Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Вишневский Дмитрий Александрович

Должность: Ректор МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Дата подписания: 17:10:2025 16:47:32 (МИНОБРНАУКИ РОССИИ)

Уникальный программный ключ:

03474917c4d012283e5ad996a48a5e70bf8d

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет

Информационных технологий и автоматизации

производственных процессов

Кафедра

Автоматизированного управления и инновационных технологий

> **УТВЕРЖДАЮ** И.о. проректора по учебной работе Д.В.Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Программирование микроконтроллеров

(наименование дисциплины)

15.03.04 Автоматизация технологических процессов и производств

(код, наименование направления)

Автоматизированное управление технологическими процессами и производствами

⁽профиль подготовки⁾

Квалификация

бакалавр

(бакалавр/специалист/магистр)

Форма обучения

очная, заочная

(очная, очно-заочная, заочная)

1 Цели и задачи изучения дисциплины

Цель дисциплины. Целью дисциплины является формирование знаний и умений в области современных средств автоматизации на базе микроконтроллеров и промышленных контроллеров (ПК), применяемых при создании и функционировании систем автоматизации технологических процессов и производств.

Задачи изучения дисциплины:

- формирование у студентов знаний принципов построения,
 функциональных возможностей, правил программирования микропроцессорных ПК;
- получение знаний и навыков по выбору ПК для реализации заданных алгоритмов регулирования;
- получение практических навыков по технологическому программированию серийных ПК .

Дисциплина направлена на формирование профессиональных (ПК-3) компетенций выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины — курс входит в элективные дисциплины (модули) Блока 1 «Дисциплины (модули)» подготовки студентов по направлению 15.03.04 Автоматизация технологических процессов и производств (профиль «Автоматизированное управление технологическими процессами и производствами»).

Дисциплина реализуется кафедрой автоматизированного управления и инновационных технологий.

Основывается на базе дисциплин: «Программирование и алгоритмизация», «Электроника и схемотехника», «Теория автоматического управления», «Вычислительные машины, системы и сети», «Средства автоматизации и управления», «Микропроцессорная техника», «Технические измерения и приборы».

Является основой для дисциплин «Диагностика и надежность автоматизированных систем», «Проектирование автоматизированных систем», «Интегрированные системы проектирования и управления».

Для изучения дисциплины необходимы компетенции, сформированные у студента для решения профессиональных задач, связанных с актуализацией решений по автоматизации.

Курс является фундаментом для ориентации студентов в сфере применения микроконтроллеров и ПК в системах автоматизации.

Общая трудоемкость освоения дисциплины составляет 5 зачетных единиц, 180 ак.ч.

Программой дисциплины предусмотрены:

- при очной форме обучения лекционные (36 ак.ч.), лабораторные
 (36 ак.ч.) занятия и самостоятельная работа студента (108 ак.ч.);
- при заочной форме обучения лекционные (6 ак.ч.), лабораторные (6 ак.ч.) занятия и самостоятельная работа студента (168 ак.ч.);

Дисциплина изучается:

- при очной форме обучения на 3 курсе в 6 семестре;
- при заочной форме обучения на 4 курсе в 8 семестре.

Форма промежуточной аттестации – экзамен.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Программирование микроконтроллеров» направлен на формирование компетенций, представленных в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание компетенции	Код	Код и наименование индикатора
	компетенции	достижения компетенции
Способен разрабатывать	ПК-3	ПК-3.7. Владеет навыками
отдельные разделы проекта		использования прикладных
автоматизированной		программных средств при
системы управления		проектировании систем
технологическим процессом.		автоматизированного управления, в том
		числе с применением современных
		цифровых технологий; навыками
		настройки операционных систем для
		решения практических задач.

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 5 зачётных единиц, 180 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к лабораторным занятиям, текущему контролю, выполнение индивидуального задания, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам
A	72	6 72
Аудиторная работа, в том числе:		
Лекции (Л)	36	36
Практические занятия (ПЗ)	-	-
Лабораторные работы (ЛР)	36	36
Курсовая работа/курсовой проект	-	-
Самостоятельная работа студентов (СРС), в том числе:	108	108
Подготовка к лекциям	9	9
Подготовка к лабораторным работам	23	23
Подготовка к практическим занятиям / семинарам	-	-
Выполнение курсовой работы / проекта	-	-
Расчетно-графическая работа (РГР)	-	-
Реферат (индивидуальное задание)	22	22
Домашнее задание	-	-
Подготовка к контрольной работе	6	6
Подготовка к коллоквиуму	-	-
Аналитический информационный поиск	-	-
Работа в библиотеке	12	12
Подготовка к экзамену	36	36
Промежуточная аттестация – экзамен (Э)	Э	Э
Общая трудоемкость дисциплины		
ак.ч.	180	180
3.e.	5	5

5 Содержание дисциплины

С целью освоения компетенций, приведенных в п.3, дисциплина разбита на 4 темы:

- тема 1 (ПК самостоятельный класс устройств управления);
- тема 2 (Обзор языков и сред программирования ПК);
- тема 3 (Техническое и программное обеспечение малоканальных, многофункциональных ПК);
- тема 4 (Методика составления простейших программ. Примеры программирования прикладных задач).

