МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет	информационных технологий и автоматизации
	производственных процессов
Кафедра	интеллектуальных систем и информационной
	безопасности
	РАБОЧАЯ ПРОГРАММА ДИСЦИНГИНЫ Цифровые двойники предприятий
	(наименование дисциплины)
09.0	4.01 «Информатика и вычислительная техника»
	(код, наименование специальности)
"Искусств	енный интеллект и цифровые двойники предприятий"
Квалификация	(магистерская программа) Магистр
	(бакалавр/специалист/магистр)
Форма обучения	ОЧНАЯ

(очная, очно-заочная, заочная)

1 Цели и задачи изучения дисциплины

Цели дисциплины. Целью изучения дисциплины «Цифровые двойники предприятий» является освоение технологий цифровых двойников, как систем комплексного многопараметрического моделирования различных продуктов, производственных процессов и систем, а также получение навыков практического использование результатов моделирования.

Задачи изучения дисциплины:

- формирование навыков моделирования продуктов, производственных процессов и систем;
- приобретение знаний: о цифровых двойниках и принципах их практического применения и о различных видах моделирования, используемых при построении цифровых двойников;
- приобретение умений построения различных видов моделирования, используемых при построении цифровых двойников.

Дисциплина направлена на формирование профессиональной (ПК-4) компетенции выпускника.

2 Место дисциплины в структуре образовательной программы

Логико-структурный анализ дисциплины — курс входит обязательную часть БЛОКА 1 «Дисциплины (модули)» подготовки студентов по специальности 09.04.01 Информатика и вычислительная техника (Искусственный интеллект и цифровые двойники предприятий).

Дисциплина реализуется кафедрой интеллектуальных систем и информационной безопасности. Основывается на базе дисциплин из цикла подготовки бакалавров и специалистов.

Является основой для изучения следующих дисциплин: «Математические модели технологических процессов», «Выполнение и защита выпускной квалификационной работы».

Для изучения дисциплины необходимы компетенции, сформированные у студента для решения профессиональных задач деятельности, связанных с научно-исследовательской работы.

Курс является фундаментом для ориентации студентов в сфере научных исследований.

Общая трудоемкость освоения дисциплины составляет 4 зачетных единицы, 144 ак.ч. Программой дисциплины предусмотрены лекционные (36 ч.), практические (36 ч.) занятия и самостоятельная работа студента (72 ч.).

Дисциплина изучается на 1 курсе в 1 семестре. Форма промежуточной аттестации – экзамен.

3 Перечень результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины «Цифровые двойники предприятий» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание	Код	Код и наименование индикатора
компетенции	компетенции	достижения компетенции
Способен	ПК-4	ПК-4.1. Осуществляет руководство проектом по
руководить		построению комплексных систем на основе
проектами по		аналитики больших данных в различных отраслях.
созданию		
комплексных		
систем на основе		
аналитики больших		
данных в различных		
отраслях		

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 4 зачётных единицы, 144 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим занятиям, текущему контролю, выполнение индивидуального задания, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семест рам
Аудиторная работа, в том числе:	72	72
Лекции (Л)	36	36
Практические занятия (ПЗ)	36	36
Лабораторные работы (ЛР)	-	-
Курсовая работа/курсовой проект	-	-
Самостоятельная работа студентов (СРС), в том числе:	72	72
Подготовка к лекциям	9	9
Подготовка к лабораторным работам	-	-
Подготовка к практическим занятиям / семинарам	18	18
Выполнение курсовой работы / проекта	-	-
Расчетно-графическая работа (РГР)	-	-
Реферат (индивидуальное задание)	-	-
Домашнее задание	-	-
Подготовка к контрольным работам	-	-
Подготовка к коллоквиуму	-	-
Аналитический информационный поиск	18	18
Работа в библиотеке	9	9
Подготовка к экзамену (диф.зачету)	18	18
Промежуточная аттестация – экзамен (Э)	Э	Э
Общая трудоемкость дисциплины		
ак.ч.	144	144
3.e.	4	4

5 Содержание дисциплины

С целью освоения компетенции, приведенной в п.3 дисциплина разбита на 3 темы:

- тема 1 (Цифровые двойники как способ преодоления сложности инженерных систем);
- тема 2 (Объединение цифровых двойников в комплексных объектах и их взаимодействие);
- тема 3 (Примеры использования цифровых двойников в различных отраслях).

