Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Вишневомий фирейтерестрочна УКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Должность: Ректор (МИНОБРНАУКИ РОССИИ)

Дата подписания: 20.10.2025 11:05:46

Уникальный программный ключ:

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

03474917с4d012283e5ad996@вразования «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

(ФГБОУ ВО «ДонГТУ»)

информационных технологий и Факультет автоматизации производственных процессов Кафедра интеллектуальных систем и информационной безопасности

> **УТВЕРЖДАЮ** И.о. проректора по учебной работе

> > Д.В. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Квантовые вычисления и квантовая криптография			
(наименование дисциплины)			
10.05.03 Информационная безопасность автоматизированных систем			
(код, наименование специальности)			
Безопасность открытых информационных систем			
(специализация)			
Квалификация	специалист по защите информации		
	(бакалавр/специалист/магистр)		
Форма обучения	очная		

очная (очная, очно-заочная, заочная)

1 Цели и задачи изучения дисциплины

Цели дисциплины. Целью изучения дисциплины «Квантовые вычисления и квантовая криптография» является предоставить студентам знание элементов квантовой механики, реализация квантовых вычислений..

Задачи изучения дисциплины:

- изучение принципов работы квантовые компьютеры и их физической реализации, квантовых схем и алгоритмов;
- изучение алгоритмов факторизации и дискретного логарифмирования; выработка умений применять полученные теоретические сведения для решения практических задач.

Дисциплина направлена на формирование общепрофессиональных (ОПК-3) компетенций выпускника.

2 Место дисциплины в структуре образовательной программы

Логико-структурный анализ дисциплины — курс входит обязательную часть БЛОКА 1 «Дисциплины (модули)» подготовки студентов по специальности 10.05.03 «Информационная безопасность автоматизированных систем» («Безопасность открытых информационных систем»).

реализуется кафедрой интеллектуальных Дисциплина систем И информационной безопасности. Основывается на базе дисциплин: «Алгебра», «Математический анализ», «Дискретная математика», «Теория математическая статистика случайные И процессы», «Математическая логика и теория алгоритмов», «Теория информации», «Физика», «Основы информационной безопасности», «Криптографические методы защиты информации», «Математика криптографии».

Является основой для изучения следующих дисциплин: «Преддипломная практика», «Выполнение и защита выпускной квалификационной работы».

Для изучения дисциплины необходимы компетенции, сформированные у студента для решения профессиональных задач деятельности, связанных с научно-исследовательской работой.

Курс является фундаментом для ориентации студентов в сфере научных исследований.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 ак.ч. Программой дисциплины предусмотрены лекционные (36 ч.), лабораторные (18 ч.) занятия и самостоятельная работа студента (90 ч.).

Дисциплина изучается на 5 курсе в 10 семестре. Форма промежуточной аттестации – дифференцированный зачет.

3 Перечень результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины «Квантовые вычисления и квантовая криптография» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание	Код	Код и наименование индикатора
компетенции	компетенции	достижения компетенции
Способен	ОПК-3	ОПК-3.2 Использует математические методы,
использовать		необходимые для решения задач
математические		профессиональной деятельности
методы		
необходимые для		
решения задач		
профессиональной		
деятельности		

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 4 зачётных единицы, 144 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим занятиям, текущему контролю, выполнение индивидуального задания, самостоятельное изучение материала и подготовку к дифференцированному зачету.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам 4	
Аудиторная работа, в том числе:	54	54	
Лекции (Л)	36	36	
Практические занятия (ПЗ)	_	_	
Лабораторные работы (ЛР)	18	18	
Курсовая работа/курсовой проект	-	-	
Самостоятельная работа студентов (СРС), в том числе:	90	90	
Подготовка к лекциям	9	9	
Подготовка к лабораторным работам	18	18	
Подготовка к практическим занятиям / семинарам	_	_	
Выполнение курсовой работы / проекта	ı	-	
Расчетно-графическая работа (РГР)	1	-	
Реферат (индивидуальное задание)	12	12	
Домашнее задание	6	6	
Подготовка к контрольным работам	1	-	
Подготовка к коллоквиуму	ı	-	
Аналитический информационный поиск	18	18	
Работа в библиотеке	18	18	
Подготовка к дифзачету	9	9	
Промежуточная аттестация – дифференцированный зачет (Д/3)	Д/3	Д/3	
Общая трудоемкость дисциплины			
ак.ч.	144	144	
3.e.	4	4	

5 Содержание дисциплины

С целью освоения компетенции, приведенной в п.3 дисциплина разбита на 3 темы:

- тема 1 (Элементы квантовой механики. Квантовые вычисления, квантовые компьютеры и их физическая реализация);
 - тема 2 (Квантовые схемы и алгоритмы);
 - тема 3 (Квантовая криптография).

