Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Вишне КИЙ НИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Должность: Ректор (МИНОБРНАУКИ РОССИИ)

Дата подписания: 20.10.2025 14:17:30

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

Уникальный программный ключ: 03474917c4d012283e5ad99@\$PA30ВаАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет информационных технологий и автоматизации производственных процессов Кафедра электроники и радиофизики

> УТВЕРЖДАЮ И.о. проректора по учебной работе Д.В. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

	Электротехнологии в промышленности							
	(наименование дисциплины)							
11.03.03 Конструирование и технология электронных средств								
	(код, наименование направления)							
Информационн	Информационные технологии проектирования электронных устройств							
	(профиль подготовки)							
Квалификация	бакалавр							
-	(бакалавр/специалист/магистр)							
Форма обучения	очная, очно-заочная, заочная							
	(очная, очно-заочная, заочная)							

1 Цели и задачи изучения дисциплины

Учебная дисциплина «Электротехнологии в промышленности» призвана обеспечить изучение студентами наиболее современных зарубежных и отечественных электротехнологий, отраслей их применения, преимуществ по сравнению с широко известными.

Студенты направления 11.03.03 «Конструирование и технология электронных средств», профиль подготовки «Информационные технологии проектирования электронных устройств» при изучении дисциплины «Электротехнологии в промышленности» изучают:

- электротермические процессы и установки.
- электрохимические процессы и установки.
- электрофизические и комбинированные процессы и установки.
- электронно-ионные процессы и установки.
- современное состояние силовой электроники в развитых странах мира;
- выбор силовых полупроводниковых приборов для преобразователей электрической энергии.
- возможности микропроцессоров и программируемых интегральных схем, роль микропроцессоров и программируемых микросхем в электронных устройствах, возможности и перспективы развития программируемых интегральных схем.

Цели дисциплины: получение знаний о передовых прогрессивных технологических процессах, базирующихся на использовании специфических свойств электрической энергии и сведений о принципах действия электротехнологических установок, их достоинствах и недостатках; изучение принципа действия и анализ параметров основных силовых полупроводниковых, микроэлектронных и реактивных элементов силовой электроники, определение областей их применения в системах и устройствах электротехнологий; получение знаний в области основных областей применения, тенденций развития и проблем силовой электроники.

Задачи дисциплины: изучение электротехнологий, отраслей их применения, преимуществ по сравнению с широко известными, а также современного состояния силовой электроники, новых направлений исследования в области физики электронных процессов, путей дальнейшего развития элементной базы и схемных решений электроники, а также проблем, стоящих перед исследователями, разработчиками и пользователями электронной техники.

Дисциплина нацелена на формирование: общепрофессиональной компетенции (ОПК-1); профессиональной компетенции (ПК-3) выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины — дисциплина входит в обязательную часть БЛОКА 1 основной профессиональной образовательной программы подготовки бакалавров по направлению 11.03.03 Конструирование и технология электронных средств (профиль подготовки «Информационные технологии проектирования электронных устройств»).

Для изучения дисциплины необходимы компетенции, сформированные у студента в результате освоения дисциплин ОПОП подготовки бакалавра: «Высшая математика», «Физика» и «Физические основы электроники», «Теоретические основы электротехники».

В свою очередь, дисциплина «Электротехнологии в промышленности» является основой для изучения следующих дисциплин: «Основы силовой преобразовательной техники», «Системы электропитания», «Электронные силовые преобразовательные устройства», «Теория автоматического управления», а также, приобретенные знания, могут быть использованы при прохождении производственной и преддипломной практики, при подготовке и защите выпускной квалификационной работы, а также в профессиональной деятельности.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единиц, 144 ак.ч. Программой дисциплины предусмотрены для очной формы обучения лекционные (36 ак.ч.), практические (36 ак.ч.) занятия и самостоятельная работа студента (72 ак.ч.). Для очно-заочной формы обучения программой дисциплины предусмотрены лекционные (12 ак.ч.), практические (8 ак.ч.) занятия и самостоятельная работа студента (124 ак.ч.). Для заочной формы обучения программой дисциплины предусмотрены лекционные (6 ак.ч.), практические (4 ак.ч.) занятия и самостоятельная работа студента (134 ак.ч.).

