического обеспечения измерений и испытаний;
- формирование навыков оценивания погрешности измерительных систем;
- формирование навыков самостоятельной постановки и проведения теоретических и экспериментальных исследований.

Задачи изучения дисциплины:

- приобретение необходимых теоретических знаний по вопросам диагностики; формирование базы знаний для обоснованного выбора методов и средств неразрушающего контроля в практической деятельности;
- приобретение знаний, умений и навыков в дефектоскопии и диагностике веществ, материалов и сред, проектировании устройств неразрушающего контроля на основе различных методов и схем, с их эксплуатацией и внедрением их в различных областях науки и техники.

Учебная программа дисциплины «Физические методы неразрушающего контроля» предусматривает изучение видов и сущности различных методов неразрушающего контроля, области их применения.

Дисциплина направлена на формирование профессиональной компетенции (ПК-2) выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины — курс входит в БЛОК 1 «Дисциплины (модули)», часть, формируемую участниками образовательных отношений подготовки студентов по направлению 03.03.03 Радиофизика (профиль «Инженерно-физические технологии в промышленности»).

Дисциплина реализуется кафедрой электроники и радиофизики. Основывается на базе дисциплин: «Механика», «Молекулярная физика», «Электричество и магнетизм», «Метрология, стандартизация и технические измерения», «Физические основы материаловедения».

Является основой для изучения следующих дисциплин: «Проектирование и эксплуатация лазерного технологического оборудования», «Техника и электроника СВЧ», «Физическая электроника», «Организация научных исследований», «Преддипломная (производственная) практика», подготовка и защита выпускной квалификационной работы.

Курс является фундаментом для формирования теоретических и практических знаний о различных методах и приборах неразрушающего контроля различного рода материалов и изделий на разных стадиях их производства и эксплуатации.

Общая трудоемкость освоения дисциплины составляет 3 зачетных единицы, 108 ак.ч. Программой дисциплины предусмотрены лекционные (18 ак.ч.), практические (18 ак.ч.) занятия и самостоятельная работа студента (72 ак.ч.) очной формы обучения. Очно-заочная форма обучения: лекционные (10 ак.ч.), практические (8 ак.ч.) занятия и самостоятельная работа студента (90 ак.ч.)

Дисциплина изучается на 4 курсе в 7 семестре. Форма промежуточной аттестации – зачет.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Физические методы неразрушающего контроля» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание компетен-	Код	Код и наименование индикатора
ции	компетенции	достижения компетенции
Способен понимать принципы работы и методы эксплуатации современной радио-электронной, оптической аппаратуры и оборудования, и использо-	ПК-2	ПК-2.3. Выполняет комплексные исследования и испытания материалов (изделий), определяет параметры оборудования объектов профессиональной деятельности, учитывая технические ограничения и требования по экологической без-
вать основные методы		опасности
радиофизических из- мерений		

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 3 зачётных единицы, 108 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим занятиям, текущему контролю, выполнение индивидуального задания, самостоятельное изучение материала и подготовку к зачету.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам 7
Аудиторная работа, в том числе:	36	36
Лекции (Л)	18	18
Практические занятия (ПЗ)	18	18
Лабораторные работы (ЛР)	-	-
Курсовая работа/курсовой проект	-	-
Самостоятельная работа студентов (СРС), в том числе:	72	72
Подготовка к лекциям	4	4
Подготовка к лабораторным работам	-	-
Подготовка к практическим занятиям / семинарам	18	18
Выполнение курсовой работы / проекта	-	-
Расчетно-графическая работа (РГР)	-	-
Реферат (индивидуальное задание)	12	12
Домашнее задание	10	10
Подготовка к контрольной работе	6	6
Подготовка к коллоквиуму	-	-
Аналитический информационный поиск	5	5
Работа в библиотеке	8	8
Подготовка к зачету	9	9
Промежуточная аттестация – зачет (3)	3 (2)	3 (2)
Общая трудоемкость дисциплины		
ак.ч.	108	108
3.e.	3	3

5 Содержание дисциплины

С целью освоения компетенции, приведенной в п.3 дисциплина разбита на 7 тем:

- тема 1 (Введение в предмет методы и средства контроля состояния рабочих поверхностей.);
 - тема 2 (Поверхностный слой материалов);
 - тема 3 (Оптический и визуально-оптический метод контроль);
 - тема 4 (Рентгеноструктурный и микроскопический анализы металлов);
 - тема 5 (Химические методы анализа);
 - тема 6 (Неразрушающий метод контроля);
 - тема 7 (Методы индукционного и термоэлектрического контроля).

