МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет Кафедра горно-металлургической промышленности и строительства металлургические технологии

УТВЕРЖДАЮ
И.о. проректора
по учебной работе
Д.В. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

(наименование дисциплины)
22.03.02 Металлургия
(код, наименование направления)

Металлургия черных металлов. Обработка металлов давлением (профиль подготовки)

Квалификация	бакалавр	
	(бакалавр/специалист/магистр)	
Форма обучения	очная, заочная	
	(очная, очно-заочная, заочная)	

1 Цели и задачи изучения дисциплины

Цели дисциплины. Целью изучения дисциплины «Материаловедение» является приобретение студентами знаний о зависимости между составом, строением и свойствами металлов и сплавов и закономерностями их изменения под воздействием внешних факторов: тепловых, химических, механических; знаний об основных режимах термической обработки металлов и сплавов, что необходимо для формирования у студентов знаний и практических навыков о металлических материалах, используемых в технике, объективных закономерностях зависимостей их свойств от химического обработки и состава, структуры, способах условиях эксплуатации. Ознакомить с принципами разработки новых сплавов, научить менять в необходимых направлениях свойства металлов и сплавов, исследовать структуры сплавов, которые уже используются, применять рациональные методы и режимы обработки металлов и сплавов.

Задачи изучения дисциплины:

сформировать у студентов знания и практические навыки о металлических материалах, используемых в технике, объективных закономерностях зависимостей их свойств от химического состава, структуры, способах обработки и условиях эксплуатации.

Дисциплина направлена на формирование общепрофессиональных компетенций (ОПК-1) выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины — курс входит в БЛОК 1 «Дисциплины (модули)», обязательная часть Блока 1 подготовки студентов по направлению 22.03.02 Металлургия (профиль «Металлургия черных металлов» и «Обработка металлов давлением»).

Дисциплина реализуется кафедрой металлургические технологии. Основывается на базе дисциплин: «Философия», «Физика», «Химия», «Высшая математика», «Основы производства чугуна и стали», «Основы прокатного производства».

Является основой для изучения следующих дисциплин: «Термическая обработка металлов», «Методы контроля и анализа веществ», «Курсовая работа по термической обработке металлов», «Теория обработки металлов давлением», «Теория прокатки», «Технология производства проката», «Эксплуатация прокатных валков», «Формирование показателей качества продукции», «Теоретические основы производства стали», «Разливка стали и кристаллизация слитка», «Технологическая (производственная) практика», «Научно-исследовательская работа», «Курсовая работа по технологии производства проката», выпускная квалификационная работа.

Для изучения дисциплины необходимы компетенции, сформированные у студента для решения общепрофессиональных задач деятельности, связанных со знанием состава, строения и формирования свойств промышленных сплавов.

Курс является фундаментом для ориентации студентов в сфере производства металлов и сплавов, их обработки различными видами давления и последующей эксплуатации.

Общая трудоемкость освоения дисциплины составляет 3 зачетных единицы, 108 ак.ч. Программой дисциплины для очной формы обучения предусмотрены лекционные (36 ак.ч.), лабораторные занятия (18 ак.ч.), практические (18 ак.ч.) занятия и самостоятельная работа студента (36 ак.ч.). Программой дисциплины для заочной формы обучения предусмотрены лекционные (4 ак.ч.), лабораторные занятия (2 ак.ч.), практические (4 ак.ч.) занятия и самостоятельная работа студента (98 ак.ч.).

Дисциплина изучается на 2 курсе в 3 семестре. Форма промежуточной аттестации – экзамен.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Материаловедение» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание	Код	Код и наименование индикатора
компетенции	компетенции	достижения компетенции
Способен решать	ОПК-1	ОПК-1.1. Знает содержание естественнонаучных
задачи про-		знаний и применяет их в своей профессиональной
фессиональной дея-		деятельности
тельности,		Знает основы материаловедения.
применяя методы		ОПК-1.2. Решает стандартные профессиональные
моделирования,		задачи с применением естественнонаучных и
математического		общеинженерных знаний
анализа,		ОПК-1.3. Владеет навыками теоретического и
естественно-		экспериментального исследования объектов
научные и общеин-		профессиональной деятельности
женерные знания		

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 3 зачётных единицы, 108 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к лабораторным и практическим занятиям, текущему контролю, выполнение домашнего задания, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам 3
Аудиторная работа, в том числе:	72	72
Лекции (Л)	36	36
Практические занятия (ПЗ)	18	18
Лабораторные работы (ЛР)	18	18
Курсовая работа/курсовой проект	-	-
Самостоятельная работа студентов (СРС), в том числе:	36	36
Подготовка к лекциям	8	8
Подготовка к лабораторным работам	8	8
Подготовка к практическим занятиям / семинарам	6	6
Выполнение курсовой работы / проекта	-	-
Расчетно-графическая работа (РГР)	-	-
Реферат (индивидуальное задание)	-	-
Домашнее задание	6	6
Подготовка к контрольной работе	-	-
Подготовка к коллоквиуму	6	6
Аналитический информационный поиск	-	-
Работа в библиотеке	-	-
Подготовка к экзамену	2	2
Промежуточная аттестация – экзамен (Э)	Э	Э
Общая трудоемкость дисциплины		
ак.ч.	108	108
3.e.	3	3

5 Содержание дисциплины

С целью освоения компетенции, приведенной в п.3 дисциплина разбита на 4 темы:

- тема 1 (Основные механические свойства металлов. Атомное строение металлов. Кристаллизация металлов и сплавов. Фазы и структуры в металлических сплавах. Пластическая деформация);
- тема 2 (Диаграммы состояния металлических систем. Фазовые и структурные превращения металлических сплавов. Виды превращений);
- тема 3 (Структура и свойства металлических сплавов. Диаграмма состояния железо-карбид железа. Структура и свойства углеродистых и легированных сталей. Структура и свойства цветных металлов и сплавов. Маркировка и области применения сплавов);
 - тема 4 (Общие сведения о термической обработке металлов и сплавов).