Дисциплина изучается на 2 курсе в 4 семестре при очной форме обучения и на 3 курсе в 5 семестре при очно-заочной и заочной форме обучения. Форма промежуточной аттестации — дифференцированный зачет.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Электротехнологии в промышленности» направлен на формирование компетенций, представленных в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание ком-	Код	Код и наименование индикатора
петенции	компетенции	достижения компетенции
	· · · · · · · · · · · · · · · · · · ·	
Способен исполь-	ОПК-1	ОПК-1.1. Знает фундаментальные законы природы и
зовать положения,		основные физические и математические законы
законы и методы		ОПК-1.2. Умеет применять положения, законы и ме-
естественных		тоды естественных наук и математики для решения
наук и математи-		задач теоретического и прикладного характера
ки для решения		ОПК-1.3. Владеет навыками использования знаний
задач инженерной		положений, законов и методов естественных наук и
деятельности		математики при решении практических задач
Способен форми-	ПК-3	ПК-3.1. Проводит анализ науч-но-технической
ровать презента-		информации, отече-ственного и зарубежного опыта
ции, научно-тех-		по те-матике исследования
нические отчеты		ПК3.2. Интерпретирует и анализирует результаты
по результатам		выполненной работы
выполненной ра-		ПК-3.3. Обладает знаниями методики и требований
боты, оформлять		к оформлению науч-но-технической отчетности по
результаты иссле-		резуль-татам выполненных исследований
дований в виде		
статей и докладов		
на научно-техни-		
ческих конферен-		
циях		

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 4 зачётных единицы, 144 ак. ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим занятиям, текущему контролю, выполнение индивидуального задания, самостоятельное изучение материала и подготовку к дифференцированному зачету.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам 4
Аудиторная работа, в том числе:	72	72
Лекции (Л)	36	36
Практические занятия (ПЗ)	36	36
Лабораторные работы (ЛР)	•	-
Курсовая работа/курсовой проект	•	-
Самостоятельная работа студентов (СРС), в том	72	72
числе:		
Подготовка к лекциям	9	9
Подготовка к лабораторным работам	1	-
Подготовка к практическим занятиям / семинарам	10	10
Выполнение курсовой работы / проекта	-	-
Расчетно-графическая работа (РГР)	•	-
Реферат (индивидуальное задание)	•	-
Домашнее задание (индивидуальное задание)	-	-
Подготовка к контрольной работе	•	-
Подготовка к коллоквиуму	8	8
Аналитический информационный поиск	10	10
Работа в библиотеке	9	9
Подготовка к зачету	24	24
Промежуточная аттестация – диф. зачет (ДЗ)	ДЗ (2)	ДЗ (2)
Общая трудоемкость дисциплины		
ак.ч.	144	144
3.e.	4	4

5 Содержание дисциплины

С целью освоения компетенций, приведенных в п.3 дисциплина разбита на 7 тем:

- тема 1 (Электротермические процессы и установки);
- тема 2 (Электросварочные процессы и установки);
- тема 3 (Электрохимические процессы и установки);
- тема 4 (Электрофизические и комбинированные процессы и установки);
 - тема 5 (Электронно-ионные процессы и установки);
- тема 6 (Современное состояние силовой электроники в развитых странах мира);
- тема 7 (Повышение эффективности преобразования и использования энергии).

Виды занятий по дисциплине и распределение аудиторных часов для очной, очно-заочной и заочной форм обучения приведены в таблицах 3, 4, 5 соответственно.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	ак.ч.	Содержание практических (семинарских) занятий	ак.ч.	Тема лабораторных занятий	ак.ч.
1	Электротермические процессы и установки	Классификация электротермических процессов по роду нагрева. Теплопередача в электротермических установках. Применение электротермических установок в машиностроении. Электрические установки прямого нагрева. Электрические установки прямого нагрева. Электрические установки прямого нагрева. Электрические установки косвенного нагрева. Установки инфракрасного нагрева. Принципы работы, назначение, устройство и технические характеристики печей установок. Индукционный и диэлектрический нагревы: физические основы, назначение. Разновидности конструктивного исполнения и технические характеристики установок. Электродуговые печи и установки. Свойства электрической дуги. Назначение, разновидность и технические характеристики электродуговых печей и установок	6	Изучение основных способов решения некоторых локальных проблем на основе перспективных электротехнологий	6		
2	Электросварочные процессы и установки	Физические основы электрической сварки плавлением и давлением. Технологические операции дуговой электрической сварки. Технические характеристики сварочных агрегатов постоянного и переменного тока. Специальные виды электродуговой сварки	6	Мероприятия по экономии электрической энергии в электротермических установках	6	_	_