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 3 и 4 соответственно.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоем- кость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1	Введение в предмет методы и средства контроля состояния рабочих поверхностей	машин. Термины и определения.	2	Изучение характерных дефектов изделий на различных стадиях изготовления (внутренние, поверхностные и объемные дефекты)	2	_	
2	Поверхностный слой материалов	Общие требования выбора и назначения системы параметров ПС, задачи и методы контроля состояния рабочих поверхностей деталей машин и аппаратов. Контроль макро- и микрогеометрии поверхностей. Классификация методов контроля состояния поверхностного слоя. Классификация современных методов анализа состояния поверхностного слоя деталей	2	Основы метрологии и метрологическое обеспечение	2	_	_

1

C	×	

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоем- кость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		машин. Разрушающие и неразру- шающие методы контроля. Ме- тоды анализа поверхностного слоя. Оптическая и электронная спек- троскопия.					
3	Оптический и визуально-оптический метод контроль	Сущность метода. Преимущество визуально-оптического контроля. Дополнительные средства измерений при визуальном контроле. Требования, предъявляемые к условиям работы оператора при визуальном контроле. Эндоскопы и их применение. Возможности применения микроскопов при визуальном контроле.	2	Визуальные методы исследования дефектов	2	_	_
4	Рентгеноструктур- ный и микроскопи- ческий анализы ме- таллов	тографический, металлоструктур-	2	Рентгеноструктурный метод исследования. Расшифровка ренттенографических снимков	4	_	_

№ п/п		Содержание лекционных занятий	Трудоем- кость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
5	Химические методы анализа	Контроль механических свойств. Методы анализа химического состава и свойств материалов. Химический и электрохимический методы. Исследование механических свойств материала ПС деталей машин и аппаратов при статическом и динамическом нагружении: растяжении, сжатии, изгибе, кручении, циклических нагрузках.	2	_	_	_	
6	Неразрушающий метод контроля про- никающими излуче- ниями.	Особенности применения неразрушающих методов контроля. Надежность технологических процессов, оперативные характеристики и интегральные критерии эффективности формирования ПС с точки зрения системы неразрушающего контроля рабочих поверхностей деталей. Радиационный неразрушающий контроль: рентгеновское излучение и у-излучение. Капиллярный метод контроля. Методы электрического и магнитного контроля. Методы контроля проникающими веществами: пенетрация. Методика контроля. Ка-	6	Сущность акустического метода контроля. Оборудование, технология ультразвукового контроля Выбор технологии определения дефектов УЗК методом. Определение глубины залегания дефекта.	2	_	_

\vdash
0

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоем- кость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		пиллярный метод, методы течеискания. Электрический и магнитный контроль. Методы измерения напряженности магнитного поля. Феррозонды, датчик Холла, магнитный диод. Магнитная дефектоскопия. Принцип измерения электрического потенциала зондовым методом. Методы вихретокового и ультразвукового контроля. Физические основы. Классификация волн. Получение и обнаружение ультразвука. Методы ультразвукового контроля. Методы и средства звуковидения. Вихретоковый контроль. Магнитная и токовихревая интроскопия.					
7	Методы индукцион- ного и термоэлек- трического кон- троля	Индукционный контроль. Физические основы. Уравнения Максвелла. Граничная частота. Дефектоскопия. Термоэлектрический контроль. Дефектоскопия и измерение толщин покрытий. Тепловой контроль и томография. Особенности теплового контроля. Аппаратура теплового контроля. Элементы ИК-техники. Тепловизоры.	2	Выбор технологии определения дефектов УЗК методом. Определение глубины залегания дефекта	4	-	_
	Всего аудиторных ч	асов	18	18			_

