Документ подписан простой электронной подписью

Форма обучения

Информация о владельце:

ФИО: Вишневский Дмулий Престерество на УКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Должность: Ректор (МИНОБРНАУКИ РОССИИ)

Дата подписания: 17.10.2025 15:06:46

Уникальный программный ключ:

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

03474917c4d012283e5ad996a48a5e<mark>OBPAS</mark>OBA ГЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

(ФГБОУ ВО «ДонГТУ»)

Факультет	информационных технологий и автоматизации	
	производственных процессов	
Кафедра	электроники и радиофизики	

УГВЕРЖДАЮ И от проректора по учебной работе Д.В. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Лазерные и плазменные технологии обработки материалов				
	(наименование дисциплины)			
	03.04.03 Радиофизика			
	(код, наименование направления)			
Инжен	ерно-физические технологии в промышленности			
	(магистерская программа)			
Квалификация магистр				
	(бакалавр/специалист/магистр)			

ОЧНАЯ, ОЧНО-ЗАОЧНАЯ (очная, очно-заочная, заочная)

1 Цели и задачи изучения дисциплины

Цели дисциплины. Целью изучения дисциплины «Лазерные и плазменные технологии обработки материалов» является формирование способности осуществлять выбор, разработку, освоение и совершенствование технологий лазерной и плазменной поверхностной обработки материалов, применяя знания, умения и навыки в области влияния лазерных и комбинированных обработок на химический и фазовый состав, структуру, напряженное состояние и свойства материалов.

Задачи изучения дисциплины:

- изучить физические процессы, происходящие при взаимодействии атомных частиц, плазмы и лазерного излучения с поверхностями твердых тел;
- ознакомить с основными методами генерации и свойствами газоразрядной и лазерной плазмы;
- ознакомить с основными применениями этих процессов в технологиях лазерной обработки материалов, лазерного и ионно-плазменного, а также комбинированного лазерно-плазменного нанесения пленочных покрытий, очистки и травления поверхностных слоев.

Дисциплина направлена на формирование профессиональной (ПК-2) компетенции выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины — курс входит в формируемую участниками образовательных отношений часть блока 1 «Дисциплины (модули)» подготовки обучающихся по направлению подготовки 03.04.03 «Радиофизика» (магистерская программа «Инженерно-физические технологии в промышленности»).

Дисциплина реализуется кафедрой электроники и радиофизики.

Основывается на базе дисциплин: «Квантовая радиофизика. Квантовые приборы», «Плазменная электроника», «Физика сплошных сред», «Физические методы неразрушающего контроля».

Освоение данной дисциплины необходимо для выбора направления научно-исследовательской работы, а также, приобретенные знания, могут быть использованы при защите выпускной квалификационной работы, включая подготовку к защите и процедуру защиты, производственной, преддипломной практике.

Дисциплина способствует углубленной подготовке к решению специальных практических профессиональных задач и формированию необходимых компетенций.

Общая трудоемкость освоения дисциплины составляет 4 зачетные единицы, 144 ак.ч. Программой дисциплины предусмотрены лекционные (36 ак.ч.), практические (36 ак.ч.) занятия и самостоятельная работа студента (72 ак.ч.). Дисциплина изучается во 3 семестре.

Для очно-заочной формы обучения программой дисциплины предусмотрены лекционные (12 ак.ч.), практические (8 ак. ч.) занятия и самостоятельная работа студента (124 ак. ч.). Дисциплина изучается на в 3 семестре.

Форма промежуточной аттестации – экзамен.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Лазерные и плазменные технологии обработки материалов» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание компетенции	Код	Код и наименование индикатора
	компетенции	достижения компетенции
Способен критически анализировать современные инженерно-физические проблемы, ставить задачи и разрабатывать программу исследования, выбирать адекватные способы и методы решения экспериментальных и теоретических задач, анализировать, обобщать и применять полученные результаты	ПК-2	ПК-2.1. Умеет выбирать подходящие методы измерений для конкретных инженерно-физических задач и объектов, понимает навыки работы с измерительным оборудованием и приборами, а также способен оценивать их характеристики.