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 3 и 4 соответственно.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/п	Наименование темы	Содержание лекционных занятий	Трудоем	Темы	Трудоем	Темы	Трудоем
	(раздела)		кость в ак.ч.	практических	кость в	лабораторных	кость в ак.ч.
	дисциплины			занятий	ак.ч.	занятий	
1	ПК – самостоя-	Основные характеристики и особенности	8	-	-	-	-
	тельный класс	использования ПК в области автоматизации.					
	устройств	Сравнительные характеристики и оценки,					
	управления	стандартизация в области аппаратных					
		платформ и шинных интерфейсов,					
		современные аппаратные платформы для					
		решения задач АТПП. Определения,					
		назначение и область применения					
		микроконтроллеров и ПК. Обобщенная					
		структурная схема микроконтроллера и					
		промышленного контроллера. Назначение и					
		общая характеристика отдельных устройств					
		центрального процессора. Арифметико-					
		логическое устройство. Регистры					
		специального назначения. Регистры общего					
		назначения. Абстрактная модель OSI для					
		сетевых коммуникаций и разработки сетевых					
		протоколов. Различные уровни сетевой					
		модели OSI, взаимодействие уровней. Доступ					
		к сетевым службам, представление и					
		кодирование данных, управление сеансом					
		связи, транспортный уровень, логическая					
		адресация, физическая адресация, бинарная					
	2.05	передача.				177	
2	2 Обзор языков и	Разработка программного обеспечения ПК.	8	-	-	1Программирова-	4
	сред программи-	Языки программирования ІЕС 1131.				ние ПЛК на	
	рования ПК.	Конфигурирование модулей ввода/вывода				языке FBD.	
		ПК. Структурная схема взаимосвязи програм-				211	
		много обеспечения устройств полевого				2Программирова-	4
		уровня – ПК – SCADA. Графические языки				ние ПЛК на	
		программирования. Язык релейной				языке ST.	
		(лестничной) логики Ladder Diagram. Язык					

_

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоем кость в ак.ч.	Темы практических занятий	Трудоем кость в ак.ч.	Темы лабораторных занятий	Трудоем кость в ак.ч.
		функциональных блоков FBD. Язык диаграмм состояний SFC. Текстовые языки программирования. Язык программирования ПК IL (Instruction List). Язык программирования ПК Structured Text (ST). Редактор РОU. Синтаксически-управляемый редактор описания. Описание в синтаксически-управляемом режиме. Ввод программы на языках IL, LD, FBD, ST. Сохранение программы. Проверка синтаксиса. Исправление ошибок. Редактирование программы. Менеджер системы Workbench. Стили и символы. Структура OPENCFС-редактора. Создание и редактирование программы. Программы отладки в режиме онлайн. Последовательность выполнения. Изменение интерфейса блока. Составные блоки. Языковые расширения.					
3	Техническое и программное обеспечение малоканальных многофункциона льных ПК	Назначение, состав, функциональные возможности и технические характеристики ПК Ремиконт Р-130. Виртуальная структура ПК. Система связи ПК с технологическим объектом управления (ТОУ). Организация ввода-вывода информации. Последова-	10	-	-	ЗИзучение состава и технических характеристик ПК Ремиконт Р-130.	4
		тельность подготовки ПК к работе. Технологическое программирование. Функциональная структура и особенности работы библиотечных алгоритмов. Стандартные конфигурации (СК) для решения задач автоматизации ТП.				4Реализация двух независимых АСР на ПК Ремиконт Р-130.	4

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоем кость в ак.ч.	Темы практических занятий	Трудоем кость в ак.ч.	Темы лабораторных занятий	Трудоем кость в ак.ч.
4	Методика составления простейших программ. Примеры программирования прикладных задач.	Реализация локальных одноконтурных регуляторов на базе СК РЕГА и РЕГИ. Реализация двухконтурной автоматической системы регулирования (АСР) с дифференциатором и каскадной АСР с корректирующим и стабилизирующим регуляторами. Структуры конфигураций,	10	-	-	5Автоматизированная настройка регулятора, реализованного на ПК Ремиконт Р-130.	6
	задач.	назначение и функции алгоритмов, входящих в их состав. Методы автоматизированной настройки регуляторов и их реализация в ПК Ремиконт Р-130. Назначение и функции алгоритмов автоматизированной настройки, последовательность ее выполнения.				работы двухконтурной АСР с регулятором и дифференциатором, реализованной на ПК Ремиконт Р-130.	0
						7Исследование работы каскадной АСР с корректирующим и стабилизирующим регуляторами, реализованной на ПК Ремиконт Р-130.	8
Всего аудитор ных занятий			36	-	-		36