Таблица 4 – Виды занятий по дисциплине и распределение аудиторных часов (очно-заочная форма обучения)

		иятии по дисциплине и распреде		иторных часов (очн	о-заочная фо	1 /	
№ п/п		Содержание лекционных занятий	Трудоем- кость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1	Введение в предмет методы и средства контроля состояния рабочих поверхностей	Понятие о рабочей поверхности детали (геометрические, физические, технологические параметры), поверхностном слое (ПС). Характерные дефекты поверхности и ПС материалов на различных стадиях производства и эксплуатации деталей машин. Термины и определения. Метрологическое обеспечение и структура службы контроля.	2	Изучение характерных дефектов изделий на различных стадиях изготовления (внутренние, поверхностные и объемные дефекты)	2	_	_
2	Поверхностный слой материалов	Общие требования выбора и назначения системы параметров ПС, задачи и методы контроля состояния рабочих поверхностей деталей машин и аппаратов. Контроль макро- и микрогеометрии поверхностей. Классификация методов контроля состояния поверхностного слоя. Разрушающие и неразрушающие методы контроля.	2	_	_	_	_
3	Оптический и визуально-оптический метод контроль	Сущность метода. Преимущество визуально-оптического контроля. визуальном контроле. Возможности применения микроскопов при визуальном контроле.	2	Визуальные методы исследования дефектов	2	-	_

-	_
N)

№ п/г		Содержание лекционных занятий	Трудоем- кость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
4	Рентгеноструктур- ный и микроскопи- ческий анализы ме- таллов	Особенности применения методов металлофизического анализа состояния рабочих поверхностей. Дифракционные методы анализа. Количественная металлография. Электронный просвечивающий микроскоп. Растровый электронный микроскоп.	2	Рентгеноструктурный метод исследования. Расшифровка рентгенографических снимков	2	_	_
6	Неразрушающий метод контроля про- никающими излуче- ниями.	Особенности применения неразрушающих методов контроля. Надежность технологических процессов, оперативные характеристики и интегральные критерии эффективности формирования ПС с точки зрения системы неразрушающего контроля рабочих поверхностей деталей. Методы электрического и магнитного контроля. Методы контроля проникающими веществами: пенетрация. Электрический и магнитный контроль. Методы измерения напряженности магнитного поля. Магнитная дефектоскопия. Принцип измерения электрического потенциала зондовым методом. Методы вихретокового и ультразвукового контроля.	2	Выбор технологии определения дефек- тов УЗК методом. Определение глубины залегания дефекта	2		
	Всего аудиторных ч	•	10	8	•	_	•

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень работ по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень работ по дисциплине и способы оценивания знаний

Вид учебной работы	Способ оценивания	Количество баллов
Выполнение практических работ	Предоставление отчетов	30-40
Прохождение тестов 1, 2	Более 50% правильных ответов	30 - 50
Выполнение индивидуального задания	Предоставление материалов индивидуального задания (презентации, рефераты и т.д.)	0-5
Выполнение домашнего задания	Предоставление материа- лов домашнего задания	0-5
Итого	_	60 - 100

Зачет проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Зачет по дисциплине охрана труда и производственная безопасность проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время зачетной недели студент имеет право повысить итоговую оценку либо в форме устного собеседования по приведенным ниже вопросам (п.п. 6.4), либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашнее задание

В качестве домашнего задания студенты выполняют:

– работу над составлением конспекта изученного материала;

В качестве индивидуального задания студенты очной формы готовят реферат или презентацию на одну из приведенных ниже тем.