Виды занятий по дисциплине и распределение аудиторных часов для очной формы приведены в таблице 3.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1	2	3	4	5	6	7	8
1	Цифровые двойники как способ преодоления сложности инженерных систем	Цифровые двойники – определения, стандарты. Описание объекта цифровизации. Технологии математического моделирования и цифровых теней. ЦД, облака и периферийные вычисления. ЦД и блокчейн	2 2 6 2	Выбор предметной области для исследований. Анализ существующих инструментов создания ЦД. Анализ аддитивных технологий. Знакомство с математическими моделями для ЦД.	2 4 4	_	_
2	Объединение цифровых двойников в комплексных объектах и их взаимодействие	Типология цифровых двойников. MVC model-view-controller). Элементы модели. Методология Имитационного моделирования: концептуальное и процессное, онтологическое, агентное. ЦД как интеграция этапов жизненного цикла изделия. Технологии взаимодействия цифровых двойников с объектами и процессами реального мира. Интерпретация результатов моделирования. Датчики и системы измерений.	4 4	Изучение модели MVC (model-view-controller). Разработка концептуальной модели ЦД. Разработка онтологической модели ЦД. Разработка агентной модели ЦД. Разработка модели взаимодействия ЦД с реальными объектами и процессами.	4 4 4 4	_	_

7

Окончание таблицы 3

1	2	3	4	5	6	7	8
3	Примеры использования цифровых двойников в различных отраслях	Цифровые двойники в автомобильной промышленности, железнодорожном транспорте, судостроении. Цифровые двойники в здравоохранении и медицине. Тестирование цифровых двойников.	10	_	_	_	_
Всег	Всего аудиторных часов		36	-		36	

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации студентов по дисциплине

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 4.

Таблица 4 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
ПК-4	Экзамен	Комплект контролирующих материалов для экзамена

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

– лабораторные работы – всего 100 баллов.

Экзаменационная оценка проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Экзамен по дисциплине «Цифровые двойники предприятий» проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время сессии студент имеет право повысить итоговую оценку либо в форме устного собеседования по приведенным ниже вопросам (п.п. 6.5), либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 5.

Таблица 5 – Шкала оценивания знаний

Сумма баллов за все виды учебной	Оценка по национальной шкале
деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашнее задание

Домашнее задание не предусмотрено.

6.3 Темы для рефератов (презентаций) – индивидуальное задание

Реферат (индивидуальное задание) не предусмотрен..

6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Тема 1. Цифровые двойники как способ преодоления сложности инженерных систем.

- 1) Что такое цифровой двойник системы или процесса?
- а) Виртуальная модель системы или процесса, созданная на основе данных с реальных объектов
- б) Копия реальной системы или процесса, созданная в цифровом формате
- в) Модель системы или процесса, созданная без использования данных с реальных объектов
 - г) Виртуальный ассистент, который управляет системой или процессом
 - 2) Какие задачи можно решать с помощью цифровых двойников?
 - а) Мониторинг состояния системы или процесса
 - б) Прогнозирование поведения системы или процесса
 - в) Оптимизация работы системы или процесса
 - г) Все перечисленные
 - 3) Какие преимущества имеют цифровые двойники?
 - а) Улучшение эффективности работы системы или процесса
 - б) Снижение затрат на тестирование и отладку
 - в) Улучшение качества продукции или услуг
 - г) Все перечисленные
 - 4) Какие этапы включает процесс создания цифрового двойника?
 - а) Сбор данных
 - б) Обработка данных
 - в) Создание модели
 - г) Все перечисленные
 - 5) Что такое виртуальное тестирование?
- а) Тестирование цифрового двойника на основе различных сценариев работы системы или процесса
 - б) Тестирование реальной системы или процесса в виртуальной среде

- в) Тестирование цифрового двойника на основе данных с реальных объектов
- г) Тестирование цифрового двойника на основе математических моделей
 - 6) Какие задачи можно решать с помощью виртуального тестирования?
- а) Определение оптимальных параметров работы системы или процесса
- б) Проверка работоспособности системы или процесса в различных условиях
- в) Определение причин возникновения проблем в работе системы или процесса
 - г) Все перечисленные
 - 7) Какую информацию можно хранить в цифровом двойнике системы?
 - а) Только данные о состоянии системы.
 - б) Только данные о производительности системы.
 - в) Данные о состоянии, производительности и конфигурации системы.
 - г) Данные о состоянии и конфигурации системы.
- 8) Какие технологии используются для создания цифровых двойников систем?
 - а) Интернет вещей (ІоТ)
 - б) Искусственный интеллект (ИИ)
 - в) Облачные вычисления
 - г) Все вышеперечисленное
 - 9) Какую информацию можно хранить в цифровом двойнике процесса?
 - а) Только данные о результате процесса.
 - б) Только данные о времени выполнения процесса.
 - в) Данные о результате, времени выполнения и параметрах процесса.
 - г) Данные о результате и параметрах процесса.