Виды занятий по дисциплине и распределение аудиторных часов для очной формы приведены в таблице 3.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1	2	3	4	5	6	7	8
1	Элементы квантовой механики. Квантовые вычисления, квантовые компьютеры и их физическая реализация	Элементы квантовой механики: постулаты, бра- и кетформализм, основные теоремы Квантовые вычисления, квантовые компьютеры и ихфизическая реализация	6	Бра- и кет- формализм, операторные функции, разложения операторов. Одно- и много- кубитовые элементы. Квантовые схемы. Состояния Белла. Квантовая телепортация.	4	_	_

Завершение таблицы 3.

1	2	3	4	5	6	7	8
2	Квантовые схемы и алгоритмы	Квантовые схемы и алгоритмы Алгоритмы факторизации и дискретного логарифмирования.	6 4	Квантовый паралеллизм. Алгоритмы Дойча и Дойча-Йожа. Операции на одном кубите. Условные операции. Универсальные квантовые элементы.	4 4	_	_
3	Квантовая криптография	Квантовая информация и исправление квантовых ошибок. Квантовая криптография.	6 8	Квантовое преобразование Фурье Алгоритмы факторизации и дискретного логарифмирования Симплектические коды Квантовое распределение ключей	4466	_	_
Всег	о аудиторных часов	36	<u> </u>	30	6	_	I

 ∞

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации студентов по дисциплине

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 4.

Таблица 4 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство	
ОПК-3	Дифференцированный зачет	Комплект контролирующих материалов для дифзачета	

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

– практические занятия – всего 100 баллов.

Оценка по дифзачету проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Дифзачет по дисциплине «Квантовые вычисления и квантовая криптография» проводится по результатам работы в семестре. В случае если полученная в семестре сумма баллов не устраивает студента, во время сессии студент имеет право повысить итоговую оценку в форме устного собеседования по приведенным ниже вопросам (п.п. 6.5), либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 5.

Таблица 5 – Шкала оценивания знаний

Сумма баллов за все виды учебной	Оценка по национальной шкале
деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашнее задание

Домашнее задание № 1.

С помощью алгоритма Шора факторизовать число 15. Для этого необходимо построить схему для $a^x \text{mod} N$, добавить QFT^I для получения r -количества столбцов и выделить простые множители, входящие в число 15.

6.3 Темы для рефератов (презентаций) – индивидуальное задание

- 1. Квантовые гейты и кубиты
- 2. Квантовая декогерентность
- 3. Квантовый алгоритм Гровера
- 4. Квантовый алгоритм Шора
- 5. Универсальность квантовых вычислений
- 6. Квантовые алгоритмы
- 7. Квантовая телепортация
- 8. Квантовая информатика
- 9. Квантово-полевая картина мира
- 10. Возникновение и развитие квантовой физики.
- 11. Единая квантовая теория.
- 12.Основные квантово-механические принципы.
- 13. Принцип неопределенности Гейзенберга.
- 14. Квантовая физика как новый этап изучения природы
- 15.Хаос, необратимость времени и брюссельская интерпретация квантовой механики
- 16. Квантовые свойства макроскопических объектов.
- 17. Принцип неопределенности Гейзенберга.
- 18. Парадокс Эйнштейна-Подольского-Розена.

6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

- Тема 1. Элементы квантовой механики. Квантовые вычисления, квантовые компьютеры и их физическая реализация.
 - 1. В чем заключается проблема выбора базиса в квантовых схемах:

- а) бесконечное множество унитарных операторов
- б) конечное множество унитарных операторов
- в) нет верного ответа
- 2. Решение проблемы выбора базиса в квантовых схемах связано с:
- а) необходимостью содержания бесконечного множества элементов в полном базисе
- б) возможностью ослабления условия точной реализуемости оператора схемой
 - в) необходимостью введения эрмитово совпряженного оператора
 - 3. Условие приближенной реализуемости:
- а) предназначено для решения проблемы выбора базиса в квантовых схемах
 - б) является заменой условия точной реализуемости
 - в) нет верного ответа
- 4. Возможность точной реализации оператора квантовой схемой связана с использованием:
 - а) эрмитово сопряженного оператора
 - б) оператора с квантовым управлением
 - в) оператора проектирования
 - 5. Автором "задачи о скрытой группе" является
 - а) Саймон
 - б) Гровер
 - в) Черч