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 3 и 4 соответственно.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		Цели и задачи курса. Механические свойства металлов и сплавов и методы их определения. Статические и динамические испытания.	2	Правила техники безопасности при проведении лабораторных и практических		Определение твердости металлов и сплавов. Приборы Бринелля,	2
	Основные	Характеристика металлического состояния. Атомно-кристаллическое строение металлов и сплавов. Полиморфизм. Основы кристаллографии. Анизотропия.	2	работ. Требования к оформлению отчетов. Ознакомление с лабораториями:	Требования млению Виккерса Ви	Виккерса Макроскопический анализ металлов и	2
	механические Дефектовойства металлов. Дефектовные строение дефект	Дефекты кристаллического строения металлов. Точечные дефекты. Линейные дефекты. Объемные дефекты. Механизм диффузии.	2	механических испытаний, микроструктурног о анализа, термической		Микроскопически й анализ сплавов.	
1	металлов и сплавов. Фазы и структуры в металлических сплавах.	общие закономерности кристаллизации стальных расплавов. Степень переохлаждения. Модифицирование. Форма металлических кристаллов. Строение металлического слитка. Строение фаз в металлических сплавах. Твердые растворы и химические соединения. Пластическая деформация.	2	обработки Металлографичес кий микроскоп	2	Приготовление микрошлифов для металлов и сплавов. Изучение процесса кристаллизации. Кристаллизация солей.	2
	I Іластическая деформация		2	Пластическая деформация. Влияние деформации и последующего нагрева на строение и свойства металлов в	2		2
		свойства металлов в		деформированном состоянии			

_1

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		деформированном состоянии. Возврат и рекристаллизация. Критическая степень деформации.					
2	Диаграммы состояния металлических систем. Фазовые и структурные превращения	Диаграммы состояния двойных сплавов, методы их построения. Правило фаз Гиббса. Диаграмма состояния для сплавов с неограниченной растворимостью в твердом состоянии. Кристаллизация твердых растворов. Правило концентраций и отрезков. Диаграммы состояния с эвтектической кристаллизацией (ограниченной растворимостью в твердом состоянии). Механизм	2	Описание диаграмм состояния 2-х компонентных систем с полиморфными превращениями Описание сплавов в диаграммах состояния 2-х компонентных систем с	2	Микроструктурны й анализ двойных сплавов	2
	металлических сплавов. Виды превращений	эвтектического превращения. Диаграмма состояния с перитектической кристаллизацией.	2	полиморфными превращениями			
		Диаграммы состояния для сплавов, образующих устойчивые и неустойчивые химические соединения.	2	Характеристика диаграмм различных сплавов (Коллоквиум №1 по разделу — диаграммы состояния)	2		
3	Структура и свойства металлических сплавов. Диаграмма состояния железо-	Строение и свойства компонентов, фаз и структурных составляющих железоуглеродистых сплавов. Диаграмма состояния железокарбид железа и ее характеристика.	2	Кристаллизация сталей, твердофазные превращения в сплавах.	2	Изучение микроструктур углеродистых в	2

 ∞

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
	карбид железа. Структура и свойства углеродистых и легированных сталей. Структура и свойства цветных	железоуглеродистых сплавов Классификация, маркировка, области применения углеродистых сталей.	2	Выделение аустенита, феррита, цементита; формирование перлита.		равновесном состоянии Изучение микроструктур чугунов	2
	металлов и сплавов. Маркировка и области применения сплавов	маркировка белых, серых, высокопрочных и ковких чугунов	2	Кристаллизация чугунов, твердофазные превращения в сплавах. Формирование ледебурита	2	Изучение микроструктур легированных сталей	2
		легированных сталей. Конструкционные и инструментальные стали. Стали и сплавы со специальными свойствами. Цветные металлы и сплавы. Маркировка и области применения.	2	Характеристика металлических сплавов (Коллоквиум № 2 по разделу — структура и маркировка металлических сплавов)	2	Изучение микроструктур цветных металлов и сплавов	2

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
4	Общие сведения о термической обработке металлов и сплавов	Основы термической обработки сталей. Критические точки. Основные виды термообработки. Свойства термообработанных сталей	2			_	
		Связь между составом, структурой и свойствами металлических сплавов (Защита домашнего задания)	2				
	Всего аудиторных ч	асов	36	18		18	

Таблицы 4 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

№ п/п	Наименование раздела дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1	Основные механические свойства металлов. Атомное строение металлов. Промышленные сплавы	Цели и задачи курса. Механические свойства металлов и сплавов и методы их определения. Атомнокристаллическое строение металлов и сплавов. Полиморфизм. Анизотропия. Диаграммы состояния двойных сплавов, методы их построения. Строение и свойства компонентов, фаз и структурных составляющих железоуглеродистых сплавов.	4	Диаграмма состояния железо-карбид железа и ее характеристика. Маркировка металлических сплавов	2	Макроскопический анализ металлов и сплавов.	2
	Всего аудиторных часов		4	4		2	

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
ОПК-1	Экзамен	Комплект контролирующих материалов для экзамена

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- письменный, тестовый контроль или устный опрос на коллоквиумах (2 работы) всего 40 баллов;
 - лабораторные работы всего 40 баллов;
 - за выполнение домашнего задания всего 20 баллов.

Для оценивания лабораторных работ используется тестовый контроль с последующим устным обсуждением и итоговым оцениванием работы.

Коллоквиумы оцениваются на основе полноты ответов на контрольные вопросы, представленные в виде тестов, вопросов, диаграмм сплавов, микроструктур сплавов.

Экзамен по дисциплине «Материаловедение» проводится по результатам работы в семестре. Экзаменационная оценка проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

В случае, если полученная в семестре сумма баллов не устраивает студента, во время сессии студент имеет право сдать экзамен в письменной форме по приведенным ниже вопросам (п.п. 6.5), либо в результате

тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашнее задание

В качестве домашнего задания студенты выполняют работу по характеристике металлических сплавов — строение, свойства, маркировка, применение. Работа выполняется в виде пояснительной записки — ответы на поставленные вопросы. Пример задания:

Вариант 1

- 1. Опишите строение и основные характеристики кристаллической решетки меди (параметры, координационное число, плотность упаковки).
- 2. Как изменяется плотность дислокаций при пластической деформации металлов и почему?
- 3. Вычертите диаграмму состояния железо карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения в интервале температур от 1600 до 0°С (с применением правила фаз) для сплава, содержащего 1,6% С. Выберите для заданного сплава любую температуру между линиями ликвидус и солидус и определите: состав фаз, т. е. процентное содержание углерода в фазах; количественное соотношение фаз.
- 4. Расшифровать маркировку сталей: указать назначение, качество, полный химический состав, фазовый и структурный состав стали в равновесном состоянии (структуру зарисовать), области применения Сталь 08, У8, Ст1сп2, А20, АЦ30, 10Г2С1, 55ХГР, ХВ4, Р18, 08Х13.