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	ак.ч.	Содержание практических (семинарских) занятий	ак.ч.	Тема лабораторных занятий	ак.ч.
		Технологические операции контактной электрической сварки. Разновидности контактной сварки и технические характеристики установок. Диффузионная сварка, особенности ее выполнения					
3	Электрохимиче- ские процессы и установки	Физические основы электрической сварки плавлением и давлением. Технологические операции дуговой электрической сварки. Технические характеристики сварочных агрегатов постоянного и переменного тока. Специальные виды электродуговой сварки. Технологические операции контактной электрической сварки. Разновидности контактной сварки и технические характеристики установок. Диффузионная сварка, особенности ее выполнения	6	Обсуждение обеспеченности локального сырьевого рынка по отношению к внедрению новых материалов в перспективных местных электротехнологиях	6	_	_
4	Электрофизиче- ские и комбиниро- ванные процессы и установки	Основы методов электрофизической обработки (ЭФО) материалов. Разновидность методов ЭФО: электроэрозионные, ультразвуковые, магнитоимпульсные, электрогидравлические (электровзрывные), лазерные (светолучевые). Область применения. Технологические операции, выполняемые методами ЭФО. Технические характеристики установок ЭФО. Комбинированные электрофизикохимические (ЭФХО) методы обработки материалов. Область применения и перспективы развития	6	Состояние и перспективы развития мировой и российской электронной промышленности. Тенденции к объединению усилий по разработке новых технических направлений	6	_	_

 ∞

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	ак.ч.	Содержание практических (семинарских) занятий	ак.ч.	Тема лабораторных занятий	ак.ч.
5	Электронно- ионные процессы и установки	Физические основы электронно-ионной (аэрозольной) технологии (ЭАТ). Технологические операции, выполняемые методами ЭАТ: электрофильтрация, электропокраска и напыление порошковых покрытий, сепарация сыпучих материалов, электрография (электрофотография, электрокаплеструйная технология). Области применения. Технические характеристики установок ЭАТ	4	Технические характеристики установок ЭАТ	4	-	_
6	Современное со- стояние силовой электроники в раз- витых странах ми- ра	Увеличение использования дискретных устройств питания. Развитие интеллектуальной силовой электроники. Развитие систем хранения энергии	4	Вклад российских ученых в развитие силовой электроники на современном этапе	4	-	-
7	Повышение эф- фективности пре- образования и ис- пользования энер- гии	Использование возобновляемых источников энергии. Утилизация отработанного тепла. Применение интеллектуальных технологий. Использование систем с прямым преобразованием энергии. Применение ресурсосберегающих приборов и технологических процессов	4	Способы повышения эффективности преобразования и использования энергии	4	-	-
	Bce	го аудиторных часов	36		36	_	

Таблица 4 – Виды занятий по дисциплине и распределение аудиторных часов (очно-заочная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	ак.ч.	Содержание практических (семинарских) занятий	ак.ч.	Тема лабораторных занятий	ак.ч.
1	Электротермические процессы и установки	Классификация электротермических процессов по роду нагрева. Теплопередача в электротермических установках. Применение электротермических установок в машиностроении. Электрические установки прямого нагрева. Электрические установки прямого нагрева. Электрические установки прямого нагрева. Электрические установки косвенного нагрева. Установки инфракрасного нагрева. Принципы работы, назначение, устройство и технические характеристики печей установок. Индукционный и диэлектрический нагревы: физические основы, назначение. Разновидности конструктивного исполнения и технические характеристики установок. Электродуговые печи и установки. Свойства электрической дуги. Назначение, разновидность и технические характеристики электродуговых печей и установок	2	Изучение основных способов решения некоторых локальных проблем на основе перспективных электротехнологий	1		
2	Электросварочные процессы и установки	Физические основы электрической сварки плавлением и давлением. Технологические операции дуговой электрической сварки. Технические характеристики сварочных агрегатов постоянного и переменного тока. Специальные виды электродуговой сварки	2	Мероприятия по экономии электрической энергии в электротермических установках.	1	_	_

10

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	ак.ч.	Содержание практических (семинарских) занятий	ак.ч.	Тема лабораторных занятий	ак.ч.
		Технологические операции контактной электрической сварки. Разновидности контактной сварки и технические характеристики установок. Диффузионная сварка, особенности ее выполнения					
3	установки	Физические основы электрической сварки плавлением и давлением. Технологические операции дуговой электрической сварки. Технические характеристики сварочных агрегатов постоянного и переменного тока. Специальные виды электродуговой сварки. Технологические операции контактной электрической сварки. Разновидности контактной сварки и технические характеристики установок. Диффузионная сварка, особенности ее выполнения	2	Обсуждение обеспеченности локального сырьевого рынка по отношению к внедрению новых материалов в перспективных местных электротехнологиях	2	_	_
4	Электрофизиче- ские и комбиниро- ванные процессы и установки	Основы методов электрофизической обработки (ЭФО) материалов. Разновидность методов ЭФО: электроэрозионные, ультразвуковые, магнитоимпульсные, электрогидравлические (электровзрывные), лазерные (светолучевые). Область применения. Технологические операции, выполняемые методами ЭФО. Технические характеристики установок ЭФО. Комбинированные электрофизикохимические (ЭФХО) методы обработки материалов. Область применения и перспективы развития	2	Состояние и перспективы развития мировой и российской электронной промышленности. Тенденции к объединению усилий по разработке новых технических направлений	1	_	_
5	Электронно- ионные процессы	Физические основы электронно-ионной (аэрозольной) технологии (ЭАТ). Техно-	2	Технические характеристики установок ЭАТ	1	_	_

