Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Вишневский Дмитрий Александрович Должность: Ректор МИНИСТЕРСТВО НА УКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Дата подписания: 17.10.2025 15:06:46

(МИНОБРНАУКИ РОССИИ)

Уникальный программный ключ: 03474917c4d012283e5ad996a48a5e70bf8da95EДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

(ФГБОУ ВО «ДонГТУ»)

Факультет информационных технологий и автоматизации производственных процессов Кафедра электроники и радиофизики

> **УТВЕРЖДАЮ** И. о проректора по учебной работе Д.В. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Астрофизика. Биофизика						
03.03.03 Радиофизика						
	(код, наименование направления)					
Инженер	оно-физические технологии в промышленности					
	(профиль подготовки)					
Квалификация	бакалавр					
	(бакалавр/специалист/магистр)					
Форма обучения	очная, очно-заочная					
	(очная, очно-заочная, заочная)					

1 Цели и задачи изучения дисциплины

Современное естествознание представляет собой совокупность многих наук, тесно связанных между собой. Но поскольку природный мир многообразен, то каждая естественная наука, в том числе астрономия и биология, имеет свой объект изучения.

Астрономия — наука о движении, строении, возникновении, развитии небесных тел, их систем и Вселенной в целом. Биология - это наука о живом, его строении, формах активности, природных сообществах живых организмов, их распространении и развитии, связях друг с другом и с неживой природой.

Объединение астрономии и физики привело к появлению новой науки - астрофизики, а в результате синтеза биологии и физики стала развиваться биофизика.

Очевидно, что интеграция этих двух разделов естествознания в одну дисциплину «Астрофизика. Биофизика» дает возможность более глубокого понимания о физико-химическом единстве всего живого, и призвана способствовать формированию у студентов современного научного мировоззрения на физическую картину мира.

Целью данной дисциплины является формирование представлений о структуре и эволюции Вселенной и живой материи, физико-химическом единстве всего живого; знакомство студентов с методами астрофизических исследований и с биофизическим подходом к рассмотрению живых систем.

Задачи дисциплины:

- приобретение элементарных знаний по строению Вселенной, механизмам космического радиоизлучения;
- -получение представлений о физических процессах, происходящих в звездах, галактиках, и Вселенной в целом;
- знакомство с особенностями организации биологической формы материи; способами описания живых систем в физических терминах, особенностями взаимодействия ионизирующих и неионизирующих электромагнитных излучений с биологическими объектами;
- приобретение навыков анализа процессов, происходящие в живых системах с точки зрения основных законов физики и химии.

Дисциплина направлена на формирование профессиональной (ПК-2) компетенции выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины — курс входит в БЛОК 1 «Дисциплины (модули)», в часть, формируемую участниками образовательных отношений подготовки по направлению 03.03.03 Радиофизика (профиль «Инженерно-физические технологии в промышленности»).

Дисциплина реализуется кафедрой электроники и радиофизики.

Основывается на базе дисциплин: «Механика», «Молекулярная физика», «Электричество и магнетизм», «Оптика», «Атомная и ядерная физика», «Химия», «Высшая математика», «Радиоэлектроника», «Физика плазмы».

Является основой для изучения следующих дисциплин: приобретенные знания могут быть использованы для выбора направления научно-исследовательской работы, выпускной квалификационной работы, темы производственной и преддипломной практик, а также могут быть использована в профессиональной деятельности.

Общая трудоемкость освоения дисциплины составляет 2 зачетные единицы, 72 ак.ч.

Для очной формы обучения дисциплина изучается на 4 курсе в 8 семестре. Программой дисциплины предусмотрены лекционные (20 ак.ч.), практические (10 ак.ч.) занятия и самостоятельная работа студента (42 ак.ч.).

Форма промежуточной аттестации – зачет.

Для очно-заочной формы обучения дисциплина изучается на 5 курсе в 10 семестре. Программой дисциплины предусмотрены лекционные (12 ак.ч.), практические (10 ак.ч.) занятия и самостоятельная работа студента (50 ак.ч.).