Расшифровать маркировку чугунов: указать фазовый и структурный состав сплавов (структуру зарисовать), применение – СЧ 15, ВЧ 70, КЧ 63-2. В наличии 44 варианта.

6.3 Темы для рефератов (презентаций) – индивидуальное задание Данный вид работ не предусмотрен.

6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Тема 1 Основные механические свойства металлов. Атомное строение

металлов. Кристаллизация металлов и сплавов. Фазы и структуры в металлических сплавах. Пластическая деформация

- 1) В чем сущность металлического, ионного и ковалентного типов связи?
 - 2) Каковы характерные свойства металлов и чем они определяются?
 - 3) Что такое элементарная ячейка?
 - 4) Что такое полиморфизм?
- 5) Что такое параметр кристаллической решетки, плотность упаковки и координационное число?
 - 6) Что такое мозаичная структура?
 - 7) Виды дислокаций и их строение?
- 8) Каково строение краевых и винтовых дислокаций? Их схемы? Что такое вектор Бюргерса?
 - 9) Что такое анизотропия свойств кристаллов?
 - 10) Каковы термодинамические условия фазового превращения?
 - 11) В чем физическая сущность процесса кристаллизации (плавления)?
 - 12) Каковы параметры процесса кристаллизации?
 - 13) Что такое переохлаждение?
- 14) Какова связь между величиной зерна, скоростью зарождения, скоростью роста кристаллов и степенью переохлаждения?
- 15) Формы кристаллов и влияние реальной среды на процесс кристаллизации. Образование дендритной структуры.
 - 16) В чем сущность модифицирования?
- 17) Что такое компонент, фаза, физико-химическая система, число степеней свободы?
- 18) Приведите объяснение твердого раствора, механической смеси, химического (металлического) соединения.
 - 19) Что представляют собой твердые растворы замещения и внедрения?
 - 20) Основные группы металлических соединений и их особенности?
 - 21) В чем различие между упругой и пластической деформациями?
- 22) Как изменяется строение металла в процессе пластического деформирования?
- 23) Как изменяется плотность дислокаций при пластической деформации?
 - 24) Как влияют дислокации на прочность металла?
- 25) Как влияет изменение строения на свойства деформированного металла?
- 26) В чем сущность явления наклепа и какое он имеет практическое использование?
- 27) Какие характеристики механических свойств определяются при испытании на растяжение?
- 28) Что такое твердость? Какие методы определения твердости вы знаете?
 - 29) Что такое ударная вязкость?

- 30) Что такое порог хладноломкости?
- 31) Как изменяются свойства деформированного металла при нагреве?
- 32) В чем сущность процесса возврата?
- 33) Что такое полигонизация?
- 34) Сущность процессов первичной и вторичной рекристаллизации.
- 35) Как влияют состав сплава и степень пластической деформации на температуру рекристаллизации?
 - 36) Что такое критическая степень деформации?
- 37) В чем различие между холодной и горячей пластическими деформациями?
- 38) Как изменяются строение и свойства металла при горячей пластической деформации?
- 39) Каково назначение рекристаллизационного отжига и как он осуществляется?
- Тема 2 Диаграммы состояния металлических систем. Фазовые и структурные превращения металлических сплавов. Виды превращений
 - 1) Как строятся диаграммы состояния?
- 2) Приведите уравнение правила фаз и объясните физический смысл числа степеней свободы.
- 3) Объясните принцип построения кривых нагревания и охлаждения с помощью правила фаз.
- 4) Начертите и проанализируйте диаграмму состояния для случая полной нерастворимости компонентов в твердом состоянии.
- 5) Начертите и проанализируйте диаграмму состояния для случая образования эвтектики, состоящей из ограниченных твердых растворов.
- 6) Каким образом определяются концентрация фаз и их количественное соотношение?
- 7) В чем различие между эвтектоидным и эвтектическим превращениями?
- 8) В чем различие между эвтектической и перитектической кристаллизациями?
 - 9) Виды ликвации и методы их устранения?
 - 10) Правила Курнакова.
 - 11) Что такое линия ликвидус?
 - 12) Что такое линия солидус?
- 13) По какой линии диаграммы состояния начинается кристаллизация сплавов.
- 14) По какой линии диаграммы состояния начинается плавление сплавов.
 - 15) Что такое флуктуация по плотности.
 - 16) Что такое флуктуация по концентрации.
 - 17) Характеристика линий ограниченной растворимости.
- 18) Как определить на диаграмме максимальную растворимость компонентов друг в друге.

- 19) Как на диаграммах состояния отображается стойкое химическое соединение.
- 20) Как на диаграммах состояния отображается нестойкое химическое соединение.
 - 21) Характеристика вторичных фаз на диаграммах состояния.
 - 22) Что такое эвтектическая и эвтектоидная механическая смесь.
- Тема 3 Структура и свойства металлических сплавов. Диаграмма состояния железо-карбид железа. Структура и свойства углеродистых и легированных сталей. Структура и свойства цветных металлов и сплавов. Маркировка и области применения сплавов
 - 1) Что такое феррит, аустенит, перлит, цементит и ледебурит?
 - 2) Характеристика диаграммы состояния системы Fe Fe3C?
- 3) Постройте с помощью правила фаз кривую охлаждения для стали с 0,8 % С и для чугуна с 4,3% С.
- 4) Опишите процесс кристаллизации для сплавов содержащих 0,3 % C, 0,6 % C, 0,8 % C, 1,2 % C, 3,0 % C, 4,3 % C, 5,2 % C. Построить кривые охлаждения для заданных спла-вов. Зарисовать формирование структуры сплава.
- 5) Каковы структура и свойства технического железа, стали и белого чугуна? Их классификация.
- 6) В каких условиях выделяется первичный, вторичный или третичный цементит?
- 7) Каково строение ледебурита при комнатной температуре, немного выше эвтектоидной температуры 727° С и немного ниже эвтектической температуры 1147° С?
- 8) Опишите влияние углерода, серы, фосфора, кремния, марганца, кислорода, азота, водорода на свойства сталей.
 - 9) Какие легирующие элементы являются карбидообразующими?
 - 10) Какие легирующие элементы способствуют графитизации?
 - 11) Как влияют легирующие элементы на свойства феррита и аустенита?
- 12) Как классифицируют легированные стали по структуре в равновесном состоянии и после охлаждения на спокойном воздухе с температуры нагрева 9000С?
- 13) Как производится маркировка углеродистых сталей и их классификация.
- 14) Как производится маркировка легированных сталей и их классификация.
 - 15) В чем отличие серого чугуна от белого? Способ получения.
 - 16) Классификация и маркировка серых чугунов.
 - 17) Каковы структуры серых чугунов?
- 18) Как получают высокопрочный чугун? Его строение, свойства и назначение.
 - 19) Как получают ковкий чугун? Его строение, свойства и назначение.
 - 20) В чем различие в строении ковкого и модифицированного чугунов?