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	ак.ч.	Содержание практических (семинарских) занятий	ак.ч.	Тема лабораторных занятий	ак.ч.
	и установки	логические операции, выполняемые методами ЭАТ: электрофильтрация, электропокраска и напыление порошковых покрытий, сепарация сыпучих материалов, электрография (электрофотография, электрокаплеструйная технология). Области применения. Технические характеристики установок ЭАТ					
6	Современное со- стояние силовой электроники в раз- витых странах ми- ра.	Увеличение использования дискретных устройств питания. Развитие интеллектуальной силовой электроники. Развитие систем хранения энергии.	1	Вклад российских ученых в развитие силовой электроники на современном этапе	1	_	_
7	Повышение эф- фективности пре- образования и ис- пользования энер- гии	Использование возобновляемых источников энергии. Утилизация отработанного тепла. Применение интеллектуальных технологий. Использование систем с прямым преобразованием энергии. Применение ресурсосберегающих приборов и технологических процессов.	1	Способы повышения эффективности преобразования и использования энергии	1	_	_
	Bce	го аудиторных часов	12		8	_	

Таблица 5 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	ак.ч.	Содержание практических (семинарских) занятий	ак.ч.	Тема лабораторных занятий	ак.ч.
1	Электротермические процессы и установки	Классификация электротермических процессов по роду нагрева. Теплопередача в электротермических установках. Применение электротермических установок в машиностроении. Электрические установки прямого нагрева. Электрические установки прямого нагрева. Электрические установки прямого нагрева. Электрические установки косвенного нагрева. Установки инфракрасного нагрева. Принципы работы, назначение, устройство и технические характеристики печей установок. Индукционный и диэлектрический нагревы: физические основы, назначение. Разновидности конструктивного исполнения и технические характеристики установок. Электродуговые печи и установки. Свойства электрической дуги. Назначение, разновидность и технические характеристики электродуговых печей и установок.	1,5	Изучение основных способов решения некоторых локальных проблем на основе перспективных электротехнологий	0,5	_	
2	Электросварочные процессы и установки	Физические основы электрической сварки плавлением и давлением. Технологические операции дуговой электрической сварки. Технические характеристики сварочных агрегатов постоянного и переменного тока. Специальные виды электродуговой сварки	1	Мероприятия по экономии электрической энергии в электротермических установках	0,5	_	_

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	ак.ч.	Содержание практических (семинарских) занятий	ак.ч.	Тема лабораторных занятий	ак.ч.
		Технологические операции контактной электрической сварки. Разновидности контактной сварки и технические характеристики установок. Диффузионная сварка, особенности ее выполнения					
3	HIERTROVIAMIANE-	Физические основы электрической сварки плавлением и давлением. Технологические операции дуговой электрической сварки. Технические характеристики сварочных агрегатов постоянного и переменного тока. Специальные виды электродуговой сварки. Технологические операции контактной электрической сварки. Разновидности контактной сварки и технические характеристики установок. Диффузионная сварка, особенности ее выполнения	1	Обсуждение обеспеченности ло- кального сырьевого рынка по от- ношению к внедрению новых ма- териалов в перспективных мест- ных электротехнологиях	0,5	_	_
4	Электрофизические и комбинированные процессы и установки	Основы методов электрофизической обработки (ЭФО) материалов. Разновидность методов ЭФО: электроэрозионные, ультразвуковые, магнитоимпульсные, электрогидравлические (электровзрывные), лазерные (светолучевые). Область применения. Технологические операции, выполняемые методами ЭФО. Технические характеристики установок ЭФО. Комбинированные электрофизикохимические (ЭФХО) методы обработки материалов. Область применения и перспективы развития	1	Состояние и перспективы развития мировой и российской электронной промышленности. Тенденции к объединению усилий по разработке новых технических направлений	0,5	_	_

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	ак.ч.	Содержание практических (семинарских) занятий	ак.ч.	Тема лабораторных занятий	ак.ч.
5	Электронно- ионные процессы и установки	Физические основы электронно-ионной (аэрозольной) технологии (ЭАТ). Технологические операции, выполняемые методами ЭАТ: электрофильтрация, электропокраска и напыление порошковых покрытий, сепарация сыпучих материалов, электрография (электрофотография, электрокаплеструйная технология). Области применения. Технические характеристики установок ЭАТ	0,5	Технические характеристики установок ЭАТ	0,5	_	_
6	Современное со- стояние силовой электроники в раз- витых странах ми- ра	Увеличение использования дискретных устройств питания. Развитие интеллектуальной силовой электроники. Развитие систем хранения энергии	0,5	Вклад российских ученых в развитие силовой электроники на современном этапе	0,5	_	_
7	Повышение эф- фективности пре- образования и ис- пользования энер- гии	Использование возобновляемых источников энергии. Утилизация отработанного тепла. Применение интеллектуальных технологий. Использование систем с прямым преобразованием энергии. Применение ресурсосберегающих приборов и технологических процессов	0,5	Способы повышения эффективности преобразования и использования энергии	1	_	_
	Bce	го аудиторных часов	6		4	_	•

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 6.