Форма промежуточной аттестации – зачет.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Астрофизика. Биофизика» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание компетенции	Код компетен- ции	Код и наименование индикатора достижения компетенции
Способен понимать принципы ра-	ПК-2	ПК-2.2. Осваивает и применяет но-
боты и методы эксплуатации совре-		вейшие методы проведения теоре-
менной радиоэлектронной, оптиче-		тических и экспериментальных ис-
ской аппаратуры и оборудования, и		следований в области профессиональной деятельности
использовать основные методы ра-		нальной деятельности
диофизических измерений		

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 2 зачётные единицы, 72 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим занятиям, текущему контролю, самостоятельное изучение материала и подготовку к зачету.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам 8
Аудиторная работа, в том числе:	30	30
Лекции (Л)	20	20
Практические занятия (ПЗ)	10	10
Лабораторные работы (ЛР)	ı	-
Курсовая работа/курсовой проект	ı	-
Самостоятельная работа студентов (СРС), в том числе:	42	42
Подготовка к лекциям	8	8
Подготовка к лабораторным работам	-	-
Подготовка к практическим занятиям / семинарам	8	8
Выполнение курсовой работы / проекта	-	-
Расчетно-графическая работа (РГР)	-	-
Реферат (индивидуальное задание)	10	10
Домашнее задание (индивидуальное задание)	-	-
Подготовка к контрольной работе	ı	-
Подготовка к коллоквиуму	6	6
Аналитический информационный поиск	1	-
Работа в библиотеке	-	-
Подготовка к зачету	10	10
Промежуточная аттестация – зачет (3)	3	3
Общая трудоемкость дисциплины		
ак.ч.	72	72
3.e.	2	2

5 Содержание дисциплины

С целью освоения компетенции, приведенной в п.3 программа дисциплины предусматривает два раздела: «Астрофизика» и «Биофизика».

раздел 1 АСТРОФИЗИКА

- тема 1.1 (Основы астрофизики);
- тема 1.2 (Солнце);
- тема 1.3 (Звезды);
- тема 1.4 (Галактики и Метагалактика);
- тема 1.5 (Основы космологии).

раздел 2 БИОФИЗИКА

- тема 2.1 (Предмет и задачи биофизики);
- тема 2.2 (Молекулярное строение биосистем);
- тема 2.3 (Термодинамика биологических процессов);
- тема 2.4 (Строение и физические свойства клеток);
- тема 2.5 (Физические факторы среды и их влияние на биологические объекты);
- тема 2.6 (Использование радиофизических методов исследования в биофизике).

Виды занятий по дисциплине и распределение аудиторных часов приведены в таблицах 3 и 4.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий раздел 1 А	Трудо- емкость в ак.ч.	Темы практических занятий ИЗИК А	Трудо- емкость в ак.ч.	Темы лабора- торных занятий	Трудо- емкость в ак.ч.
1.1	Основы астрофи- зики	Задачи и основные разделы астрофизики. Электромагнитное излучение, исследуемое в астрофизике. Астрофизические инструменты и основные методы наблюдений	2	Электромагнитное излучение, исследуемое в астрофизике. Основные понятия звездной фотометрии. Методы определения температур, масс и размеров небесных тел. Определение химического состава и плотности небесных тел.	2	-	_
1.2	Солнце	Основные характеристики Солнца, как звезды. Спектр и химический состав. Внутреннее строение Солнца. Термоядерный синтез и его стадии. Регистрация солнечных нейтрино. Атмосфера Солнца: фотосфера, хромосфера, корона. Грануляция и конвективная зона.	2	Радиоизлучение: спокойное и спорадическое. Рентгеновское излучение. Солнечное нейтрино. Активные образования на Солнце и их связь с магнитным полем. Цикл солнечной активности	2	-	-
1.3	Звезды	Общие сведения о звездах. Модели строения звезд. Источник энергии звезд. Атмосферы звезд. Строение вырожденных звезд (белые карлики и нейтронные звезды). Черные дыры. Происхождение и эволюция звезд. Планетарные туманности. Кратные и переменные звезды. Особенности строения тесных двойных систем. Пульсары, нейтронные звезды.		Спектральная классификация звезд. Абсолютная звездная величина и светимость звезд. Модуль расстояния. Диаграмма спектр-светимость Герцшпрунга-Рессела. Классы светимости. Температура звезд. Температура звезд. Температурная шкала. Определение размеров и массы звезд. Функции массы и светимости	2	-	-