- 21) Сравните механические свойства серого, ковкого и высокопрочного чугунов.
 - 22) Опишите свойства и применение алюминия.
 - 23) Как классифицируются алюминиевые сплавы?
- 24) Какие сплавы упрочняются путем термической обработки? Укажите их марки, со-став, режим термической обработки, свойства.
 - 25) Какие сплавы упрочняются нагартовкой?
- 26) Какие вы знаете литейные алюминиевые сплавы? Приведите их марки, состав, об-работку, свойства.
 - 27) Как и для чего производится модифицирование силумина?
 - 28) Опишите свойства и применение меди.
 - 29) Как влияют примеси на свойства чистой меди?
 - 30) Как классифицируются медные сплавы?
 - 31) Какие сплавы относятся к латуням?
- 32) Приведите несколько примеров латуней с указанием их состава, структуры, свойств и назначения.
 - 33) Какие сплавы относятся к бронзам? Их маркировка и состав.
 - 34) Укажите строение, свойства и назначение различных бронз.
 - 35) Какой термической обработке подвергается бериллиевая бронза?
 - 36) Каковы требования, предъявляемые к антифрикционным сплавам?
- 37) Укажите состав, свойства и области применения сплавов на основе олова.
- 38) Укажите состав, свойства и области применения сплавов на основе свинца.
 - 39) Опишите свойства и применение титана.
 - 40) Каковы особенности титановых сплавов и области их применения?
- 41) Приведите примеры сплавов на основе титана. Укажите их состав, обработку, свой-ства и область применения.
 - 42) То же, о сплавах на основе никеля.
 - 43) То же, о сплавах на основе кобальта.
 - 44) То же, о сплавах на основе тугоплавких металлов.
 - 45) Каковы свойства магния?
 - 46) Как классифицируются магниевые сплавы?
- 47) Укажите марки, состав, обработку, свойства и назначение различных сплавов на основе магния.
 - 48) Укажите назначение и свойства сплавов на основе цинка.
 - 49) Требования, предъявляемые к припоям.
 - 50) Приведите состав, свойства и назначение мягких и твердых припоев.
- 51) Благородные металлы и их сплавы. Маркировка, области применения.

Тема 4 Общие сведения о термической обработке металлов и сплавов

- 1) Как производится выбор температур под термическую обработку сталей.
 - 2) Выбор температур под закалку сталей. Определите температуры

закалки сталей: 20, Ст6, У13.

- 3) Охарактеризуйте режимы закалки доэвтектоидных и заэвтектоидных сталей, получаемые структуры.
 - 4) Охарактеризуйте гомогенизационный (диффузионный) отжиг.
- 5) Охарактеризуйте полный отжиг. Выберите температуры полного отжига для сталей 35 и У10.
- 6) Охарактеризуйте неполный отжиг. Выберите температуры неполного отжига для сталей 60 и У13.
- 7) Охарактеризуйте сфероидизирующий отжиг. Для каких сталей применяется.
- 8) Охарактеризуйте изотермический отжиг. Выберите температуру отжига для стали У12.
- 9) Охарактеризуйте нормализацию. Выберите температуры нормализации для сталей 45 и У11.
- 10) Опишите способы закалки. Охарактеризуйте непрерывную и прерывистую закалку.
 - 11) В чем заключается назначение отпуска стали. Низкий отпуск.
 - 12) В чем заключается назначение отпуска стали. Средний отпуск.
 - 13) В чем заключается назначение отпуска стали. Высокий отпуск.
 - 14) Опишите дефекты, возникающие при термической обработке стали.
 - 15) Какой вид термической обработки называется улучшением?
 - 16) Какой вид термической обработки применяют для сверла?
 - 17) Какой вид обработки применяется для пружины?
 - 18) Что представляет собой мартенсит?
 - 19) Что представляет собой сорбит?
 - 20) В чем отличие в структурах: сорбит и сорбит отпуска?
 - 21) При каком виде термообработки охлаждение производят в воде?
 - 22) При каком виде термообработки охлаждение производят с печью?
 - 23) При каком виде термообработки охлаждение производят на воздухе?
 - 24) При каком виде термообработки охлаждение производят в масле?
- 25) При каком виде термообработки будет получена максимальная твердость стали?
- 26) При каком виде термообработки будет получена минимальная твердость стали?
 - 27) В какой среде необходимо проводить закалку стали У8?
 - 28) В какой среде необходимо проводить закалку стали 45?
- 29) Что такое эффект «паровой рубашки», при каком виде термообработки проявляется?
- 30) При каком виде термической обработки возможно трещинообразование в момент охлаждения.

6.5 Вопросы для подготовки к коллоквиумам:

Коллоквиум № 1

Анализ диаграмм состояния

Вариант № 1

Перерисуйте диаграмму состояния и, используя существующие на ней обозначения, ответьте на следующие вопросы:

- 1. Каковы температуры плавления чистых компонентов <u>Sb</u> и <u>Ge</u>.
- 2. Какова максимальная растворимость компонента <u>Ge</u> в <u> α </u> твердом растворе?
 - 3. Каково содержание компонентов <u>Sb, Ge</u> в эвтектике $(\alpha+\beta)$?
- 4. При какой температуре начинается плавление сплава с <u>80</u>% компонента Ge?
- 5. По диаграмме определите состав фаз (концентрацию компонентов)
 __Sb, Ge_ в _β- твердом растворе и жидком растворе при __800°C для сплава содержащего 30 % компонента Sb?
- 6. Определить количество (объемный %) жидкой и твердой фазы сплава с 70 % компонента Ge при 800°C.
- 7. Определите количество фаз для сплава с <u>30</u>% компонента <u>Ge</u> при температурах перед и сразу после эвтектического превращения.
- 8. Укажите фазовый состав сплава с <u>7</u>% компонента <u>Ge</u> при комнатной температуре.
- 9. Укажите структурный состав сплава с <u>90</u>% компонента <u>Ge</u> при комнатной температуре.
- 10. Постройте кривую охлаждения, с применением правила фаз Гиббса, для сплава с _70_% компонента __Ge_. Зарисуйте микроструктуры сплава в различных температурных областях.