6.3 Темы для рефератов (презентаций) – индивидуальное задание

- 1) Задачи неразрушающего контроля в решении проблем техносферной безопасности.
 - 2) Ультразвуковой контроль элементов производственных сооружений.
- 3) Методы и технология проведения комплексного обследования объектов экономики.
 - 4) Классификация методов неразрушающего контроля.
 - 5) Приборы неразрушающего контроля. Сравнительный анализ.
- 6) Метрологическое обеспечение методов и средств неразрушающего контроля.
 - 7) Акустико-эмиссионный метод неразрушающего контроля.
 - 8) Тепловой метод неразрушающего контроля.
 - 9) Нормативно-техническая база неразрушающего контроля.
- 10) Контроль механических свойств и структуры материалов магнитным методом.
 - 11) Капиллярный метод контроля металлоконструкций.
 - 12) Статистическая обработка результатов НК.
- 13) Вихретоковая дефектоскопия узлов и деталей производственного оборудования.
 - 14) Радиационная толщинометрия и толщинометрия изделий.
- 15) Моделирование объектов неразрушающего контроля и процедур измерения.
- 16) Способы диагностирования отклонения поверхностей электрическим методом.

6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

- 1) Укажите задачи неразрушающего контроля (НК) в производственном контроле и при научных исследованиях.
- 2) Перечислите и охарактеризуйте виды дефектов изделий и нарушений технологических процессов.
- 3) Какой нормативной документацией руководствуются при НК?
- 4) Перечислите приборы, меры, стандартные образцы для обеспечения единства измерений и воспроизводимости их результатов.
- 5) Опишите метрологическое обеспечение методов и средств НК.
- 6) Охарактеризуйте виды материалов и изделия из них. Физико-механические характеристики изделий из различных материалов.
- 7) В чем заключается сертификация средств контроля?
- 8) Укажите основные методы и области применения методов НК.
- 9) В чем заключается акустическая дефектоскопия изделий и материалов?
- 10) Укажите применение ультразвуковой толщинометрии.
- 11) В чем заключается статистическая обработка результатов измерений?
- 12) Охарактеризуйте методику организации практических работ по оценке качества изделий и состояния объектов.
- 13) В чем заключается оптический и визуально-оптический методы контроля?
- 14) Охарактеризуйте сущность ультразвуковых методов контроля.
- 15) Перечислите способы контроля механических характеристик материалов.
- 16) Какие приборы, используют для контроля механических характеристик?
- 17) Какие методики используют для определения отклонения форм поверхности?
- 18) Опишите способы диагностирования электрическим методом.
- 19) В чем заключается тепловой метод контроля и течеискание?
- 20) Охарактеризуйте акустико-эмиссионный метод контроля.
- 21) Где находит применение явление затухания ультразвука в газах и жидкостях?
- 22) Укажите преобразователи, используемые для проведения акустических методов контроля.
- 23) В чем заключается капиллярный метод контроля?
- 24) В каких случаях применяется контроль механических свойств и структуры материалов магнитным методом?

- 25) Где находит применение радиационная толщинометрия и толщинометрия изделий?
- 26) Какими методами осуществляется контроль физических свойств материалов и изделий?
- 27) Какими методами осуществляется дефектоскопия внутреннего строения?

6.5 Вопросы для подготовки к тестовому коллоквиуму

		отовки к тестовому коллоквиуму
№	Задание (вопрос)	Варианты ответов
п/п		
1	По какому признаку эхо-	- Появлению эхосигнала.
	методом можно обнару-	- Уменьшению зондирующего импульса.
	жить компактный де-	- Уменьшению донного сигнала.
	фект?	- Одновременно 1 и 3.
2	Какие информационные	- Амплитуда сигнала или время его прихода
	параметры используются	- Амплитуда сигнала и время его прихода
	в эхометоде?	- Частотный спектр
		- Фаза колебаний
3	Для определения размера	- время прихода эхо-сигнала
	компактного дефекта	- коэффициент дискриминации
	или степени его опасно-	- амплитуда эхо-сигнала
	сти в эхометоде исполь-	- частотный спектр колебаний изделия
	зуется:	-
4	. Обнаруживаемые эхо-	- половины длины волны.
	методом дефекты	- длины волны излучения.
	должны иметь линейный	- 1/4 длины волны.
	размер не меньше:	- нескольких длин волн.
5	В эхо-методе могут при-	- Совмещенные
	меняться следующие	- Раздельные
	преобразователи:	- Раздельно-совмещенные
		- 1 или 3
6	Эхо метод может приме-	- Дефектоскопии
	няться для:	- Измерения толщины
		- Исследования структуры и свойств материала
		- Всех перечисленных задач
7	При измерении толщин	- Частота звуковых волн колеблется около основного сво-
	ультразвуковым эхо-ме-	его значения.
	тодом могут иметь место	- Скорость распространения волн значительно отличается
	значительные ошибки,	от предполагаемой.
	если:	- В качестве контактной жидкости используется вода.
		- Ни один из вышеприведенных факторов не приводит к
		ошибкам.
8	Эхо методом очень	- Вертикальные трещины
	трудно обнаружить сле-	- Горизонтальные трещины
	дующие дефекты:	- Произвольно-ориентированные трещины
		- 1 и 3
9	Самым распространен-	- Эхо-метод
	ным методом прохожде-	- Теневой метод
	ния является:	- Эхо-теневой метод