~1

№ п/п	Наименование темы (раздела) дисциплины Содержание лекционных занятий Трудо-емкость в ак.ч.		Трудо- емкость в ак.ч.	Темы лабора- торных занятий	Трудо- емкость в ак.ч.		
1.4	Галактики и Мета- галактика	Распределение звезд в Галактике. Строение Галактики. Галактическая система координат. Масса Галактики. Космические мазеры. Общая структура Галактики. Квазары. Радиогалактики. Метагалактика.	2	Космические лучи, галактическая корона и магнитное поле Галактики Физические свойства галактик. Ядра галактик	1	-	-
1.5	Основы космоло- гии	Задачи космологии. Космологический принцип. Космологические модели. Модель «горячей» Вселенной. Большой взрыв. Современные представления об эволюции Вселенной.	2	Классическая модель однородной и изотропной Вселенной. Релятивистская космология	1	ı	-
2		раздел 2	БИОФИ	ЗИКА			
2.1	Предмет и задачи биофизики.	Предмет и задачи биофизики. Биологические и физические процессы и закономерности в живых системах	2	_	_	_	-
2.2	Молекулярное стро- ение биосистем	Макромолекула как основа организации биоструктур. Пространственная конфигурация биополимеров. Условия стабильности конфигурации макромолекул	2	_	_	_	_
2.3	Термодинамика биологических процессов	Организм как открытая термодинамическая система. Уравнение Пригожина для открытой системы. Применение законов термодинамики к биосистемам. Связь изменения энтропии с необратимыми процессами.	2	Первый закон термодинамики или закон сохранения и превращения энергии. Применимость второго закона термодинамики к биосистемам.	1	_	_

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудо- емкость в ак.ч.	Темы практических занятий	Трудо- емкость в ак.ч.	Темы лабора- торных занятий	Трудо- емкость в ак.ч.
2.4	Строение и физические свойства клеток	Клетка как элементарная живая система. Строение клетки и биологические мембраны. Основные функции биологических мембран. Транспорт веществ через биологические мембраны: Электрические поля в живых клетках и организмах.	2	Диффузия веществ в растворе и через мембрану. Законы Фика, Проницаемость и коэффициент диффузии. Осмос. Поры, каналы, насосы. Механические свойства биологических материалов. Биомеханика течения жидкостей	1		
2.5	Физические факторы среды и их влияние на биологические объекты	•	1	_	_	_	_
2.6	Использование радиофизических методов исследования в биофизике	тодов исследования в биофизике.	1	-	_	_	_
	Beero	о аудиторных часов	20	-	10	_	_

Таблица 4 – Виды занятий по дисциплине и распределение аудиторных часов (очно-заочная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий раздел 1 А	Трудо- емкость в ак.ч.	Темы практических занятий ИЗИК A	Трудо- емкость в ак.ч.	Темы лабора- торных занятий	Трудо- емкость в ак.ч.
1.1	Основы астрофи- зики	Задачи и основные разделы астрофизики. Электромагнитное излучение, исследуемое в астрофизике. Астрофизические инструменты и основные методы наблюдений	1	Электромагнитное излучение, исследуемое в астрофизике. Основные понятия звездной фотометрии. Методы определения температур, масс и размеров небесных тел. Определение химического состава и плотности небесных тел.	2	_	_
1.2	Солнце	Основные характеристики Солнца, как звезды. Спектр и химический состав. Внутреннее строение Солнца. Термоядерный синтез и его стадии. Регистрация солнечных нейтрино. Атмосфера Солнца: фотосфера, хромосфера, корона. Грануляция и конвективная зона.	1	Радиоизлучение: спокойное и спорадическое. Рентгеновское излучение. Солнечное нейтрино. Активные образования на Солнце и их связь с магнитным полем. Цикл солнечной активности	2	-	_
1.3	Звезды	Общие сведения о звездах. Модели строения звезд. Источник энергии звезд. Атмосферы звезд. Строение вырожденных звезд (белые карлики и нейтронные звезды). Черные дыры. Происхождение и эволюция звезд. Планетарные туманности. Кратные и переменные звезды. Особенности строения тесных двойных систем. Пульсары, нейтронные звезды.	2	Спектральная классификация звезд. Абсолютная звездная величина и светимость звезд. Модуль расстояния. Диаграмма спектр-светимость Герцшпрунга-Рессела. Классы светимости. Температура звезд. Температура звезд. Температурная шкала. Определение размеров и массы звезд. Функции массы и светимости	2	I	-

