Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Вишневский Дмитрий Александрович

Должность: Ректор МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Дата подписания: 17.10.2025 15:06:46

(МИНОБРНАУКИ РОССИИ)

Уникальный программный ключ:

03474917c4d012283e5ad996a48a5e70bf8daФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

> Факультет информационных технологий и автоматизации производственных процессов Кафедра электроники и радиофизики **УТВЕРЖДАЮ** И.о. проректора по учебной работе Д.В. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

	Физика плазмы
-	(наименование дисциплины)
	03.03.03 Радиофизика
	(код, наименование направления)
Инженерно-физ	вические технологии в промышленности
	(профиль подготовки)
Квалификация	бакалавр
Квалификация	(бакалавр/специалист/магистр)
Форма обучения	очная, очно-заочная
	(очная очно-заочная заочная)

1 Цели и задачи изучения дисциплины

Цели дисциплины. Целью изучения дисциплины «Физика плазмы» является формирование физических представлений о процессах, протекающих в плазме для применения этих знаний при работе в различных областях науки и техники.

Задачи изучения дисциплины:

- формирование базовых знаний в области физики плазмы;
- освоение студентами теоретических методов анализа плазменных явлений, проявляющихся как в экспериментальных установках, так и в природе.

Дисциплина направлена на формирование общепрофессиональной (ОПК-1) компетенции выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины – курс входит в обязательную часть блока 1 «Дисциплины (модули)» по направлению подготовки 03.03.03 «Радиофизика».

Дисциплина реализуется кафедрой электроники и радиофизики.

Основывается на базе дисциплин: «Высшая математика», «Электричество и магнетизм», «Физика конденсированного состояния».

Приобретенные знания, могут быть использованы для изучения следующих дисциплин: «Проектирование и эксплуатация плазменного технологического оборудования».

Дисциплина способствует углубленной подготовке к решению специальных практических профессиональных задач и формированию необходимых компетенций.

Общая трудоемкость освоения дисциплины составляет 4 зачетные единицы, 144 ак.ч. Программой дисциплины предусмотрены лекционные (36 ак.ч.), практические (18 ак.ч.) занятия и самостоятельная работа студента (90 ак.ч.). Дисциплина изучается в 6 семестре.

Для очно-заочной формы обучения программой дисциплины предусмотрены лекционные (16 ак.ч.), практические (10 ак.ч.) занятия и самостоятельная работа студента (118 ак.ч.). Дисциплина изучается на в 7 семестре.

Форма промежуточной аттестации – экзамен.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Физика плазмы» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание компетенции	Код	Код и наименование индикатора
	компетенции	достижения компетенции
Способен применять базовые знания в области физики и радиофизики и использовать их в профессиональной деятельности, в том числе в сфере педагогической деятельности	ОПК-1	ОПК-1.2. Умеет применять фундаментальные законы в области физики и радиофизики в профессиональной деятельности

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 4 зачётные единицы, 144 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим занятиям, текущему контролю, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам 6
Аудиторная работа, в том числе:	54	54
Лекции (Л)	36	36
Практические занятия (ПЗ)	18	18
Лабораторные работы (ЛР)	1	-
Курсовая работа/курсовой проект	1	-
Самостоятельная работа студентов (СРС), в том числе:	90	90
Подготовка к лекциям	9	9
Подготовка к лабораторным работам	-	-
Подготовка к практическим занятиям / семинарам	18	18
Выполнение курсовой работы / проекта		-
Расчетно-графическая работа (РГР)	-	
Реферат (индивидуальное задание)	-	-
Домашнее задание (индивидуальное задание)	-	-
Подготовка к контрольной работе	-	-
Подготовка к коллоквиуму	6	6
Аналитический информационный поиск	18	18
Работа в библиотеке	18	18
Подготовка к экзамену	21	21
Промежуточная аттестация – экзамен	Э	Э
Общая трудоемкость дисциплины		
ак.ч.	144	144
3.e.	4	4

5 Содержание дисциплины

С целью освоения компетенций, приведенной в п.3 дисциплина разбита на 3 раздела:

- раздел 1 (Элементарные процессы в газоразрядной плазме, основные свойства газоразрядной плазмы);
- раздел 2 (Виды несамостоятельных и самостоятельных разрядов и их свойства);
- раздел 3 (Применение газовых разрядов в источниках света, газоразрядных лазерах, газоразрядных электронных и ионных приборах, ионноплазменной технологии).