Таблица 6 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
ОПК-1, ПК-3	Дифференцированный зачет	Комплект контролирующих материалов для дифференцированного зачета

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- тестовый контроль или устный опрос на коллоквиумах (2 работы) всего 40 баллов;
 - практические работы всего 20 баллов;
- за выполнение индивидуального и домашнего задания всего 40 баллов.

Дифференцируемый зачет проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Дифференцируемый зачет по дисциплине проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время зачетной недели студент имеет право повысить итоговую оценку либо в форме устного собеседования по приведенным ниже вопросам (п.п. 6.5), либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 7.

Таблица 7 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале	
учебной деятельности	зачёт/экзамен	
0-59	Не зачтено/неудовлетворительно	
60-73	Зачтено/удовлетворительно	
74-89	Зачтено/хорошо	
90-100	Зачтено/отлично	

6.2 Домашнее задание

В качестве домашнего задания обучающиеся выполняют проработку лекционного материала.

6.3 Темы для рефератов (презентаций) – индивидуальное задание

Контрольная работа состоит из двух частей: первая часть — это ответы на вопросы по четырем темам. Вторая часть индивидуального задания носит расчетный характер.

Ответы на вопросы контрольного задания должны быть полными, последовательными и логичными, сопровождаться рисунками, схемами, графиками, диаграммами (объем ответа на каждый из четырех вопросов должен составлять 5-10 страниц). В работе студент должен сначала написать номер вопроса и его содержание, а затем дать подробный ответ на него.

Перед ответом на вопрос контрольного задания следует изучить соответствующий раздел учебника, обобщить и выбрать краткий, но достаточно аргументированный ответ на все требования данного вопроса.

Рекомендуется составлять ответы на основании следующего плана:

- 1. Физическая сущность описываемого технологического процесса.
- 2. Краткая историческая справка.
- 3. Перечень операций «традиционной» технологии, которые могут быть выполнены рассматриваемым электротехнологическим процессом. Дать сравнительную оценку этих процессов.

Таблица 8 – Варианты практических работ

N₂	Тема № 1	Тема № 2	Тема № 3	Тема № 4
1	1	1	1	1
2	2	2	2	2
3	3	1	3	1
4	4	2	1	2
5	5	1	2	1
6	1	2	3	2
7	2	1	1	1
8	3	2	2	2
9	4	1	3	1
10	5	2	1	2

Тема 1. Технологии, основанные на тепловом действии электрического разряда и электромагнитного поля:

- 1) электроэрозийная обработка;
- 2) плазменная обработка;
- 3) сварка;
- 4) нагрев материалов и изделий в электромагнитном поле;
- 5) электровзрывные технологии.

Тема 2. Технологии, основанные на механическом воздействии электромагнитного поля:

- 1) ультразвуковые технологии;
- 2) электроимпульсные технологии.

Тема 3. Технологии, основанные на радиационном воздействии:

- 1) электронно-лучевые технологии;
- 2) ионно-лучевые технологии;
- 3) лазерная обработка.

Тема 4. Технологии, основанные на электрохимическом действии тока:

- 1) технологии анодного растворения металлов;
- 2) технологии катодного восстановления металлов.
- 2. Необходимо выполнить расчеты по выбору частоты нагревательной индукционной установки, определить мощность и размеры индуктора, выполнить электрический расчет индуктора, расчет охлаждения индуктора. Произвести проектирование и выбор индукционной установки. Проанализировать зависимость от используемого индуктора (диаметра) электрического, термического, полного КПД, а также коэффициента мощности индуктора.