№ п/п	. Солержание лекционных занятий емкость Гемь		Темы практических занятий	Трудо- емкость в ак.ч.	Темы лабора- торных занятий	Трудо- емкость в ак.ч.	
1.4	Галактики и Мета- галактика	Распределение звезд в Галактике. Строение Галактики. Галактическая система координат. Масса Галактики. Космические мазеры. Общая структура Галактики. Квазары. Радиогалактики. Метагалактика.	1	Космические лучи, галактическая корона и магнитное поле Галактики Физические свойства галактик. Ядра галактик	1	-	-
1.5	Основы космоло- гии	Задачи космологии. Космологический принцип. Космологические модели. Модель «горячей» Вселенной. Большой взрыв. Современные представления об эволюции Вселенной.	1	Классическая модель однородной и изотропной Вселенной. Релятивистская космология	1	_	_
2		раздел 2	БИОФИ	ЗИКА			
2.1	Предмет и задачи биофизики.	Предмет и задачи биофизики. Биологические и физические процессы и закономерности в живых системах	1	_	_	_	_
2.2	Молекулярное стро- ение биосистем	Макромолекула как основа организации биоструктур. Пространственная конфигурация биополимеров. Условия стабильности конфигурации макромолекул	1	-	_	_	_
2.3	Термодинамика биологических процессов	Организм как открытая термодинамическая система. Уравнение Пригожина для открытой системы. Применение законов термодинамики к биосистемам. Связь изменения энтропии с необратимыми процессами.	1	Первый закон термодинамики или закон сохранения и превращения энергии. Применимость второго закона термодинамики к биосистемам.	1	-	-

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудо- емкость в ак.ч.	Темы практических занятий	Трудо- емкость в ак.ч.	Темы лабора- торных занятий	Трудо- емкость в ак.ч.
2.4	Строение и физические свойства клеток	Клетка как элементарная живая система. Строение клетки и биологические мембраны. Основные функции биологических мембран. Транспорт веществ через биологические мембраны: Электрические поля в живых клетках и организмах.	1	Диффузия веществ в растворе и через мембрану. Законы Фика, Проницаемость и коэффициент диффузии. Осмос. Поры, каналы, насосы. Механические свойства биологических материалов. Биомеханика течения жидкостей	1		.1
2.5	Физические факторы среды и их влияние на биологические объекты	Механические воздействия. Электромагнитные поля. Оптическое излучение. Ионизирующая радиация.	1	_	_	_	_
2.6	Использование радиофизических методов исследования в биофизике	Использование радиофизических методов исследования в биофизике.	1	_	_	_	_
	Всего аудиторных часов		12	_	10	_	_

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
ПК-2	Зачет	Комплект контролирующих материалов для зачета

Критерии оценки знаний студентов.

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- тестовый контроль или устный опрос на коллоквиумах (2 работы) всего 60 баллов;
 - практические работы всего 20 баллов;
 - реферат всего 20 баллов

Зачет по дисциплине «Астрофизика. Биофизика» проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

В случае, если полученная в семестре сумма баллов не устраивает студента, во время зачетной недели студент имеет право повысить итоговую

оценку либо в форме устного собеседования по приведенным ниже вопросам (п.п. 6.4), либо в результате тестирования.

6.2 Домашнее задание

В качестве домашнего задания обучающиеся выполняют проработку лекционного материала.