		- Метод акустической эмиссии
10	Метод контроля, в кото-	- Эхо-метод.
	ром ультразвук, излучае-	- Метод углового пучка.
	мый одним преобразова-	- Теневой метод.
	телем,	- Метод прямого пучка.
	проходит насквозь объ-	intered alphanere all anon
	ект контроля и регистри-	
	руется другим преобра-	
	зователем на	
	противоположной сто-	
	роне объекта, называ-	
	ется:	
11	В теневом методе ис-	- Два раздельных прямых
	пользуются следующие	- Два раздельных наклонных
	типы преобразователей	- Один совмещенный прямой
		- 1 или 3
12	Какой из перечисленных	- Шероховатостью поверхности.
	причин обуславливается	- Затуханием ультразвука.
	уменьшение амплитуды	- Расхождением пучка.
	сигнала	- Всеми указанными причинами.
	при контроле теневым	
	способом?	
13	Для увеличения стабиль-	- Сухой точечный контакт
	ности акустического	- Воздушно-акустическая связь
	контакта в теневом ме-	- Иммерсионный контакт
	тоде	- 1 или 2
4.4	применяется:	
14	Комбинированными	- Отраженные от дефектов
	называются методы, ис-	- Прошедшие через дефекты
	пользующие сигналы:	- 1 и 2
1.5	Coverse	- 1 или 2
15	Самым распространен-	- Эхо-сквозной - Эхо-теневой
	ным комбинированным	
	методом является:	- Зеркально-теневой - Эхо-зеркальный
16	Эхо-теневой метод поз-	- Эхо-зеркальный - Размеры дефекта, глубину его залегания и тип
10		- Размеры дефекта, глубину его залегания и тип - Размеры дефекта и глубину его залегания
	воляет определить:	- газмеры дефекта и глубину его залегания - Размеры дефекта и его тип
		- газмеры дефекта и его тип - Только размеры дефекта
17	При использовании ме-	- Периодическими ударами электромагнитного вибра-
_ ′	тода свободных колеба-	тора.
	ний контролируемый	- Пьезоэлектрическим излучателем.
	объект обычно	- Магнитострикционным вибратором.
	возбуждают:	- 1 или 2 или 3.
		
18	Метод измерения тол-	- Эхо-метод.
	щины образца, при кото-	- Магнитострикционный метод.
	ром ультразвуковые ко-	- Резонансный метод.
	лебания	- Теневой метод.
	изменяемой частоты из-	
	лучаются в исследуемый	
	материал, называется:	
	материал, называется:	