Таблица 9 – Варианты расчетного задания

№ вар.	Форма и характеристики заготовки	Длина a ₂ , 10-3 м	Диаметр (ширина) D ₂ , 10 ⁻³ м	Толщина стенки, d ₂ , 10 ⁻³ м	Высота, b ₂ , 10-3 м	Процесс	Конечная температура, t ₂ , °C	Теплоперепад, Δt , °C	Удельное сопротивление, ра 10-3. Ом. м	Глубина закаленного слоя, Х _№ 10-3 м
1		50	20			закалка	1050	100	0.10	1
2		70	35			закалка	1025	150	0.11	2
3	D ₂	90	50			закалка	1075	100	0.12	3
4		130	65			закалка	1100	150	0.13	4
5		150	75			закалка	1125	100	0.14	1
6		170	130			закалка	1150	150	0.15	2
7	T.	200	150			закалка	1175	100	0.16	3
8		100	60			закалка	1200	150	0.17	4
9		120	70	3.5		закалка	1225	100	0.18	1.5
10	D_2	130	80	4		сквозной нагрев	1250	150	0.19	
11		140	90	4.5		закалка	1275	100	0.20	1
12	/a,	150	100	5		сквозной нагрев	1300	150	0.21	
13	d ₂ 22 2	170	120	5.5		закалка	1325	100	0.22	2
14		200	150	6		сквозной нагрев	1350	150	0.23	
15		120	30		10	закалка	1375	100	0.24	3.5
16	$ / b_2 $	130	35		15	сквозной нагрев	1400	150	0.25	
17		140	40		20	закалка	1050	100	0.10	4.5
18		150	45		25	сквозной нагрев	1025	150	0.11	
19	D_2 a_2	160	50		30	закалка	1075	100	0.12	1
20		170	55		35	сквозной нагрев	1100	150	0.13	

6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Варианты тестовых заданий.

- 1. Нагрев тел или вещества с использованием электрической энергии называется ...
 - А. электрический нагрев;
 - В. электротермический эффект;
 - С. прямой электронагрев;
 - D. косвенный электронагрев.
- 2. Выделение или поглощение тепловой энергии, обусловленное продольным градиентом температуры при протекании электрического тока через однородный проводник называется ...
 - А. электротермический эффект;
 - В. дуговой нагрев;
 - С. индукционный нагрев;
 - D. инфракрасный нагрев.
- 3. Процесс, при котором тепло выделяется в загрузке, включенной в электрическую цепь, называется ...
 - А. прямой электронагрев;
 - В. диэлектрический нагрев;
 - С. нагрев сопротивлением;
 - D. нагрев токами сверхвысокой частоты.
- 4. Процесс, при котором тепло выделяется в нагревателе и передается загрузке теплообменом называется ...
 - А. косвенный электронагрев;
 - В. ионный нагрев;
 - С. лазерный нагрев;
 - D. электронно-лучевой нагрев.
 - 5. Электронагрев загрузки электрической дугой называется
 - А. дуговой нагрев;
 - В. плазменный нагрев;
 - С. нагрев токами сверхвысокой частоты;
 - D. нагрев сопротивлением.
- 6. Электронагрев электропроводящей загрузки электромагнитной индукцией называется ...
 - А. индукционный нагрев;

- В. диэлектрический нагрев;
- С. инфракрасный нагрев;
- D. дуговой нагрев.
- 7. Электронагрев инфракрасным излучением при условии, что излучательные спектральные характеристики излучателя соответствуют поглощательным характеристикам нагреваемой загрузки называется...
 - А. инфракрасный нагрев;
 - В. косвенный электронагрев;
 - С. ионный нагрев;
 - D. лазерный нагрев.
- 8. Электронагрев неэлектропроводящей загрузки токами смещения при поляризации называется ...
 - А. диэлектрический нагрев;
 - В. электронно-лучевой нагрев;
 - С. плазменный нагрев;
 - D. нагрев токами сверхвысокой частоты.
- 9. Электронагрев за счет электрического сопротивления электронагревателя или загрузки называется ...
 - А. нагрев сопротивлением;
 - В. диэлектрический нагрев;
 - С. инфракрасный нагрев;
 - D. индукционный нагрев.
- 10. Электронагрев, при котором тепло, в основном генерируется молекулярным движени- ем и ионной проводимостью в неэлектропроводном материале под действием электромагнитных волн называется ...
 - А. нагрев токами сверхвысокой частоты;
 - В. дуговой нагрев;
 - С. косвенный электронагрев;
 - D. ионный нагрев.
- 11. Электронагрев загрузки стабилизированным высокотемпературным ионизированным газом, образующим плазму называется ...
 - А. плазменный нагрев;
 - В. лазерный нагрев;
 - С. электронно-лучевой нагрев;
 - D. нагрев токами сверхвысокой частоты.
- 12. Электронагрев загрузки сфокусированным электронным лучом в вакууме называется ...