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 4 зачётные единицы, 144 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к лабораторным занятиям, текущему контролю, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам
Аудиторная работа, в том числе:	72	72
Лекции (Л)	36	36
Практические занятия (ПЗ)	36	36
Лабораторные работы (ЛР)	-	-
Курсовая работа/курсовой проект	-	-
Самостоятельная работа студентов (СРС), в том числе:	72	72
Подготовка к лекциям	9	9
Подготовка к лабораторным работам	-	-
Подготовка к практическим занятиям / семинарам	18	18
Выполнение курсовой работы / проекта	-	-
Расчетно-графическая работа (РГР)	1	
Реферат (индивидуальное задание)	-	-
Домашнее задание (индивидуальное задание)	-	-
Подготовка к контрольной работе	1	-
Подготовка к коллоквиуму	9	9
Аналитический информационный поиск	1	-
Работа в библиотеке	18	18
Подготовка к экзамену	18	18
Промежуточная аттестация – экзамен	Э	Э
Общая трудоемкость дисциплины		
ак.ч.	144	144
3.e.	4	4

5 Содержание дисциплины

С целью освоения компетенций, приведенной в п.3 дисциплина разбита на 6 тем:

- тема 1 (Современные ионно-плазменные и лазерно-плазменные технологии обработки материалов и их роль в промышленности);
- тема 2 (Процессы взаимодействия лазерного излучения с поверхностью твердого тела. Взаимодействие лазерного излучения с поверхностью металлов, полупроводников, полимеров);
 - тема 3 (Эрозионная лазерная плазма);
- тема 4 (Процессы при взаимодействии атомных частиц с поверхностью твердого тела);
 - тема 5 (Плазма газовых разрядов);
 - тема 6 (Ионно-плазменные технологии обработки материалов).

Виды занятий по дисциплине и распределение аудиторных часов приведены в таблицах 3 и 4.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		3-	й семестр				
1	Современные ионно-плазменные и лазерно-плазменные технологии обработки материалов и их роль в промышленности	Ионно-плазменные и лазерно- плазменные технологии обра- ботки материалов	2	Ионно-плазменные и лазерно-плазменные технологии обработки материалов	2	_	_
2	Процессы взаимодействия лазерного излучения с поверхностью твердого тела. Взаимодействие лазерного излучения с поверхностью металлов, полупроводников, полимеров	Нагрев, плавление, испарение, эрозия поверхностных слоев твердых тел и пленок. Лазерные технологии размерной обработки материалов. Формирование мелкодисперсной жидкокапельной фазы, образование микроплазмы.	6	Лазерные техно- логии размерной обработки матери- алов.	6	_	_
3	Эрозионная лазерная плазма	Характеристики плазменного состояния вещества. Образование и свойства эрозионной лазерной плазмы. Оптическая спектроскопия в изучении лазерной плазмы.	6	Характеристики плазменного со- стояния вещества. Оптическая спек- троскопия в изучении лазерной плазмы.	6	_	_
4	Процессы при взаимодействии атомных частиц с поверхностью твердого тела	Упругое и неупругое рассеяние: ионизация, возбуждение атомов и молекул, диссоциация. Радиационно-химические превращения в твердом теле. Физическое и химическое распыление поверхности. Образование	8	Упругое и неупругое рассеяние: ионизация, возбуждение атомов и молекул, диссоциация. Радиационно-химические превращения в	8	_	_

~

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		радиационных дефектов. Аморфизация. Ионное перемешивание.		твердом теле.			
5	Плазма газовых разрядов	Разряды на постоянном токе и токах высокой частоты, магнетронный разряд. Высокочастотные Н- и Е-разряды. Свойства газоразрядной плазмы.	6	Высокочастотные Н- и Е-разряды. Свойства газораз- рядной плазмы.	6	_	-
6	Ионно-плазменные техноло- гии обработки материалов	Технологии нанесения пленочных покрытий. Окисление, азотирование и карбидизация поверхности. Ионнохимическое и плазмохимическое травление поверхностей. Контроль и управление ионно-плазменными процессами. Способы и системы контроля и управления плазмохимическим травлением и магнетронным распылением.	8	Контроль и управление ионно-плазменными процессами. Способы и системы контроля и управления плазмохимическим травлением и магнетронным распылением	8	_	_
Всего аудиторных часов за 3-й семестр		36	36		=	-	
	Всего аудиторных часов за семестр		36	36			