Виды занятий по дисциплине и распределение аудиторных часов приведены в таблицах 3 и 4.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоем- кость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1	Элементарные процессы в газоразрядной плазме, основные свойства газоразрядной плазмы	Основные понятия о газовых разрядах. Газоразрядная плазма и ее основные свойства. Термодинамика плазменного состояния вещества. Равновесные составы плазм. Явления переноса в газоразрядной плазме.	12	Элементарные процессы и электрический ток в газах. Расчет основных параметров газоразрядной плазмы	4	-	-
2	Виды несамосто- ятельных и само- стоятельных раз- рядов и их свой- ства	Классификация электрических разрядов. Тлеющий разряд. Дуговой разряд. Искровой и коронный разряды. Высокочастотный разряд емкостного типа. Высокочастотный индукционный разряд. СВЧ-разряды.	12	Расчет основных параметров тлеющего, дугового, ВЧ- и СВЧ-разрядов	8	-	-
3	Применение газовых разрядов в источниках света, газоразрядных лазерах, газоразрядных электронных и ионных приборах, ионноплазменной технологии	Излучение плазмы в газоразрядных источниках света низкого и высокого давления и в плазменных индикаторных панелях. Использование газоразрядной накачки в газовых лазерах. Приборы газоразрядной электроники тлеющего и дугового разряда. Плазмотроны. МГД-генераторы. Ионно-плазменная технология	12	Газоразрядные электронные и ионные приборы и устройства, принцип действия, основные параметры и область применения. Расчет основных параметров плазмотронов	6	-	-
		часов за 6-й семестр	36	18	<u>I</u>	-	
Всего аудиторных часов за семестр		36	18		-		

 \sim

Таблица 4 – Виды занятий по дисциплине и распределение аудиторных часов (очно-заочная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоем- кость в ак.ч. 7-й семестр	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1	Элементарные процессы в газоразрядной плазме, основные свойства газоразрядной плазмы	Основные понятия о газовых разрядах. Газоразрядная плазма и ее основные свойства. Термодинамика плазменного состояния вещества. Равновесные составы плазм. Явления переноса в газоразрядной плазме.	4	Элементарные процессы и электрический ток в газах. Расчет основных параметров газоразрядной плазмы	2	-	-
2	Виды несамосто- ятельных и само- стоятельных раз- рядов и их свой- ства	Классификация электрических разрядов. Тлеющий разряд. Дуговой разряд. Искровой и коронный разряды. Высокочастотный разряд емкостного типа. Высокочастотный индукционный разряд. СВЧ-разряды.	6	Расчет основных параметров тлеющего, дугового, ВЧ- и СВЧ-разрядов	4	-	-
3	Применение газовых разрядов в источниках света, газоразрядных лазерах, газоразрядных электронных и ионных приборах, ионноплазменной технологии	Излучение плазмы в газоразрядных источниках света низкого и высокого давления и в плазменных индикаторных панелях. Использование газоразрядной накачки в газовых лазерах. Приборы газоразрядной электроники тлеющего и дугового разряда. Плазмотроны. МГД-генераторы. Ионно-плазменная технология	6	Газоразрядные электронные и ионные приборы и устройства, принцип действия, основные параметры и область применения. Расчет основных параметров плазмотронов	4	-	-
Всего аудиторных часов за 7-й семестр		16	10		-		
Всего аудиторных часов за семестр 16			10		-		

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетен- ции	Способ оценива- ния	Оценочное средство
ОПК-1	Экзамен	Комплект контролирующих материалов для экзамена

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- тестовый контроль или устный опрос на коллоквиумах (2 коллоквиума) всего 60 баллов;
 - за выполнение практических работ всего 40 баллов.

Экзамен проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Экзамен по дисциплине проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время зачетной недели студент имеет право повысить итоговую оценку либо в форме устного собеседования, либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашнее задание

В качестве домашнего задания обучающиеся выполняют:

- проработка лекционного материала;
- выполнение практических заданий.

6.3 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

- 1. Что такое плазма и чем она отличается от других агрегатных состояний вещества?
- 2. Каковы основные характеристики плазмы (температура, плотность, степень ионизации)?
 - 3. Что такое квазинейтральность плазмы и как она обеспечивается?
- 4. Какие типы плазмы существуют (низкотемпературная, высокотемпературная, частично ионизированная)?
 - 5. Как определяется температура электронов и ионов в плазме?
- 6. Что такое процесс ионизации и какие механизмы ионизации вы знаете?
 - 7. Как происходит рекомбинация в плазме?
- 8. Что такое тройная рекомбинация и как она влияет на свойства плазмы?
 - 9. Какие факторы влияют на степень ионизации плазмы?
 - 10. Что такое ионизационное равновесие и как оно описывается?
 - 11. Что такое дрейфовое движение частиц в плазме?
- 12. Как магнитное поле влияет на движение заряженных частиц в плазме?
- 13. Что такое циклотронная частота и как она связана с движением частиц в магнитном поле?
 - 14. Что такое дрейфовая скорость и как она рассчитывается?
 - 15. Как электрическое поле влияет на движение частиц в плазме?