- А. электронно-лучевой нагрев;
- В. нагрев сопротивлением;
- С. диэлектрический нагрев;
- D. инфракрасный нагрев.
- 13. Электронагрев за счет последовательного преобразования электрической энергии в энергию лазерного излучения и затем в тепловую в облучаемой загрузке называется ...
 - А. лазерный нагрев;
 - В. индукционный нагрев;
 - С. дуговой нагрев;
 - D. косвенный электронагрев.
- 14. Электронагрев загрузки потоком ионов, образованным электрическим разрядом в вакууме называется ...
 - А. ионный нагрев;
 - В. лазерный нагрев;
 - С. электронно-лучевой нагрев;
 - D. плазменный нагрев.
- 15. Электротермическое устройство, в котором воздух или газ нагреваются при движении через рабочее пространство, внутри которого расположен электронагреватель называется ...
 - А. электрокалорифер;
 - В. индуктор электронагревателя;
 - С. камера для нагрева;
 - D. нагревательный элемент.
- 16. Конструктивный узел, включающий индуктирующий провод называется ...
 - А. индуктор электронагревателя;
 - В. нагревательный кабель;
 - С. электрод;
 - D. нагревательный элемент.
- 17. Конструктивный элемент электропечи (электротермической установки), ограничивающий пространство, в котором осуществляется электротермический процесс называется ...
 - А. камера для нагрева;
 - В. индуктор электронагревателя;
 - С. нагревательный кабель;
 - D. электрод.

- 18. Деталь, съёмная или несъёмная, содержащая нагревательный проводник и приспособления, которые образуют самостоятельное устройство называется ...
 - А. нагревательный элемент;
 - В. камера для нагрева;
 - С. индуктор электронагревателя;
 - D. электрокалорифер.
- 19. В каких перечисленных областях возможно применение метода высокочастотного диэлектрического нагрева?
- А. сушка материалов (литейных форм, древесных волокнистых масс, шерсти, бумаги и др.);
 - В. склейка изделий из древесины, фанеры, картона;
 - С. при изготовлении деталей из пластмасс;
 - D. вулканизация каучука;
 - Е. во всех перечисленных выше областях.
- 20. Из предложенного списка выберите области использования метода прямого нагрева проводящих металлов электрическим током
 - А. выплавка металлов;
 - В. пищевая промышленность;
 - С. стекловарение;
 - D. все перечисленные выше.

6.5 Вопросы для подготовки к зачету (тестовому коллоквиуму)

- 1) Какие существуют технологические процессы и установки электротермической обработки материалов прямого действия?
- 2) Какие существуют технологические процессы и установки электронно-лучевой и лазерной обработки материалов?
- 3) Какие существуют технологические процессы и установки электротермической обработки материалов косвенного действия?
- 4) Какие существуют технологические процессы и установки электростатической фильтрации и сепарации материалов?
- 5) Какие существуют технологические процессы и установки обработки материалов электродуговым нагревом?
- 6) Какие существуют технологические процессы и установки аэрозольной технологии?
- 7) Какие существуют технологические процессы и установки обработки материалов при индукционном и диэлектрическом нагреве?
- 8) Какие существуют технологические процессы и установки магнитной и иагнитоимпульсной обработки материалов?
- 9) Какие существуют технологические процессы и установки гальванотехники?
 - 10) Какие существуют технологические процессы и установки плаз-

менной и плазмохимической обработки материалов?

- 11) Какие существуют технологические процессы и установки электроэрозионной и электроконтактной обработки материалов?
- 12) Какие существуют существуют технологические процессы и установки обработки материалов инфракрасным и ультрафиолетовым излучением?
- 13) Какие существуют технологические процессы и установки электросварки плавлением?
- 14) Какие существуют технологические процессы и установки контактной и диффузионной электросварки?
- 15) Какие существуют технологические процессы и установки электро-импульсной и ультразвуковой обработки материалов?
- 16) Какие существуют технологические процессы и установки теомохимической обработки материалов?
- 17) Какие существуют технологические процессы и установки электронно-ионной технологии?
- 18) Какие существуют технологические процессы и установки магнитной и магнитоимпульсной обработки?
- 19) Какие существуют технологические процессы и установки высокотемпературного нагрева?
- 20) Какие существуют технологические процессы и установки специальных видов сварки (аргонодуговая, электрошлаковая, лазерная, плазменная)?
 - 21) Какие существуют перспективы развития электротехнологии?
- 22) Опишите современное состояние силовой электроники в развитых странах мира?

6.6 Примерная тематика курсовых работ

Курсовые работы не предусмотрены.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Алиферов, А.И. Электротепловые процессы в электротехнических устройствах: учебное пособие / А.И. Алиферов, О.С. Дутов, В.А. Сериков. Новосибирск: Изд-во НГТУ, 2021. 206 с. URL: https://7books.ru/aleksandr-aliferov-olga-dutova-viktor-serikov-yelektroteplovye-processy-v-yelektrotekhnicheskikh-ustroystvakh-978-5-7782-4416-0 (дата обращения: 30.08.2024).
- 2. Сторчевой, В.Ф. Электротехнологии и электрический нагрев: учебное пособие / В.Ф. Сторчевой, Н.Е. Кабдин, Я.С. Чистова. М.: ООО «ИКЦ Колос-с», 2021. 280 с. URL: https://rucont.ru/file.ashx?guid=1cc4ce1e-c57f-4fd8-b5ba-75f6d0ba99a6 (дата обращения: 30.08.2024).