В качестве индивидуального задания студенты готовят реферат или презентацию на одну из приведенных ниже тем.

6.3 Темы для рефератов (презентаций) – индивидуальное задание

Астрофизика.

- 1. Инструменты и методы астрофизики.
- 2. Физика Солнца. Внутреннее строение Солнца.
- 3. Солнечная система. Космогонические гипотезы.
- 4. Физическая природа малых тел Солнечной системы. Астероиды, кометы, метеориты.
- 5. Млечный путь и Галактика. Структура Галактики.
- 6. Открытие звездных систем(галактик). Типы и размер галактик. Квазары.
- 7. Эволюция звезд.
- 8. Компактные звезды.
- 9. Межзвездная среда. Образование протозвезд. Планетарные туманности.

Биофизика

- 10. Ядерный магнитный резонанс (ЯМР) как метод исследования биологических мембран.
- 11. Электронный парамагнитный резонанс (ЭПР) в медико-биологических исследованиях.
- 12. Исследование биологических мембран методом флуоресцентных зондов.
- 13. Новые диагностические и лечебные технологии, основанные на достижениях квантовой биофизики (биоэлектроники).
- 14. Лазерная спектроскопия.
- 15. Спектральные методы исследования биологических систем.
- 16 Лазерные методы исследования и биологическое действие лазерного излучения.
- 17. Биологические эффекты электромагнитных полей.
- 18. Лазерные технологии в медицине.

6.4 Вопросы для подготовки к зачету (тестовому коллоквиуму)

Раздел Астрофизика

- 1. Назовите астрофизические инструменты и основные методы наблюдений.
- 2. Охарактеризуйте электромагнитное излучение, исследуемое в астрофизике.
- 3. Сформулируйте законы теплового излучения и характеристические температуры астрофизических источников излучения.
- 4. Что такое звездная фотометрия? Звездная величина и светимость звезд?
- 5. Охарактеризуйте методы определения температур, масс и размеров небесных тел.
- 6. Как определяют химический состав и плотность небесных тел?
- 7. Назовите основные характеристики Солнца, как звезды.
- 8. Приведите общие сведения о звездах. Охарактеризуйте спектры нормальных звезд.
- 9. Какие методы определения температуры звезд Вы знаете?
- 10. Какими методами определяют радиусы звезд?
- 11. Модели строения звезд. Источник энергии звезд. Атмосферы звезд.
- 12. Опишите происхождение и эволюцию звезд.
- 13. Что такое пульсирующие звезды?
- 14. Что такое сверхновые звезды.
- 15. Что такое нестационарные звезды в тесных двойных системах?
- 16. Что такое галактики? Какова их классификация и физические свойства?
- 17. Что определяет закон Хаббла?
- 18. Дайте определение понятий: Скопления галактик. Скрытая масса. Межгалактический газ.
- 19. Активные ядра галактик и квазары.
- 20. Что изучает космология?
- 21. Каковы современные представления об эволюции Вселенной?

Раздел Биофизика

- 1. Предмет и задачи биофизики?
- 2. Охарактеризуйте биологические и физические процессы и закономерности в живых системах.
- 3. Макромолекула как основа организации биоструктур. Перечислите условия стабильности конфигурации макромолекул.
- 4. Раскройте суть определения «Организм как открытая термодинамическая система».
- 5. Стационарное состояние биологических систем. Уравнение Пригожина для открытой системы.

- 6. Покажите применимость второго закона термодинамики к биосистемам.
- 7. Как связаны изменения энтропии биосистемы с протекающими в ней необратимыми процессами.
- 8. Опишите строение и физические свойства клеток.
- 9. Каковы основные функции биологических мембран?
- 10. Что такое пассивный и активный транспорт веществ через биологические мембраны?
- 11. Как происходит диффузия веществ в растворе и через мембрану?
- 12. Что такое осмос?
- 13. Какова природа электрические поля в живых клетках и организмах?
- 14. Какие основные механические свойства биологических материалов?
- 15. Опишите биомеханику течения жидкостей
- 16. Какие физические факторы среды влияют на биологические объекты?
- 17. Приведите примеры использования радиофизических методов исследования в биофизике.