Тема 2. Квантовые схемы и алгоритмы

- 1. Решение универсальной переборной задачи алгоритмом Гровера -
- а) является единственным нетривиальным использованием квантовых свойств для вычислений
 - б) дает следствия для теории сложности вычислений
 - в) дает полиноминальное ускорение
 - 2. Выберите верное утверждение:
- а) косвенным свидетельством превосходства по скорости квантовых вычислений над классическими является задача с оракулом
- б) доказано, что квантовые вычисления значительно превосходят по скорости классические вероятностные вычисления
- в) любой классический вероятностный алгоритм является экспоненциальным
- 3. Для любого классического вероятностного алгоритма, делающего не более $2^{k/2}$ обращений к оракулу $(n \ge k)$, существует подгруппа $D \subseteq \binom{2}{2}^k$ и соответствующая функция $f : \binom{2}{k} \to n$, для которой вероятность ошибки

алгоритма:

- a) < 1/3
- 6) > 1/3
- (B) < 1/2
- 4. Автором каких квантовых алгоритмов является П. Шор:
- а) алгоритм нахождения скрытой группы
- б) алгоритм разложения числа на простые множители
- в) алгоритм вычисления дискретного логарифма
- 5. Какую сложность имеет алгоритм нахождения скрытой группы $\binom{2}{k}$:
- a) $O(k^2)$
- 6) $O(k^3)$
- O(k)

Тема 3. Квантовая криптография.

- 1. Посредством чего удается обеспечить достоверный результат квантовых вычислений?
 - а) повторения квантовых вычислений несколько раз
- б) постепенного увеличения точности измерения результата и оценки возникающих ощибок.
 - в) аппроксимации методом наименьших квадратов (МНК)
- г) дополнительной обработки полученного результата дублирующей системой квантовых вычислений
- 2. Каким образом определяют прослушивание канала связи в протоколе BB84?
 - а) по отсутствию сигнала
 - б) по повышенному количеству ошибок протокола
 - в) по наличию паразитного сигнала
 - г) По снижению скорости передачи данных
 - 3.К какому типу криптографии относится алгоритм AES?
 - а) криптография с закрытым ключом
 - б) криптография с открытым ключом
 - в) постквантовая криптография
 - г) квантовая криптография
 - 4. Принцип суперпозиции, приводит к:
 - а) детерминированному характеру квантовых вычислений
 - б) вероятностному характеру квантовых вычислений
 - в) снижению точности квантовых вычислений
 - г) ограничению сфер применения квантовых технологий
 - 5. Сколько, согласно тексту, можно выделить шагов в протоколе ВВ84?

- a) 3
- б) 4
- B) 5
- г) 6

6.5 Вопросы для подготовки к дифзачету

- 1) Как развивались квантовые вычисления и квантовая информация?
- 2) Каково современное состояние и перспективы квантовых вычислений?
 - 3) Что такое линейные пространства и операторы?
 - 4) Что такое матрицы Паули?
 - 5) Что такое собственные значения и векторы?
 - 6) Что такое эрмитовы операторы?
 - 7) Какие Вы знаете операторные функции? Что такое коммутации?
- 8) Как производятся полярное разложение и разложение по сингулярным числам?
- 9) Что такое пространство состояний и эволюция? Что такое квантовые измерения?
 - 10) Что такое проективные и POVM-измерения? Что такое фаза?
 - 11) Какие Вы знаете составные системы?
 - 12) Что такое кубит?
 - 13) Что такое сверхплотное кодирование? Что такое оператор плотности?
 - 14) Что такое разложение Шмидта?
- 15) Что такое Парадокс Эйнштейна-Подольского-Розена? Что такое неравенства Белла?
- 16) Что такое квантовые алгоритмы? Какие Вы знаете операции на одном кубите?
 - 17) Какие Вы знаете универсальные квантовые элементы?
 - 18) Как производится моделирование квантовых систем?
- 19) Что такое измерения в базисах, отличных от вычислительного? Что такое квантовые схемы?
 - 20) Что такое состояния Белла? Что такое квантовая телепортация?
- 21) Как производятся классические вычисления на квантовом компьютере?
 - 22) Что такое квантовый параллелизм?
 - 23) Что такое алгоритм Дойча?
- 24) Что такое алгоритм Дойча-Йожа? Каковы перспективы практической обработки квантовой информации?
 - 25) Что такое квантовое преобразование Фурье?