Tema 2. Объединение цифровых двойников в комплексных объектах и их взаимодействие.

- 1) Каким образом цифровой двойник системы может помочь в оптимизации производства?
- а) Предсказывать и предотвращать возможные сбои и остановки в работе оборудования.
- б) Анализировать и оптимизировать потоки производственных процессов.
 - в) Улучшать планирование производства и управление ресурсами.
 - г) Все вышеперечисленное.
- 2) Какая технология используется для связи цифровых двойников с другими системами и устройствами?
 - а) Протоколы связи
 - б) Большие данные (Big Data)
 - в) Облачные вычисления
 - г) Блокчейн
- 3) Какая технология используется для обмена данными между цифровыми двойниками и физическими объектами в режиме реального

времени?

- a) MQTT (Message Queuing Telemetry Transport)
- б) REST (Representational State Transfer)
- B) OPC UA (Unified Architecture)
- г) SOAP (Simple Object Access Protocol)
- 3) Какой подход к интеграции цифровых двойников предполагает использование стандартизированных

протоколов и форматов данных?

- а) Гибридная интеграция.
- б) Односторонняя интеграция.
- в) Взаимосвязанная интеграция.
- г) Синхронная интеграция.
- 4) Какие методы машинного обучения наиболее часто используются в вычислительном моделировании?
 - а) Регрессия, классификация, кластеризация и анализ временных рядов.
- б) Обучение без учителя, обучение с подкреплением, глубокое обучение.
- в) Детерминированные методы, стохастические методы, эволюционные алгоритмы.
- г) Методы оптимизации, методы имитационного моделирования, методы статистического моделирования.
 - 4). Что такое MATLAB?
 - а) Учебное пособие
 - б) Программа для моделирования систем
 - в) Функция
 - г) Мультипарадигменная вычислительная среда
 - 5) Что из перечисленного является полем для ввода команд?
 - a) Current Folder
 - б) Command Window
 - в) Wokspace
 - г) World Frame

Тема 3. Примеры использования цифровых двойников в различных отраслях.

- 1) Какие отрасли могут использовать цифровые двойники систем и процессов?
 - а) Производство
 - б) Транспорт и логистика
 - в) Здравоохранение
 - г) Все вышеперечисленное
- 2) Каким образом используются цифровые двойники в здравоохранении?
 - а) для составления отчетов
 - б) для диагностики заболеваний
 - в) при производстве новых лекарств
 - 3) Каким образом используются цифровые двойники в металлургии?
 - а) при управлении сложными технологическими процессами

- б) при моделировании работы автоматизированных систем управления
- в) при расчетах параметров процессов
- г) всё вышеперечисленное
- 4) Каким образом используются цифровые двойники в транспорте и логистике?
 - а) для управления транспортными потоками в городе
 - б) для управления автомобилями и поездами
 - в) для составления плана перевозок
 - г) всё вышеперечисленное
 - 5) Каким образом используются цифровые двойники в образовании?
 - а) для составления расписания занятий
 - б) для формирования учебной документации
- в) для управления индивидуальной траекторией обучения обучающихся
 - г) всё вышеперечисленное

6.5 Вопросы для подготовки к экзамену

- 1) Что такое цифровой двойник предприятия?
- 2) Что такое цифровой двойник оборудования?
- 3) Что такое цифровой двойник технологического процесса?
- 4) Какие инжиниринговые инструменты для создания цифровых двойников Вы знаете?
 - 5) В чем состоит оптимизация изделия?
 - 6) Что такое аддитивные технологии?
- 7) Какие Вы знаете технологии математического моделирования и цифровых теней?
 - 8) Для чего нужны облака и периферийные вычисления?
 - 9) Что такое блокчейн?
 - 10) Как устроена модель MVC (model-view-controller)?
 - 11) В чем состоит процедура разработки модели МVС для ЦД?
 - 12) В чем состоит методология имитационного моделирования?
 - 13) Что такое концептуальное моделирование?
 - 14) Какие виды концептуальных моделей Вы знаете?
 - 15) В чем состоит процедура разработки концептуальной модели ЦД?
 - 16) Что такое процессное моделирование?
 - 17) В чем состоит процедура разработки процессной модели ЦД?
 - 18) Что такое онтологическое моделирование?
 - 19) В чем состоит процедура разработки онтологической модели ЦД?
 - 20) Что такое имитационное моделирование?
 - 21) В чем состоит процедура разработки имитационной модели ЦД?
 - 22) Какие виды математических моделей применимы в ЦД?
 - 23) Что такое агентное моделирование?