6.5 Примерная тематика курсовых работ

Курсовые работы не предусмотрены.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Общая астрофизика/ А.В. Засов, К.А. Постнов. 4-е изд., эл. 1 файл pdf: 573с. Москва: ДМК Пресс, 2022. Систем. требования: Adobe Reader XI либо Adobe Digital Editions 4.5: экран 10". Текст: электронный URL: https://znanium.ru/catalog/document?id=398114 (дата обращения: 19.06.2024).
- 2. Плутахин, Г.А. Биофизика: учебное пособие / Г.А. Плутахин, А.Г. Кощаев. 2-е изд., перераб., доп. Санкт-Петербург: Лань, 2022. 240 с. ISBN 978-5-8114-1332-4. Текст : электронный URL: https://e.lanbook.com/book/211001 (дата обращения: 19.06.2024).
- 3. Волькенштейн, М. В. Биофизика: учебное пособие / М. В. Волькенштейн. 4-е изд., стер. Санкт-Петербург: Лань, 2022. 608 с. ISBN 978-5-8114-0851-1. Текст: электронный URL: https://e.lanbook.com/book/210956 (дата обращения: 19.06.2024).

Дополнительная литература

- 1. Сотникова Р.Т. Введение в астрофизику: учеб. пособие / Р.Т. Сотникова. Иркутск: Изд-во Иркут. гос. ун-та, 2007. 248 с. Текст: электронный URL: https://obuchalka.org/2015070785596/vvedenie-v-astrofiziku-sotnikova-r-t-2007.html (дата обращения: 19.06.2024).
- 2. Арташян, О.С. Биофизика: учеб.-метод. пособие/ О.С. Арташян, В.А. Мишенко, Е.Л. Лебедева: [под общ. Ред. О.С. Арташян]: М-во науки и высш. образования Рос. Федерации Урал. федер. ун-т.- Екатеринбург: Изд-во Урал. ун-та. 2019. 114с. Текст: электронный URL: https://znanium.ru/catalog/document?id=421174 (дата обращения: 19.06.2024).
- 3. Рубин А.Б. Биофизика: учебник / А.Б. Рубин. М.: КНОРУС, 2016. 192 с. (Бакалавриат). Текст: электронный URL: https://k156.ru/9/39589.pdf (дата обращения: 19.06.2024).

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт. Алчевск. URL: <u>library.dstu.education</u>. Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова: официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст: электронный.

- 3. Консультант студента: электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст: электронный.
- 4. Университетская библиотека онлайн: электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст: электронный.
- 5. IPR BOOKS: электронно-библиотечная система. Красногорск. URL: http://www.iprbookshop.ru/. —Текст: электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям $\Phi\Gamma$ OC BO.

Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местоположение) учебных кабине- тов
Специальные помещения: Аудитория для проведения лекционных и практических занятий (20 посадочных мест), оборудованная специализированной (учебной) мебелью, доска аудиторная, интерактивная доска — 1 шт.	ауд.436 корп. <u>главный</u>

Лист согласования РПД

Разработал: Доцент кафедры электроники и радиофизики (должность)	(подпись)	<u>С.Д.Кузьминова</u> (Ф.И.О.)
И.о. заведующего кафедрой электроники и радиофизики	(подпись)	<u>А.М.Афанасьев</u> (Ф.И.О.)
Протокол № <u>1</u> заседания кафедры электроники и радиофизики от <u>3</u>	0. OS. DOSH.	
И.о. декана факультета информационных технологий и автоматизации производственных процессов	(HOPHINGS)	В.В. <u>Дьячкова</u> (Ф.И.О.)
Согласовано:		
Председатель методической комиссии по направлению подготовки 03.03.03 Радиофизика (профиль «Инженерно-физические технологии в промышленности»)	(подпись)	<u>А.М.Афанасьев</u> (Ф.И.О.)
Начальник учебно-методического центра	(подпись)	<u>О.А. Коваленко</u> (ф.и.о.)

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения			
изменений			
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:		
Основание:			
По			
Подпись лица, ответственного за внесение изменений			