Таблица 4 – Виды занятий по дисциплине и распределение аудиторных часов (очно-заочная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		3-	й семестр				
1	Современные ионно-плазменные и лазерно-плазменные технологии обработки материалов и их роль в промышленности	Ионно-плазменные и лазерно- плазменные технологии обра- ботки материалов	2	Ионно-плазменные и лазерно-плазменные технологии обработки материалов		_	_
2	Процессы взаимодействия лазерного излучения с поверхностью твердого тела. Взаимодействие лазерного излучения с поверхностью металлов, полупроводников, полимеров	Нагрев, плавление, испарение, эрозия поверхностных слоев твердых тел и пленок. Лазерные технологии размерной обработки материалов. Формирование мелкодисперсной жидкокапельной фазы, образование микроплазмы.	2	Лазерные техно- логии размерной обработки матери- алов.	2	_	_
3	Эрозионная лазерная плазма	Характеристики плазменного состояния вещества. Образование и свойства эрозионной лазерной плазмы. Оптическая спектроскопия в изучении лазерной плазмы.	2	Характеристики плазменного со- стояния вещества. Оптическая спек- троскопия в изучении лазерной плазмы.		_	_
4	Процессы при взаимодействии атомных частиц с поверхностью твердого тела	Упругое и неупругое рассеяние: ионизация, возбуждение атомов и молекул, диссоциация. Радиационно-химические превращения в твердом теле. Физическое и химическое распыление поверхности. Образование радиационных дефектов. Амор-	2	Упругое и неупругое рассеяние: ионизация, возбуждение атомов и молекул, диссоциация. Радиационно-химические превращения в твердом теле.	2	_	_

9

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		физация. Ионное перемешивание.					
5	Плазма газовых разрядов	Разряды на постоянном токе и токах высокой частоты, магнетронный разряд. Высокочастотные Н- и Е-разряды. Свойства газоразрядной плазмы.	2	Высокочастотные Н- и Е-разряды. Свойства газораз- рядной плазмы.	2	_	_
6	Ионно-плазменные техноло- гии обработки материалов	Технологии нанесения пленочных покрытий. Окисление, азотирование и карбидизация поверхности. Ионнохимическое и плазмохимическое травление поверхностей. Контроль и управление ионно-плазменными процессами. Способы и системы контроля и управления плазмохимическим травлением и магнетронным распылением.		Контроль и управление ионно-плазменными процессами. Способы и системы контроля и управления плазмохимическим травлением и магнетронным распылением	2	_	_
Всего аудиторных часов за 3-й семестр		12	8	<u>'</u>	-	_	
	Всего аудиторных часов за сег	местр	12	8		_	-

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценива- ния	Оценочное средство
ПК-2	Экзамен	Комплект контролирующих материалов для экзамена

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- тестовый контроль или устный опрос на коллоквиумах (2 коллоквиума) – всего 60 баллов;
 - за выполнение практических работ всего 40 баллов.

Экзамен проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Экзамен по дисциплине проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время экзамена студент имеет право повысить итоговую оценку. Экзамен по дисциплине проводится в форме устного экзамена по вопросам, представленным ниже, либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашнее задание

В качестве домашнего задания обучающиеся выполняют:

- проработка лекционного материала;
- выполнение практических заданий.

6.3 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

- 1. Что такое лазер и каковы основные принципы его работы?
- 2. Какие типы лазеров используются для обработки материалов?
- 3. Каковы основные характеристики лазерного излучения (длина волны, мощность, частота)?
- 4. Какие физические процессы лежат в основе взаимодействия лазерного излучения с материалами?
- 5. Какие материалы можно обрабатывать с помощью лазерных технологий?
- 6. Как работает лазерная резка материалов и какие параметры влияют на ее качество?
 - 7. Какие особенности лазерной сварки металлов и сплавов?
- 8. Как лазерное оборудование используется для гравировки и маркировки?
 - 9. Что такое лазерная абляция и где она применяется?
- 10. Какие материалы можно обрабатывать с помощью лазерной очистки?
 - 11. Что такое плазма и каковы ее основные свойства?
- 12. Какие типы плазменных источников используются для обработки материалов?
- 13. Каковы основные характеристики плазменной струи (температура, скорость, плотность)?
- 14. Какие физические процессы лежат в основе взаимодействия плазмы с материалами?

15. Какие материалы можно обрабатывать с помощью плазменных технологий?

6.4 Вопросы для подготовки к экзамену

- 1. Как работает плазменная резка материалов и какие параметры влияют на ее качество?
 - 2. Какие особенности плазменной сварки металлов и сплавов?
- 3. Как плазменное оборудование используется для напыления покрытий?
 - 4. Что такое плазменное травление и где оно применяется?
- 5. Какие материалы можно обрабатывать с помощью плазменной очистки?
- 6. Какие основные компоненты входят в состав лазерного технологического оборудования?
- 7. Какие основные компоненты входят в состав плазменного технологического оборудования?
- 8. Как выбирается тип лазера для конкретной технологической задачи?
- 9. Как выбирается тип плазменного источника для конкретной технологической задачи?
- 10. Какие системы охлаждения используются в лазерном и плазменном оборудовании?
- 11. Как лазерные технологии применяются в автомобильной промышленности?
- 12. Как плазменные технологии применяются в аэрокосмической отрасли?
- 13. Какие задачи решают лазерные и плазменные технологии в микроэлектронике?
- 14. Как лазерные и плазменные технологии используются для обработки композитных материалов?
- 15. Какие преимущества лазерной и плазменной обработки в сравнении с традиционными методами?
- 16. Какие меры безопасности необходимо соблюдать при эксплуатации лазерного оборудования?
- 17. Какие меры безопасности необходимо соблюдать при эксплуатации плазменного оборудования?
- 18. Как проводится калибровка лазерного и плазменного оборудования?