19	Пассивными называются	- Излучаются
	методы, при которых	- Принимаются
	звуковые волны:	- 1 и 2
		- 1 или 2
20	Отличие вибро- и щумо-	- Вибродиагностический – контактный и интегральный, а
	диагностических мето-	шумодиагностический –
	дов:	бесконтактный и локальный
		- Вибродиагностический – контактный и локальный, а
		шумодиагностический –
		бесконтактный и интегральный
		- Вибродиагностический – бесконтактный и локальный, а
		шумодиагностический –
		контактный и интегральный
		- Вибродиагностический – бесконтактный и интеграль-
		ный, а шумодиагностический –
2.1		контактный и локальный
21	Главным достоинством	- Простота реализации
	всех пассивных методов	- Высокая информативность
	АК является:	- Возможность контролировать изделия в процессе экс-
		плуатации
22	F	- Все перечисленные преимущества
22	Бесконтактная передача	- Воздушно-акустической связи
	звуковых волн в изделие	- Электродинамического и магнитоупругого взаимодей-
	может осуществляться	СТВИЯ
	посредством:	- Лазерного воздействия
23	Maryyrayanayy	- Всеми перечисленными способами
23	Магнитопорошковый метод основан	- на функции увеличения магнитного поля в парамагнит- ном материале, появляющихся вблизи нарушения его
	тод основан	сплошности.
		- на функции уменьшения магнитного поля в диамагнит-
		ном материале, появляющихся вблизи нарушения его
		сплошности.
		- на функции неравномерностей магнитного поля в фер-
		ромагнитном материале, появляющихся вблизи наруше-
		ния его сплошности.
24	Величина, характеризу-	- называемая магнитной коэрцитивностью.
	ющая способность мате-	- называется магнитной проницаемостью.
	риала намагничи-	- называется единицей напряжённости магнитного
	ваться	поля.
2.5		
25	Сущность намагничива-	- приложении магнитного поля на исследуемый объ-
	ния заключается	ект.
		- в ориентации малых областей материала (домены)
		под воздействием внешнего магнитного поля.
		- создании магнитного поля или остаточной намагни-
		ченности исследуемого ферромагнитного материала.
26	Какой способ намагни-	- Соленоидом(катушкой)
	чивания представлен на	- Электромагнитом
	рисунке?	- Тороидом
		* · · · · ·

27	Какой вид намагничивания представлен на рисунке?	- Пропусканием тока по детали - Продольное - Циркулярное	
28		- постоянным магнитом, электромагнитом, соленои-	
20	Различают несколько видов намагничивания:	- постоянным магнитом, электромагнитом, соленои- дом циркулярное, продольное (полюсное), комбиниро- ванное тороидом, соленоидом, электромагнитом.	
29	Капиллярный метод предназначен	 - выявление невидимых дефектов, выходящих на поверхность (трещины, нарушения сплошности). - выявление невидимых и слабо видимых дефектов, выходящих на поверхность (трещины и др. нарушения сплошности). - выявление слабо видимых дефектов, трещин, нарушения сплошности. 	
30	Этапы проведения капиллярного метода:	 удаление ЛКП и коррозии, обезжиривание, нанесение пенетранта, удаление пенетранта, нанесение проявителя, анализ результата капиллярного метода контроля, очистка детали. удаление ЛКП при наличии, нанесение пенетранта, удаление пенетранта, нанесение проявителя, удаление проявителя, анализ результата капиллярного метода контроля. удаление ЛКП при наличии, нанесение пенетранта, удаление пенетранта, нанесение проявителя анализ результата капиллярного метода контроля. 	
31	Утразвуковой метод контроля основан	- на возбуждении ультразвуковых колебаний в контролируемом изделии и регистрации отраженных эхосигналов в диапазоне 1,25 - 10 МГц на возбуждении ультразвуковых колебаний в контролируемом изделии и регистрации интенсивности и времени прохождения отраженных эхо-сигналов в диапазоне 1,25 - 10 МГц на возбуждении ультразвуковых колебаний в контролируемом изделии и регистрации интенсивности прохождения отраженных эхо-сигналов в диапазоне 1,25 - 10 МГц.	

	Если направление колебаний частиц совпадает с направлением распространения волны, то волна называется	- поперечной. - поверхностной. - продольной.
32	Физическая сущность метода вихревых токов состоит	 в изменении распределения вихревых токов в контролируемом объекте в зависимости от электропроводности и эл. физических характеристик материала. в изменении характера распределения вихревых токов в контролируемом объекте в зависимости от его формы и эл. физических характеристик материала. в изменении характера распределения вихревых токов в контролируемом объекте в зависимости от его формы, механических и физических характеристик материала.
33	Что является сигналом появления дефекта при вихретоковом МНК?	 Изменение индуктивного сопротивления катушки преобразователя. Изменение активного сопротивления вихретокового преобразователя. Изменение комплексного сопротивления ВТП.