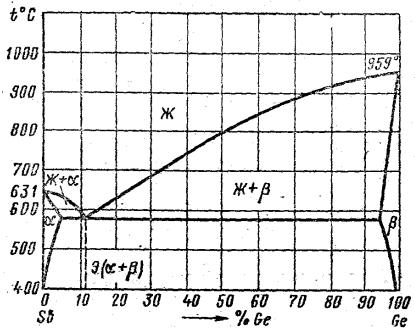


Рисунок – Диаграмма состояния Sb – Ge

В наличии 30 вариантов.

Коллоквиум № 2

В наличии 50 вариантов.

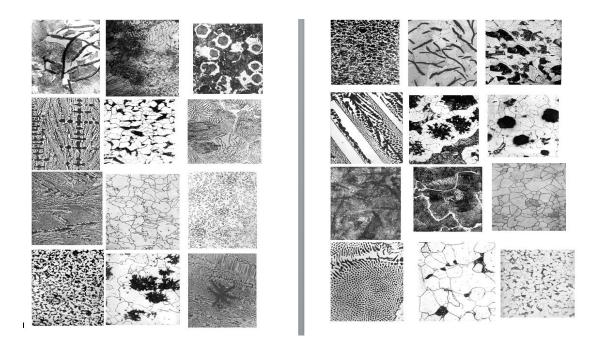
Часть 1. Задание по маркировке сплавов

Вариант № 1

Марка	Назначе ние*	Качество **	Содержани е углерода, %	Содержание легирующи х элементов,	Содержан ие серы и фосфора,	Структура сплава	Применение
Ст1сп1			•••	70	70	•••	
35		•••	•••	•••	•••	•••	•••
У10	Инстру менталь ная	качеств енная	~ 1,0	-	0,04% S 0,035% P	Заэвтекто идная, перлит + цементит вторичны й	Сверла, ножовочные полотна, резцы, метчики
У13А	•••	•••	•••	•••	•••	•••	•••
Ст5пс2		•••	•••	•••	•••	•••	•••
10Γ2C1		•••	•••	•••	•••	•••	•••
55ХГР							
XB4		•••					
P18		•••					
08X13		•••	•••		•••	•••	

^{* —} по назначению стали подразделяются на: конструкционные, инструментальные, специального назначения;

Расшифруйте маркировку чугунов: СЧ10, ВЧ100, КЧ30-6.


Расшифруйте цветные металлы и сплавы: ЛЦ40, БрАЖН10-4-4, Д16, САП4, А95, АЛ2.

При устной сдаче коллоквиума № 2 ответить на следующие вопросы:

- 1. Наименование сплава.
- 2. Назначение сплава (сталь конструкционная, инструментальная, спец. назначения; чугун).
- 3. Качество (о.к., кач., в.к., о.в.к.; указать среднее содержание вредных примесей S, P).
- 4. Содержание углерода (среднее).
- 5. Содержание легирующих элементов (для легированных сталей).
- 6. Класс стали по структуре.
- 7. Применение.

Часть 2. Распознавание микроструктур сплавов:

^{** —} по качеству стали подразделяются на: обыкновенного качества, качественные, высококачественные.

6.6 Примерная тематика экзаменационных билетов

Количество билетов определяется количеством студентов в группе. Вопросы экзаменационных билетов.

- 1) Характеристика диаграммы состояния системы Fe Fe₃C? Пользуясь диаграммой фазового равновесия, описать процессы происходящие при охлаждении сплава с x,x % C; построить кривую охлаждения с применением правила фаз и схематически нарисовать микроструктуру сплава во всех температурных областях и при комнатной температуре. Подсчитать количественное соотношение фазовых составляющих перед началом эвтектоидной реакции. Назовите Ваш сплав.
- 2) Расшифруйте маркировку сплавов: Ст1кп, сталь 45, сталь У8, 08X13, СЧ10, ВЧ45, КЧ63-2, Л96, БрО10.
 - 3) Каковы характерные свойства металлов и чем они определяются?
 - 4) Что такое элементарная ячейка?
 - 5) Что такое полиморфизм?
- 6) Что такое параметр кристаллической решетки, плотность упаковки и координационное число?
 - 7) Виды дислокаций и их строение?
 - 8) В чем физическая сущность процесса кристаллизации (плавления)?
 - 9) Каковы параметры процесса кристаллизации?
 - 10) Что такое переохлаждение?
- 11) Какова связь между величиной зерна, скоростью зарождения, скоростью роста кристаллов и степенью переохлаждения?
- 12) Формы кристаллов и влияние реальной среды на процесс кристаллизации. Образование дендритной структуры.
 - 13) В чем сущность модифицирования?
- 14) Приведите объяснение твердого раствора, механической смеси, химического (металлического) соединения.

- 15) Что представляют собой твердые растворы замещения и внедрения?
- 16) Как изменяется строение металла в процессе пластического деформирования?
- 17) Как изменяется плотность дислокаций при пластической деформации?
 - 18) Как влияют дислокации на прочность металла?
- 19) Что такое твердость? Какие методы определения твердости вы знаете?
 - 20) Что такое ударная вязкость?
 - 21) Сущность процессов первичной и вторичной рекристаллизации.
- 22) Как влияют состав сплава и степень пластической деформации на температуру рекристаллизации?
- 23) Как изменяются строение и свойства металла при горячей пластической деформации?
 - 24) Как строятся диаграммы состояния?
- 25) Объясните принцип построения кривых нагревания и охлаждения с помощью правила фаз.
- 26) Начертите и проанализируйте диаграмму состояния для случая образования эвтектики, состоящей из ограниченных твердых растворов.
- 27) В чем различие между эвтектической и перитектической кристаллизациями?
 - 28) Что такое линия ликвидус?
 - 29) Что такое линия солидус?
- 30) По какой линии диаграммы состояния начинается кристаллизация сплавов.
- 31) Как на диаграммах состояния отображается стойкое химическое соединение.
- 32) Как на диаграммах состояния отображается нестойкое химическое соединение.
 - 33) Что такое феррит, аустенит, перлит, цементит и ледебурит?
- 34) Каковы структура и свойства технического железа, стали и белого чугуна? Их классификация.
- 35) Опишите влияние углерода, серы, фосфора, кремния, марганца, кислорода, азота, водорода на свойства сталей.
- 36) Как производится маркировка углеродистых сталей и их классификация.
- 37) Как производится маркировка легированных сталей и их классификация.
 - 38) В чем отличие серого чугуна от белого? Способ получения.
 - 39) Классификация и маркировка серых чугунов.
 - 40) Каковы структуры серых чугунов?
 - 41) Свойства и применение алюминия.
 - 42) Как классифицируются алюминиевые сплавы?
 - 43) Свойства и применение меди.