- 19. Какие методы используются для диагностики состояния лазерных и плазменных систем?
- 20. Как часто необходимо проводить техническое обслуживание лазерного и плазменного оборудования?
- 21. Какие типы оптических систем используются в лазерном оборудовании?
 - 22. Как выбираются линзы и зеркала для лазерных систем?
- 23. Какие материалы используются для изготовления оптических компонентов?
 - 24. Как работает система фокусировки лазерного излучения?
- 25. Какие методы используются для управления направлением лазерного луча?
- 26. Какие системы управления используются в лазерном и плазменном оборудовании?
- 27. Как программируются лазерные и плазменные технологические процессы?
- 28. Какие датчики используются для контроля параметров лазерной и плазменной обработки?
- 29. Как интегрируются лазерные и плазменные системы в автоматизированные производственные линии?
- 30. Какие программные средства используются для проектирования и управления лазерными и плазменными системами?

6.6 Примерная тематика курсовых работ

Курсовые работы не предусмотрены.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература *Основная литература*

- 1. Евтихиев, Н. Н. Лазерные технологии: учебное пособие / Н. Н. Евтихиев, О. Ф. Очин, И. А. Бегунов. Долгопрудный: Интеллект, 2020. 240 с. ISBN 978-5-91559-281-9. Текст: электронный. URL: https://znanium.com/catalog/product/1238959 (дата обращения: 23.03.2024).
- 2. Овчинников, В. В. Технология дуговой и плазменной сварки и резки металлов: учебник / В. В. Овчинников, М. А. Гуреева. Москва; Вологда: Инфра-Инженерия, 2021. 240 с. ISBN 978-5-9729-0540-9. Текст: электронный. URL: https://znanium.com/catalog/product/1836022 (дата обращения: 23.03.2024).

Дополнительная литература

- 1 Шиганов, И. Н. Специальные лазерные технологии: учебное пособие / И. Н. Шиганов. Москва: МГТУ им. Баумана, 2019. 144 с. ISBN 978-5-7038-4985-9. Текст: электронный. URL: https://znanium.com/catalog/product/1964160 (дата обращения: 23.03.2024).
- 2. Мороз, А. В. Основы лучевых и плазменных технологий: лабораторный практикум / А. В. Мороз, Н. С. Вашурин. Йошкар-Ола: Поволжский государственный технологический университет, 2017. 120 с. ISBN 978-5-8158-1877-4. Текст: электронный. URL: https://znanium.com/catalog/product/1874710 (дата обращения: 23.03.2024).

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт. Алчевск. URL: https://library.dontu.ru. Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова: официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст: электронный.
- 3. Консультант студента: электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст: электронный.
- 4. Университетская библиотека онлайн: электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст: электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям $\Phi\Gamma$ OC BO.

Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местополо- жение) учебных кабинетов
Аудитории для проведения лекционных и практических занятий, для самостоятельной работы: Компьютерный класс Персональные компьютеры, локальная сеть с выходом в Internet, проектор Epson, мультимедийный экран	ауд. <u>434</u> корп. <i>главный</i>

Лист согласования РПД

Разработал:	\bigcap	
Доцент кафедры	n()	
электроники и радиофизики (должность)	(подпись)	<u>С.А. Юрьев</u> (Ф.И.О.)
И.о. заведующего кафедрой	\wedge	
электроники и радиофизики	(general	А.М.Афанасьев
	(подпись)	(Ф.И.О.)
Протокол № заседания		
кафедры электроники и радиофизики от _3	O. OS. Dock	
И.о. декана факультета информационных	100	
технологий и автоматизации	Ang	D.D. II
производственных процессов	(подпись)	<u>В.В. Дьячкова</u> (Ф.И.О.)
Согласовано:		
Председатель методической комиссии по направлению подготовки		
03.04.03 Радиофизика	Λ Λ	
(магистерская программа «Инженерно-физи	ические	
технологии в промышленности»)	(подпись)	<u>А.М.Афанасьев</u> (Ф.И.О.)

Начальник учебно-методического центра

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения изменений	
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:
Oayay	
Основание:	
Подпись лица, ответственного за внесение изменений	