6.6 Примерная тематика курсовых работ Курсовые работы не предусмотрены.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Крутилин А.А. Организация контроля качества. Неразрушающие методы контроля прочности: Учебное пособие / А.А. Крутилин, Н.А. Инькова, О.К. Пахомова; ВолгГТУ. Волгоград, 2022. 112 с. URL: https://elibrary.ru/download/elibrary_48274161_45760171.pdf. Режим доступа: для авториз. пользователей. Текст: электронный.
- 2. Гончаров А.Н. Неразрушающие методы контроля и механические испытания сварных соединений: Учебное пособие / А.Н. Гончаров, В.В. Неверов, П.Н. Клевцов, С.В. Лебедев.—Липецк; Изд-во Липецкого государственного технического университета, 2021. 114 с. URL: https://elibrary.ru/download/elibrary_46156264_45396249.pdf. Режим доступа: для авториз. пользователей. Текст: электронный.
- 3. Арисова, В. Н. Методы исследования материалов. Физические методы контроля: учеб.-метод. пособие / В. Н. Арисова, С. П. Писарев, Д. В. Проничев; ВолгГТУ. Волгоград, 2022. 92 с. URL: https://elibrary.ru/download/elibrary_46156264_45396248.pdf. Режим доступа: для авториз. пользователей. Текст: электронный.

Дополнительная литература

- 1. Расщупкин В.П. Дефекты металла: Учебное пособие по дисциплине «Материаловедение и ТКМ» для механических специальностей вузов / В.П. Расщупкин, М.С. Корытов. Омск: Изд-во СибАДИ, 2006. 37 с. URL: https://3kl.dontu.ru/course/view.php?id=1823. Режим доступа: для авториз. пользователей. Текст: электронный.
- 2. Мирошников В.В. Приборы оптического контроля: Учебное пособие / В.В. Мирошников, Н.В. Мартыненко. Луганск: Изд-во ВНУ им. В.Даля, 2012. 165 с. URL: https://3kl.dontu.ru/course/view.php?id=1823. Режим доступа: для авториз. пользователей. Текст: электронный.
- 3. Ивасев, С. С. Методы неразрушающего контроля: Учебное. пособие / С. С. Ивасев, А. В. Гирн, Д. В. Раводина; Сиб. гос. аэрокосмич. ун-т. Красноярск, 2015. 112 с. URL: https://3kl.dontu.ru/course/view.php?id=1823. Режим доступа: для ав-ториз. пользователей. Текст: электронный.
- 4. Каневский, И.Н. Неразрушающие методы контроля: Учебное пособие / И.Н. Каневский, Е.Н. Сальникова. Владивосток, издательство ДВГТУ, 2007 243 с. URL: https://3kl.dontu.ru/course/view.php?id=1823. Режим доступа: для ав-ториз. пользователей. Текст: электронный.

Нормативные ссылки

1. ГОСТы по неразрушающему контролю https://www.ntcexpert.ru/gost-nk

Учебно-методическое обеспечение

- 1. Поздняков В. Ф. Приборы и методы визуального и оптического контроля: Методические рекомендации / В. Ф. Поздняков, Е. В. Позднякова. Могилев, Белорусско-Российского университет, 2023 38с. https://3kl.dontu.ru/course/view.php?id=1823. Режим доступа: для авториз. пользователей. Текст: электронный.
- 2. Атрощенко В.В. Методы неразрушающего контроля качества изделий : лабораторный практикум по дисциплине «Специальные методы оценки свойств сварных соединений и элементов конструкции» [Электронный ресурс] / Уфимск. гос. авиац. техн. ун-т ; [авт.-сост. : В. В. Атрощенко, М. П. Савичев, Н. И. Фецак]. Уфа : УГАТУ, 2021. URL: https://www.ugatu.su/media/uploads/MainSite/Ob%20universitete/Izdateli/El_izd/2021-77.pdf

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт. Алчевск. URL: <u>library.dstu.education</u>. Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст : электронный.
- 3. Университетская библиотека онлайн: электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст: электронный.
- 5. IPR BOOKS: электронно-библиотечная система. Красногорск. URL: http://www.iprbookshop.ru/. Текст : электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям $\Phi\Gamma$ OC BO.

Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

•	
Наименование оборудованных учебных кабинетов	Адрес (местопо- ложение) учеб- ных кабинетов
Мультимедийная аудитория. (60 посадочных мест), оборудованная	
специализированной (учебной) мебелью (скамья учебная – 60 шт., стол компьютерный – 1 шт., доска аудиторная – 2 шт.), APM учебное ПК (монитор + системный блок), мультимедийная стойка с обо-	ауд. <u>201</u> корп. <u>главный</u>
рудованием – 1 шт., широкоформатный экран.	
Аудитории для проведения практических занятий, для самостоя- тельной работы:	
Компьютерный класс (25 посадочных мест), оборудованный учеб-	
ной мебелью, компьютерами с неограниченным доступом к сети Интернет, включая доступ к ЭБС:	ауд. <u>205</u> корп. <u>главный</u>
Компьютер AMI Mini M PC 440 на базе Intel Pentium E 1,6/1024/160/LG 17" LCD 10 шт., Компьютер AMI Mini PC 420 на базе Intel Celeron 1,6/512/80/LG 17" LCD 4 шт., Принтер HP Laser	
Јеt, Switch D-Link DES-1024D 24*10/100, Switch 8 Port, Принтер ла- зерный Canon LBP, Доска маркерная магнитная Лаборатория неразрушающего контроля (Кафедра машин метал-	
лургического комплекса) (1-109). Количество посадочных мест - 20.	100 1
Анализатор вибрации двухканальный ДИАНА-2М - 1 шт.	ауд. <u>109</u> корп. 1
Дефектоскоп ультразвуковой A1212 MASTER - 1 шт.	
Дефектоскоп магнитопорошковый переносной импульсный МД-И - 1 шт.	
Магнитопорошковый дефектоскоп на постоянных магнитах, МД-6К - 1 шт.	
Намагничивающее устройство на постоянных магнитах для магнитопорошковой дефектоскопии, НУ-1ПМ - 1 шт. Толщиномер ультразвуковой УТ-507 - 1 шт.	
Прибор измерения геометрических параметров и параметров окру-	
жающей среды многофункциональный КОНСТАНТА К6Ц - 2 шт.	
Твердомеры портативные динамические ТКМ-359С -3 шт.	
Твердомер динамический малогабаритный ТДМ-2 - 1 шт.	
Твердомеры портативные ультразвуковые ТКМ-459М -2 шт	
Трещиномер электропотенциальный 281М - 1 шт. Адгезиметр электронный АМЦ 2-50USB - 1 шт.	
Магнитометр дифференциальный МФ 24ФМ - 1 шт.	
Микроскоп МПБВ-1020 - 5 шт.	
Комплект для визуально-измерительного контроля ВИК - 5 шт.	
Измеритель параметров электрического и магнитного полей 3-х	
компонентный "ВЕ-МЕТР" - 1 шт.	

Лист согласования РПД

Разработал		
доц. кафедры электроники		
и радиофизики	/ Mond	О.А. Коваленко
(должность)	(подпись)	(Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
И.о. заведующего кафедрой		
электроники и радиофизики	(подпись)	<u>А.М. Афанасьев</u> (Ф.И.О.)
Протокол № / заседания кафедры		
электроники и радиофизики	ОТ <u></u>	<u>0.08.</u> 20 <u>24</u> г.
И.о. декана факультета информационных технологий и автоматизации производственных процессов	(подпием)	<u>В.В. Дьячкова</u> (Ф.И.О.)
Согласовано	/	
Председатель методической комиссии по направлению подготовки 03.03.03 Радиофизика (профиль подготовки «Инженернофизические технологии в промышленности»)	(подпись)	<u>А.М. Афанасьев</u> (Ф.И.О.)
Начальник учебно-методического центра	(подпись)	<u>О.А. Коваленко</u> (Ф.И.О.)

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения изменений		
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	
Основ	вание:	
Подпись лица, ответственного за внесение изменений		
,,		