- 26) Что такое собственное число?
- 27) Как производится нахождение порядка и факторизация?
- 28) Как производится нахождение периода? Что такое дискретный логарифм?
- 29) Как формулируется задача о скрытой подгруппе? Каковы возможные эффективные квантовые алгоритмы?
 - 30) Что такое квантовый алгоритм поиска и квантовое моделирование?
- 31) Как производится ускорение решения NP-полных задач? Что такое оптимальность алгоритма поиска?
 - 32) Как формулируется теорема Готтесмана-Нилла?
 - 33) Что такое запутанность как физический ресурс?
 - 34) Что такое алгоритм Шора и каковы возможности его применения?
 - 35) Как производится представление квантовой информации?
 - 36) Как производится реализация унитарных операторов?
- 37) Как производится приготовление начального состояния? Как производится измерение конечного результата?
- 38) Что такое гармонический осциллятор, оптические фотоны, оптические резонаторы, ионные ловушки, ЯМР?

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

1. Душкин, Роман Викторович. Квантовые вычисления и функциональное программирование / Р. В. Душкин. — 2-е изд., эл. — 1 файл pdf: 233 с. — Москва : ДМ К Пресс, 2023. — Систем. требования: Adobe Reader XI либо Adobe Digital Editions 4.5; экран 10". — Текст: электронный. — [Электронный ресурс] — Режим доступа: https://znanium.ru/read?id=435462 (Дата обращения 26.08.2024).

Дополнительная литература

- 1. Прескилл Дж. Квантовая информация и квантовые вычисления. /Дж. Прескилл. Ижевск: НИЦ Регулярная и хаотическая динамика, 2011. 464 с. [Электронный ресурс] Режим доступа: https://djvu.online/file/lp2DRLaBI0n9p. (Дата обращения 26.08.2024).
- 2. Нильсен М. Квантовые вычисления и квантовая информация / М. Нильсен, И. Чанг. М.: Мир, 2006. 824 с. [Электронный ресурс] Режим доступа: https://djvu.online/file/cO8qDRGAwOIe2. (Дата обращения 26.08.2024).

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ : официальный сайт.— Алчевск. URL: <u>library.dstu.education</u>.— Текст : электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст : электронный.
- 3. Консультант студента : электронно-библиотечная система.— Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x.— Текст : электронный.
- 4. Университетская библиотека онлайн : электронно-библиотечная система.— URL: http://biblioclub.ru/index.php?page=main_ub_red.— Текст : электронный.
- 5. IPR BOOKS : электронно-библиотечная система.—Красногорск. URL: http://www.iprbookshop.ru/. —Текст : электронный.
 - 6. Сайт кафедры ИСИБ http://scs.dstu.education

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО. Материально-техническое обеспечение представлено в таблице 6.

Таблица 6 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местоположение) учебных кабинетов
Специальные помещения: Аудитории для проведения лекций: Мультимедийная аудитория. (60 посадочных мест), оборудованная специализированной (учебной) мебелью (парта трехместная — 18 шт., парта двухместная — 6 шт, стол— 1 шт., доска аудиторная— 1 шт.), учебное ПК (монитор + системный блок), мультимедийная стойка с оборудованием — 1 шт., широкоформатный экран.	ауд. <u>207</u> корп. <u>4</u>
Компьютерные классы (22 посадочных места), оборудованный учебной мебелью, компьютерами с неограниченным доступом к сети Интернет, включая доступ к ЭБС:	ауд. <u>217</u> корп. <u>3</u> ауд. <u>211</u> корп. <u>4</u>

Лист согласования РПД

Разработал:

И.о. заведующего кафедрой интеллектуальных систем и информационной безопасности (должность)

ОМ (под**ни**сь)

Е<u>.Е. Бизянов</u> (Ф.И.О.)

И.о. заведующего кафедрой интеллектуальных систем и информационной безопасности (наименование кафедры)

(поличеь)

<u>Е.Е. Бизянов</u> (Ф.И.О.)

Протокол № 1 заседания кафедры

от <u>27.08. 2024</u>г.

И.о. декана факультета информационных технологий и автоматизации производственных процессов:

(наименование факультета)

-

<u>В.В. Дьячкова</u> (Ф.И.О.)

Согласовано

Председатель методической комиссии по направлению 10.05.03 Информационная безопасность автоматизированных систем

(подицов)

<u> Е.Е. Бизянов</u> (Ф.И.О.)

Начальник учебно-методического центра

О. (подпись)

O.A. Коваленко (Ф.И.О.)

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения изменений			
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:		
Oc	нование:		
Подпись лица, ответственного за внесение изменений			
подпись лица, ответственного за внесение изменении			