- 44) Какие сплавы относятся к латуням?
- 45) Какие сплавы относятся к бронзам? Их маркировка и состав.
- 46) Опишите свойства и применение титана.
- 47) Что такое линия ликвидус?
- 48) Что такое линия солидус?
- 49) По какой линии диаграммы состояния начинается кристаллизация сплавов.
- 50) Как на диаграммах состояния отображается стойкое химическое соединение.
- 51) Как на диаграммах состояния отображается нестойкое химическое соединение.
 - 52) Что такое феррит, аустенит, перлит, цементит и ледебурит?
- 53) Каковы структура и свойства технического железа, стали и белого чугуна? Их классификация.
- 54) Опишите влияние углерода, серы, фосфора, кремния, марганца, кислорода, азота, водорода на свойства сталей.
- 55) Как производится маркировка углеродистых сталей и их классификация.
- 56) Как производится маркировка легированных сталей и их классификация.
 - 57) В чем отличие серого чугуна от белого? Способ получения.
 - 58) Классификация и маркировка серых чугунов.
 - 59) Каковы структуры серых чугунов?
 - 60) Свойства и применение алюминия.
 - 61) Как классифицируются алюминиевые сплавы?
 - 62) Свойства и применение меди.
 - 63) Какие сплавы относятся к латуням?
 - 64) Какие сплавы относятся к бронзам? Их маркировка и состав.
 - 65) Опишите свойства и применение титана.
 - 66) Как классифицируются магниевые сплавы?
- 67) Благородные металлы и их сплавы. Маркировка, области применения.
- 68) Как производится выбор температур под термическую обработку сталей.
- 69) Выбор температур под закалку сталей. Определите температуры закалки сталей: 20, Ст6, У13.
- 70) Охарактеризуйте полный отжиг. Выберите температуры полного отжига для сталей 35 и У10.
- 71) Охарактеризуйте нормализацию. Выберите температуры нормализации для сталей 45 и У11.
- 72) Способы закалки. Охарактеризуйте непрерывную и прерывистую закалку.
 - 73) В чем заключается назначение отпуска стали. Низкий отпуск.
 - 74) В чем заключается назначение отпуска стали. Средний отпуск.

- 75) В чем заключается назначение отпуска стали. Высокий отпуск.
- 76) Какой вид термической обработки называется улучшением?
- 77) Что представляет собой мартенсит?
- 78) Что представляет собой сорбит?
- 79) При каком виде термообработки охлаждение производят на воздухе?
- 80) При каком виде термообработки будет получена минимальная твердость стали?

Пример.

Экзаменационный билет № <u>1</u>

- 1. Характеристика диаграммы состояния системы Fe Fe₃C? Пользуясь диаграммой фазового равновесия, описать процессы происходящие при охлаждении сплава с 0,2 % C; построить кривую охлаждения с применением правила фаз и схематически нарисовать микроструктуру сплава во всех температурных областях и при комнатной температуре. Подсчитать количественное соотношение фазовых составляющих перед началом эвтектоидной реакции. Назовите Ваш сплав.
- 2. Расшифруйте маркировку сплавов: Ст1кп, сталь 45, сталь У8, 08X13, СЧ10, ВЧ45, КЧ63-2, Л96, БрО10.
 - 3. Как и для чего производится модифицирование силумина?

Экзаменационный билет № <u>2</u>_

- 1. Что такое полиморфизм? Приведите примеры.
- 2. Характеристика диаграммы состояния системы Fe Fe₃C? Пользуясь диаграммой фазового равновесия, описать процессы происходящие при охлаждении сплава с 4,2 % C; построить кривую охлаждения с применением правила фаз и схематически нарисовать микроструктуру сплава во всех температурных областях и при комнатной температуре. Подсчитать количественное соотношение фазовых составляющих после эвтектического превращения. Назовите Ваш сплав.
- 3. Расшифруйте маркировку сплавов: Ст2сп, сталь 20, сталь У7, 10Г2Б2, СЧ18, ВЧ36, КЧ45-8, ЛАЖ59-2-1, АЛ2.

6.7 Примерная тематика курсовых работ

Курсовые работы не предусмотрены.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Халдеев, А. К. Материаловедение: учебник для вузов / А. К. Халдеев. 2-е изд., доп. и перераб. Саров : РФЯЦ-ВНИИЭФ, 2019. 437 с. URL: https://obuchalka.org/20211212139324/materialovedenie-haldeev-v-n-2019.html. (дата обращения: 07.12.2023). Текст : электронный.
- 2. Земсков, Ю. П. Материаловедение: учебное пособие / Ю. П. Земсков. 2-е изд., стер. Санкт-Петербург : Лань, 2024. 188 с. URL: https://reader.lanbook.com/book/364784?demoKey=8bba17052cd2bc24651355c9e 7fba2a7#2. (дата обращения: 07.12.2023). Режим доступа: по подписке.
- 3. Потехин, Б. А. Металловедение: учебное пособие / Б. А. Потехин. Екатеринбург: Урал. гос. лесотехн. ун-т, 2019. 99 с. URL: https://elar.usfeu.ru/handle/123456789/9090?mode=full. (дата обращения: 07.12.2023). Режим доступа: по подписке.