Дополнительная литература

- 1. Булатов, О.Г. Тиристорно-конденсаторные источники питания для электротехнологии / О.Г. Булатов, А.И. Царенко, В.Д. Поляков. М.: Энергоатомиздат, 1989. 200 с.
- 2. Ястребов, П.П. Электрооборудование и электротехнология: учеб. пособие для студ. хим.-техн. спец. вузов / П.П. Ястребов, И.П. Смирнов. М.: Высшая школа, 1987. 200 с.
- 3. Розанов, Ю.К. Основы силовой преобразовательной техники : учебник для техникумов / Ю.К. Розанов. М. : Энергия, 1979. 392 с. -7 экземпляров.
- 4. Попков, О.З. Основы преобразовательной техники : учеб. пособие для студ. вузов, обуч. по направлению "Электротехника, электромеханика и электротехнология" / О.З. Попков. 3-е изд., стер. М. : МЭИ, 2010. 200 с. 3 экземпляра.
- 5. Руденко, В.С. Основы преобразовательной техники: учеб. для студ. вузов, обуч. по спец. "Промышленная электроника" / В.С. Руденко, В.И. Сенько, И.М. Чиженко. 2-е изд., перераб. и доп. М.: Высшая шк., 1980. 424 с. 30 экземпляров.

Учебно-методическое обеспечение

1. Методические указания к практическим работам по дисциплине «Электротехнологии в промышленности» : (для студ. направления подготовки 11.03.03 «Конструирование и технология электронных средств», 13.03.02 «Электроэнергетика и электротехника» 2 курса всех форм обучения) / сост. А.М. Афанасьев, В.И. Ушаков, А.В. Еремина ; Каф. Радиофизики . — Алчевск : ГОУ ВО ЛНР ДонГТИ, 2021 . — 27 с. URL: https://library.dontu.ru/download.php?rec=127512 (дата обращения 30.08.2024 г.).

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт. Алчевск. URL: library.dstu.education. Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст : электронный.
- 3. Консультант студента : электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст : электронный.
- 4. Университетская библиотека онлайн : электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст : электронный.
- 5. IPR BOOKS : электронно-библиотечная система. Красногорск. URL: http://www.iprbookshop.ru/. Текст : электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 10.

Таблица 10 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местополо- жение) учебных кабинетов
Специальные помещения: Мультимедийная лекционная аудитория (48 посадочных мест), оборудованная проектором EPSON EMP-X5 (1 шт.); домашний кинотеатр HT-475 (1 шт.); персональный компьютер, локальная сеть с выходом в Internet	ауд. <u>206</u> корп. <u>3</u>
Аудитории для проведения практических занятий, для самостоятельной работы: Лаборатория силовой электроники и автоматизированных систем управления (25 посадочных мест) для проведения лабораторных и практических занятий, для групповых и индивидуальных консультаций, для проведения курсового проектирования (выполнения курсовых работ), организации самостоятельной работы, в том числе, научно-исследовательской, оборудованная учебной мебе-	ауд. <u>211</u> корп. <u>3</u>
лью, специализированными лабораторными стендами, осциллографами, источниками питания, генераторами сигналов и др. специализированным оборудованием Компьютерный класс (11 посадочных мест) для групповых и индивидуальных консультаций, организации самостоятельной работы, оборудованный учебной мебелью, компьютерами с неограниченным доступом к сети Интернет, включая доступ к ЭБС, доской маркерной магнитной	ауд. <u>207</u> корп. <u>3</u>

Лист согласования РПД

Разработал

Ст.преп. кафедры электроники и радиофизики (должность)	(подпись)	<u>В.И. Ушаков</u> (Ф.И.О.)
И.о. заведующего кафедрой электроники и радиофизики	(подпись)	А.М. Афанасьев (Ф.И.О.)
Протокол № 1 заседания кафедры электроники и радиофизики		от <u>30.08.2024 г.</u>
И.о. декана факультета информационных технологий и автоматизации производственных процессов	(подпись)	В.В. <u>Д</u> ьячкова (Ф.И.О.)
Согласовано Председатель методической комиссии по направлению подготовки 11.03.03 Конструирование и технология		
электронных средств (профиль подготовки «Информационные технологии проектирования электронных устройств»)	(подпись)	<u> А.М. Афанасьев</u> (Ф.И.О.)
Начальник учебно-методического центра	(подпись)	О.А. Коваленко (Ф.И.О.)

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения					
изменений					
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:				
Основание:					
Ochobanne.					
По					
Подпись лица, ответственного за внесение изменений					