6.4 Вопросы для подготовки к экзамену

- 1. Какие типы волн могут существовать в плазме?
- 2. Что такое ленгмюровские волны и как они возникают?
- 3. Как описываются ионно-звуковые волны?
- 4. Что такое альфвеновские волны и в каких условиях они возникают?
- 5. Как магнитное поле влияет на распространение волн в плазме?
- 6. Магнитогидродинамика (МГД)
- 7. Что такое магнитогидродинамика и какие уравнения ее описывают?
- 8. Как магнитное поле влияет на поведение плазмы в МГД-приближении?
 - 9. Что такое магнитное пересоединение и как оно влияет на плазму?
 - 10. Какие типы МГД-неустойчивостей вы знаете?
 - 11. Как МГД-подход применяется для описания плазмы в астрофизике?
 - 12. Что такое термоядерный синтез и как он связан с физикой плазмы?
- 13. Какие условия необходимы для осуществления управляемого термоядерного синтеза?
- 14. Что такое критерий Лоусона и как он используется в термоядерных исследованиях?
- 15. Какие типы термоядерных реакторов вы знаете (токамак, стелларатор)?
- 16. Как магнитное удержание плазмы используется в термоядерных реакторах?
 - 17. Какие промышленные применения плазмы вы знаете?
- 18. Как плазма используется в микроэлектронике (плазменное травление, напыление)?
 - 19. Что такое плазменные двигатели и как они работают?
- 20. Как плазма применяется в медицине (плазменная стерилизация, лечение ран)?
- 21. Какие экологические применения плазмы существуют (очистка воды, утилизация отходов)?
 - 22. Какие методы диагностики плазмы вы знаете?
 - 23. Как работает зонд Ленгмюра и что он измеряет?
- 24. Что такое спектроскопия плазмы и как она используется для анализа?
 - 25. Как лазерная диагностика применяется для изучения плазмы?
- 26. Какие методы используются для измерения температуры и плотности плазмы?

- 27. Как плазма проявляется в астрофизических объектах (звезды, галактики, межзвездная среда)?
 - 28. Что такое солнечный ветер и как он связан с плазмой?
 - 29. Как магнитные поля влияют на поведение плазмы в космосе?
 - 30. Что такое плазменные джеты и где они наблюдаются?

6.5 Примерная тематика курсовых работ

Курсовые работы не предусмотрены.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Чередниченко, В.С. Плазменные электротехнологические установки: учебное пособие / В.С. Чередниченко, А.С. Аньшаков, М.Г. Кузьмин; под ред. В.С. Чередниченко. 2-е изд., доп. Москва: ИНФРА-М, 2020. 601 с. (Высшее образование: Бакалавриат). ISBN 978-5-16-013628-8. Текст: электронный. URL: https://znanium.com/catalog/product/946118 (дата обращения: 16.05.2024)
- 2. Вакуумная ионно-плазменная обработка: учебное пособие / А.А. Ильин, В.В. Плихунов, Л.М. Петров, В.С. Спектор. Москва: Альфа-М: ИНФРА-М, 2022. 160 с.: ил. (Современные технологии: Магистратура). ISBN 978-5-98281-366-4. Текст: электронный. URL: https://znanium.ru/catalog/product/1852833 (дата обращения: 16.05.2024).

Дополнительная литература

1 Даутов, Г.Ю. Плазмотроны со стабилизированными электрическими дугами / Г.Ю. Даутов, В.Л. Дзюба, И.Н. Карп. – Киев: Наук. думка, 1984. – 168 c. - 5 экз.

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт. Алчевск. URL: https://library.dontu.ru . Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова: официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст: электронный.
- 3. Консультант студента: электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст: электронный.
- 4. Университетская библиотека онлайн: электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст: электронный.
- 5. IPR BOOKS : электронно-библиотечная система. Красногорск. URL: http://www.iprbookshop.ru/. —Текст: электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местополо- жение) учебных кабинетов
Аудитории для проведения лекционных и практических занятий, для самостоятельной работы: Компьютерный класс	ауд. <u>434</u> корп. <i>главный</i>
Персональные компьютеры, локальная сеть с выходом в Internet, проектор Epson, мультимедийный экран	<u></u>

Лист согласования РПД

Разработал		
доцент кафедры электроники и радиофизики	Bree	С.А. Юрьев
(должность)	(поднись)	(Ф.И.О.)
И.о. заведующего кафедрой электроники и радиофизики	(подпись)	<u>А.М.Афанасьев</u> (Ф.И.О.)
Протокол № <u>/</u> заседания кафедры электроники и радиофизики от _	30. OS. 2014,	
И.о. декана факультета информационных технологий и автоматизации производственных процессов	(полиись)	<u>В.В. Дьячкова</u> (Ф.И.О.)
Согласовано		
Председатель методической комиссии по направлению подготовки 03.03.03 Радиофизика (профиль «Инженерно-физические технологии в промышленности»)	Alue I	А.М.Афанасьев
Начальник учебно-методического центра	(подпись)	(Ф.И.О.) О.А. Коваленко (Ф.И.О.)

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения		
изменений		
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	
Осно	зание:	
Подпись лица, ответственн	ого за внесение изменений	