Дополнительная литература

- 1. Коновалов, Ю. В. Металлургия: учебное пособие для бакалавров: в 3 кн.Кн. 2: Ч.3. Металловедение и основы термической обработки металлов. Ч.4. Теоретические основы обработки металлов давлением, сортамент прокатной продукции. Ч.5. Производство заготовок. Ч.6. Листопрокатное производство / Ю. В. Коновалов, А. А. Минаев; Донецк: ГВУЗ "ДонНТУ, 2012. 496с. URL: https://library.dstu.education/akkred/denischenko/konovalov.pdf (дата обращения: 02.09.2023). Режим доступа: для авториз. пользователей. Текст: электронный.
- 2. Гуляев, А. П. Материаловедение. / А. П. Гуляев. М.: Металлургия, 1986. 544 с. . URL: https://moodle.dstu.education/mod/folder/view.php?id=45380. Режим доступа: для авториз. пользователей. Текст : электронный.
- 3. Лахтин, Ю. М. Материаловедение: учебник для машиностроительных вузов / Ю. М. Лахтин, В. П. Леонтьева. М.: Машиностроение, 1990. 528 с. . 496с. URL: https://djvu.online/file/OtddrQw4yX3Zf. (дата обращения: 07.12.2023). Текст : электронный.
- 4. Геллер, Ю. А. Материаловедение / Ю. А. Геллер, А. Г. Рахштадт. М.: Металлургия, 1989. 455 с. URL: https://moodle.dstu.education/mod/folder/view.php?id=45380. (дата обращения: 11.09.2024). Режим доступа: для авториз. пользователей. Текст : электронный.
- 5. Лахтин, Ю. М. Металловедение и термическая обработка. М: Металлургия, 1983 360 с. URL: https://moodle.dstu.education/mod/folder/view.php?id=45380. (дата обращения:

- 11.09.2024). Режим доступа: для авториз. пользователей. Текст : электронный.
- 6. Марочник сталей и сплавов / [В.Г. Сорокин, А.В. Волосникова, С.А. Вяткин и др.]; под ред. В. Г. Сорокина М.: Машиностроение, 1989 640 с. . URL: https://moodle.dstu.education/mod/folder/view.php?id=45380. Режим доступа: для авториз. пользователей. Текст : электронный.
- 7. Материаловедение: Учебник для высших технических учебных заведений / Б.Н. Арзамасов, И.И. Сидорин, Г.Ф. Косолапов и др.; под общ. ред. Б. Н. Арзамасова. 2-е изд., испр. и доп. М.: Машиностроение, 1986. 384 с. URL: https://moodle.dstu.education/mod/folder/view.php?id=45380. Режим доступа: для авториз. пользователей. Текст: электронный.
- 8. Лившиц, Б. Г. Металлография / Б. Г. Лившиц. М.: Металлургия, 1990. 236 с. URL: https://moodle.dstu.education/mod/folder/view.php?id=45380. Режим доступа: для авториз. пользователей. Текст : электронный.

Учебно-методическое обеспечение

- 1. Методические указания к выполнению лабораторной работы на тему «Определение твердости металлов» по дисциплинам «Технология конструкционных материалов», «Материаловедение», «Металлы и сварка в строительстве» (для студентов инженерно-технических специальностей) / Сост.: Ю. В. Горецкий, Т. Б. Коробко. Алчевск : ГОУ ВПО ЛНР «ДонГТУ», 2019. 24 с. URL: http://library.dstu.education/download.php?rec=111758. (дата обращения: 07.12.2023). Режим доступа: для авториз. пользователей. Текст : электронный.
- 2. Методические указания к выполнению междисциплинарного проекта № 1 по дисциплине «Материаловедение» на тему «Исследование фазового и структурного строения сплавов на основе железа, количественный металлографический анализ микроструктуры и разработка технологии термической обработки деталей машин и инструмента» (для студ. напр. подготовки 22.03.02 «Металлургия» 2 курса всех форм обуч.) / Сост.: Ю. В. Горецкий, М. В. Георгиаду. Алчевск : ГОУ ВПО ЛНР «ДонГТУ», 2019. 49 с. URL: http://library.dstu.education/download.php?rec=114993. (дата обращения: 07.12.2023). Текст : электронный.
- 3. Методические указания к выполнению практической работы на тему «Маркировка и применение углеродистых сталей» по дисциплинам «Материаловедение», «Металлы и сварка в строительстве» (для студентов инженерно-технических специальностей всех форм обучения) / Сост.: Ю. В. Горецкий, Т. Б. Коробко. Алчевск: ГОУ ВПО ЛНР «ДонГТУ», 2019. 14 с. URL: http://library.dstu.education/download.php?rec=115258. (дата обращения: 07.12.2023). Текст: электронный.

- 4. Методические указания к выполнению лабораторной работы на тему «Изучение микроструктур углеродистых сталей в равновесном состоянии» по дисциплинам «Материаловедение», «Металлы и сварка в строительстве» (для студентов инженерно-технических специальностей всех форм обучения) / Сост.: Ю. В. Горецкий, Т. Б. Коробко. Алчевск: ГОУ ВПО ЛНР «ДонГТУ», 2019. 14 с. URL: http://library.dstu.education/download.php?rec=115248. (дата обращения: 07.12.2023). Текст: электронный.
- 5. Методические указания к выполнению лабораторной работы на тему «Изучение микроструктур чугунов» по дисциплинам «Материаловедение», «Металлы и сварка в строительстве» (для студентов инженерно-технических специальностей всех форм обучения) / Сост.: Ю. В. Горецкий, Т. Б. Коробко. Алчевск: ГОУ ВПО ЛНР «ДонГТУ», 2019. 16 с. URL: http://library.dstu.education/download.php?rec=115250. (дата обращения: 07.12.2023). Текст: электронный.
- 6. Методические указания к выполнению практической работы на тему «Классификация и маркировка легированных сталей» по дисциплинам «Материаловедение», «Металлы и сварка в строительстве» (для студентов инженерно-технических специальностей всех форм обучения) / Сост.: Ю. В. Горецкий, Т. Б. Коробко. Алчевск: ГОУ ВПО ЛНР «ДонГТУ», 2019. 9 с. URL: http://library.dstu.education/download.php?rec=115254. (дата обращения: 07.12.2023). Текст: электронный.
- 7. Методические указания к выполнению лабораторной работы на тему «Изучение микроструктур легированных сталей» по дисциплинам «Материаловедение», «Металлы и сварка в строительстве» (для студентов инженерно-технических специальностей всех форм обучения) / Сост.: Ю. В. Горецкий, Т. Б. Коробко. Алчевск: ГОУ ВПО ЛНР «ДонГТУ», 2019. 14 с. URL: http://library.dstu.education/download.php?rec=127269. (дата обращения: 07.12.2023). Текст: электронный.
- 8. Методические указания к выполнению лабораторной работы на тему «Макроскопический анализ металлов и сплавов» по дисциплинам «Материаловедение», «Металлы и сварка в строительстве» (для студентов инженерно-технических специальностей всех форм обучения) / Сост.: Ю. В. Горецкий, Т. Б. Коробко. Алчевск : ГОУ ВПО ЛНР «ДонГТУ», 2020. 18 с. URL: http://library.dstu.education/download.php?rec=117584. (дата обращения: 07.12.2023). Текст : электронный.
- 9. Методические указания к выполнению лабораторной работы на тему «Испытание металлов на растяжение» по дисциплинам «Материаловедение», «Технология конструкционных материалов», «Методы контроля и анализа веществ» (для студентов инженерно-технических специальностей всех форм обучения) / Сост.: Ю. В. Горецкий, Т. Б. Коробко. Алчевск: ГОУ ВО ЛНР