- 24) Что такое мультиагентное моделирование?
- 25) Что представляет собой ЦД как интеграция этапов жизненного цикла изделия?
- 26) Какие технологии взаимодействия цифровых двойников с объектами и процессами реального мира Вы знаете?
 - 27) В чем состоит интерпретация результатов моделирования?
 - 28) Какие используются датчики и системы измерений?
- 29) Какие Вы знаете примеры применения цифровых двойников в промышленности?
 - 30) Как проводится тестирование цифровых двойников?

7. Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

1. Прохоров, А. Цифровой двойник. Анализ, тренды, мировой опыт / А. Прохоров, М. Лысачев. Научный редактор профессор Боровков А. / Издание первое, исправленное и дополненное. — М.: ООО «АльянсПринт», 2020. — 401 стр., ил. URL: <a href="https://digitalatom.ru/digital-twin-book?ysclid="https://digitalatom.ru/digital-twin-book?yscl

Дополнительная литература

- 2. ПНСТ 428-2020 Умное производство. Двойники цифровые производства. Элементы визуализации цифровых двойников производства. М. Стандартинформ, 2020. 8 с. URL: https://files.stroyinf.ru/Data2/1/4293719/4293719550.pdf. (Дата обращения 26.08.2024)
- 3. ПНСТ 429-2020 Умное производство. Двойники цифровые производства. Часть 1. Общие положения. М. Стандартинформ, 2020. 12 с. URL: https://gostassistent.ru/doc/25c9e3da-84b3-4691-ba82-dc5278b28385. (Дата обращения 26.08.2024)
- 4. ПНСТ 430-2020 Умное производство. Двойники цифровые производства. Часть 2. Типовая архитектура. М. Стандартинформ, 2020. 16 с. URL: https://files.stroyinf.ru/Data2/1/4293719/4293719583.pdf. (Дата обращения 26.08.2024)
- 5. ПНСТ 431-2020 Умное производство. Двойники цифровые производства. Часть 3. Цифровое представление физических производственных элементов. М. Стандартинформ, 2020. 16 с. URL: https://gostassistent.ru/doc/c6c2f3af-b026-4bda-8efd-8103e79b33a5. (Дата обращения 26.08.2024)
- 6. ПНСТ 431-2020 Умное производство. Двойники цифровые производства. Часть 4. Обмен информацией. М. Стандартинформ, 2020. 20 с. URL: https://rosgosts.ru/file/gost/25/040/pnst_431-2020.pdf. (Дата обращения 26.08.2024)

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт.— Алчевск. URL: library.dstu.education.— Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/.— Текст : электронный.
- 3. Консультант студента : электронно-библиотечная система.— Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x.— Текст : электронный.
- 4. Университетская библиотека онлайн : электронно-библиотечная система.— URL: http://biblioclub.ru/index.php?page=main_ub_red.— Текст : электронный.
 - 5. Сайт кафедры ИСИБ http://scs.dstu.education

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО. Материально-техническое обеспечение представлено в таблице 6.

Таблица 6 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местоположение) учебных кабинетов
Специальные помещения: Мультимедийная аудитория. (60 посадочных мест), оборудованная специализированной (учебной) мебелью (скамья учебная –20 шт., стол– 1 шт., доска аудиторная– 1 шт.), учебное ПК (монитор + системный блок), мультимедийная стойка с оборудованием – 1 шт., широкоформатный экран. Аудитории для проведения лекций:	ауд. <u>207</u> корп. <u>4</u>
Компьютерные классы (22 посадочных места), оборудованный учебной мебелью, компьютерами с неограниченным доступом к сети Интернет, включая доступ к ЭБС: ПК— 11 шт.; интерактивная доска— 1 шт.	ауд. <u>208</u> корп. <u>4</u>

Лист согласования рабочей программы дисциплины

Разработал:		
и.о заведующего кафедрой		
интеллектуальных систем		
и информационной безопасности (должность)	(подпись	<u>Е.Е. Бизянов</u> Ф.И.О.)
(должность)	(подпись	Ф.И.О.)
(должность)	(подпись	Ф.И.О.)
И.о. заведующего кафедрой		
интеллектуальных систем и информационной безопасности	(полись	<u>Е.Е. Бизянов</u> Ф.И.О.)
Протокол № <u>1</u> заседания кафедры ИСИБ	от 27 <u>.08.2024</u> г	
И.о. декана факультета	(подпуж	<u>В.В. Дьячкова</u> Ф.И.О.)
Согласовано:		
Председатель методической комиссии по направлению 09.04.01 «Информатика и вычислительная техника	» <u>Би</u>	<u>Е.Е. Бизянов</u> Ф.и.о.)
Начальник учебно-методического центра	уподпись	О.А. Коваленко Ф.И.О.)

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения изменений		
	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:		
Oc	нование:	
Подпись лица, ответство	енного за внесение изменений	