- «ДонГТИ», 2021. 15 с. URL: http://library.dstu.education/download.php?rec=124123. (дата обращения: 07.12.2023). Текст : электронный.
- 10. Методические указания к выполнению лабораторной работы на тему «Изучение процесса кристаллизации» по дисциплине «Материаловедение» (для студентов инженерно-технических специальностей всех форм обучения) / Сост.: Ю. В. Горецкий, Т. Б. Коробко. Алчевск : ГОУ ВО ЛНР «ДонГТИ», 2022. 27 с. URL: http://library.dstu.education/download.php?rec=131682. (дата обращения: 07.12.2023). Текст : электронный.
- 11. Методические указания к выполнению практической работы на тему «Диаграмма состояния железо карбид железа. Характеристика железоуглеродистых дисциплинам «Материаловедение», сплавов» ПО «Междисциплинарный проект № 1» (для студентов инженерно-технических специальностей всех форм обучения) / Сост.: Ю. В. Горецкий. — Алчевск : ГОУ BO ЛНР «ДонГТИ», 2022. 23 c. **URL**: http://library.dstu.education/download.php?rec=131678. (дата обращения: 07.12.2023). — Текст : электронный.
- 12. Методические указания к выполнению практической работы на тему «Анализ диаграмм состояния двухкомпонентных систем» по дисциплине «Материаловедение» (для студентов инженерно-технических специальностей всех форм обучения) / Сост.: Ю. В. Горецкий. Алчевск : ГОУ ВО ЛНР «ДонГТИ», 2023. 17 с. URL: https://library.dstu.education/download.php?rec=132117. (дата обращения: 07.12.2023). Текст : электронный.
- 13. Методические указания к выполнению лабораторной работы на тему «Микроструктурный анализ двойных сплавов» ПО дисциплине «Материаловедение» (для студентов инженерно-технических специальностей всех форм обучения) / Сост.: Ю. В. Горецкий. — Алчевск : ГОУ ВО ЛНР «ДонГТИ», 15 c. 2023. URL: https://library.dstu.education/download.php?rec=132278. (дата обращения: 07.12.2023). — Текст : электронный.
- 14. Методические указания к выполнению лабораторной работы на тему «Испытание металлов на ударный изгиб» по дисциплинам «Технология конструкционных материалов», «Материаловедение», «Металлы и сварка в строительстве» (для студентов инженерно-технических специальностей) / Сост.: Ю. В. Горецкий, Т. Б. Коробко. Алчевск: ГОУ ВПО ЛНР «ДонГТУ», 2019. 14 с. URL: http://library.dstu.education/download.php?rec=111754. (дата обращения: 07.12.2023). Текст: электронный.

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт. Алчевск. URL: library.dstu.education. Текст: электронный.
 - 2. Научно-техническая библиотека БГТУ им. Шухова : официальный

- сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст : электронный.
- 3. Консультант студента : электронно-библиотечная система. Mockва. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст : электронный.
- 4. Университетская библиотека онлайн : электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст : электронный.
- 5. IPR BOOKS : электронно-библиотечная система. Красногорск. URL: http://www.iprbookshop.ru/. Текст : электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местоположение) учебных
	кабинетов
Специальные помещения:	
Аудитории для проведения лекционных, практических и	
лабораторных занятий, для самостоятельной работы:	
Металлографическая лаборатория № 1. (30 посадочных мест),	ауд. <u>104</u> корп.
оборудованная специализированной (учебной) мебелью (скамья	<u>главный</u>
учебная – 30 шт., стол компьютерный – 1 шт., доска	
аудиторная – 1 шт.), АРМ учебное ПК (монитор + системный	
блок E-2180), принтер Canon LPB, мультимедийная стойка с	
оборудованием проектор EPSON EB-S92 – 1 шт.,	
широкоформатный демонстрационный экран,	
металлографический микроскоп МИМ-8м. Микроскоп УШ-31 –	
10 шт. Программное обеспечение, необходимое для проведения	
практических, лабораторных занятий: MS Office (Word, Excel,	
PowerPoint) (бесплатная учебная версия).	
Лаборатория термической обработки и механических	ауд. <u>101</u> корп.
испытаний (20 + 18 посадочных мест), оборудованный	<u>главный</u>
учебной мебелью, доской аудиторной – 2 шт.; в наличии	
приборы для определения твердости и микротвердости	
(Бринелля (ть 5004), Роквелла (тк-2), Виккерса (тп-7р)),	
универсальная разрывная машина, металлографический	
микроскоп МИМ-7, КОПР, шлифовальные и полировальные	
станки (ПСШМ-2), лабораторные муфельные печи СНОЛ,	
нагревательные лабораторные электропечи (ТИГ 2В-151),	
химреактивы, химическое лабораторное оборудование,	
комплекты образцов различных сплавов, плакаты, комплекты	
раздаточного материала	

Лист согласования РПД

Разработал		
ст. преп. кафедры металлургических	The IO D	Г <u>×</u>
<u>Технологий</u> (должность)	(подпись)	<u>Горецкий</u> (Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
И.о. заведующего кафедрой	<u> Helleemf Н.Г.</u>	<u>Митичкина</u> (Ф.И.О.)
Протокол № <u>1</u> заседания кафедры металлургических технологий	от <u>30.08.</u> 20 <u>24</u>	_F.
И.о. декана факультета горно-металлургической промышленности и строительства	ОМВ О.В.	<u>Князьков</u> (Ф.И.О.)
Согласовано		
Председатель методической комиссии по направлению подготовки 22.03.02 Металлургия (металлургия черных металлов, обработка металлов давлением)	<u> Невеня Н.Г.</u>	<u>Митичкина</u> (Ф.И.О.)
Начальник учебно-методического центра	О.А.	<u>Коваленко</u> (Ф.И.О.)

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения		
изменений		
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	
Основание:		
Подпись лица, ответственного за внесение изменений		
подпись лица, ответственного за внесение изменении		