Таблица 4 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

№ Наименов п/п раздел дисципл	па	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1 ПК — сам тельный устройств управления	класс	Основные характеристики и особенности использования ПК в области автоматизации. Сравнительные характеристики и оценки, стандартизация в области аппаратных платформ и шинных интерфейсов, современные аппаратные платформы для решения задач АТПП. Определения, назначение и область применения микроконтроллеров и ПК. Обобщенная структурная схема микроконтроллера и промышленного контроллера. Назначение и общая характеристика отдельных устройств центрального процессора. Арифметико-логическое устройство. Регистры специального назначения. Регистры общего назначения. Абстрактная модель ОЅІ для сетевых коммуникаций и разработки сетевых протоколов. Различные уровни сетевой модели ОЅІ, взаимодействие уровней. Доступ к сетевым службам, представление и кодирование данных, управление сеансом связи, транспортный уровень, логическая адресация, физическая адресация, бинарная передача.	6			1Изучение состава и технических характеристик ПК Ремиконт Р-130.	6
Всего аудиторных ча	сов		6				6

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
ПК-3	Экзамен	Комплект контролирующих материалов для экзамена

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- тестовый контроль или устный опрос на коллоквиумах всего 50 баллов;
- за выполнение реферата (контрольной работы для студентов $3\Phi O)$ всего 20 баллов;
 - -лабораторные работы всего 30 баллов.

Экзамен проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Экзамен по дисциплине «Программирование микроконтроллеров» проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время экзамена студент имеет право повысить итоговую оценку в форме устного экзамена по приведенным ниже вопросам (п.п. 6.5).

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашние задания

Домашние задания не предусмотрены

6.3 Темы для рефератов (контрольных работ) – индивидуальное задание

- 1) Основные характеристики и особенности использования ПК в области автоматизации.
- 2) Сравнительные характеристики и оценки, стандартизация в области аппаратных платформ и шинных интерфейсов ПК.
 - 3) Современные аппаратные платформы для решения задач АТПП.
 - 4) Назначение и область применения микроконтроллеров и ПК.
- 5) Обобщенная структурная схема микроконтроллера и промышленного контроллера.
- 6) Назначение и общая характеристика отдельных устройств центрального процессора: арифметико-логическое устройство; регистры специального назначения; регистры общего назначения.
- 7) Абстрактная модель OSI для сетевых коммуникаций и разработки сетевых протоколов.
- 8) Доступ к сетевым службам сетевой модели OSI, представление и кодирование данных, управление сеансом связи.
- 9) Транспортный уровень сетевой модели OSI, логическая адресация, физическая адресация, бинарная передача.
- 10) Разработка программного обеспечения ПК. Языки программирования IEC 1131.
 - 11) Конфигурирование модулей ввода/ вывода ПК.
- 12) Структурная схема взаимосвязи программного обеспечения устройств полевого уровня ПК SCADA.
- 13) Графические языки программирования ПК. Язык релейной (лестничной) логики Ladder Diagram.
- 14) Графические языки программирования ПК. Язык функциональных блоков FBD.
- 15) Графические языки программирования ПК. Язык диаграмм состояний SFC.
 - 16) Текстовые языки программирования ПК. Язык программирования

IL (Instruction List).

- 17) Текстовые языки программирования ПК. Язык программирования ПК Structured Text (ST).
- 18) Синтаксически-управляемый редактор описания POU. Описание в синтаксически-управляемом режиме.
- 19) Ввод, сохранение программы. проверка синтаксиса, исправление ошибок, редактирование программы на языке IL.
- 20) Ввод, сохранение программы. проверка синтаксиса, исправление ошибок, редактирование программы на языке LD.
- 21) Ввод, сохранение программы. проверка синтаксиса, исправление ошибок, редактирование программы на языке FBD.
- 22) Ввод, сохранение программы. проверка синтаксиса, исправление ошибок, редактирование программы на языке ST
- 23) Ввод, сохранение программы. проверка синтаксиса, исправление ошибок, редактирование программы на языке SFC.
- 24) Менеджер системы Workbench. Стили и символы. Структура OPENCFC-редактора.
- 25) Создание и редактирование программы. Программы отладки в режиме онлайн. Последовательность выполнения.
- 26) Изменение интерфейса блока. Составные блоки. Языковые расширения.

6.4 Оценочные средства (тесты) для текущего контроля успеваемости и коллоквиумов

При тестировании необходимо выбрать правильные ответы из четырех вариантов, предложенных для каждого из следующих вопросов

- 1) Что дает использование микропроцессорных и программных средств в управлении технологическими процессами ?
- 1.1 Использовать вместо датчиков технологических параметров информацию из математических моделей;
- 1.2 Повысить быстродействие существующих датчиков программным путем;
- 1.3 Полностью заменить аналоговые средства автоматизации на цифровые;
- 1.4 Компенсировать программным путем нелинейность характеристик и смещение нуля датчиков, учитывать при управлении предисторию процесса.
- 2) Какие функции реализуются на верхнем уровне трехуровневой АСУ ТП?
- 2.1 Организация, синхронизация, координация производственных процессов;
 - 2.2 Непосредственное цифровое управление технологическими

параметрами;

- 2.3 Адаптация структуры управления и оптимизация параметров настройки;
- 2.4 Контроль технологических параметров, создание и ведение базы данных.
 - 3) Что входит в состав микропроцессора?
- 3.1 Арифметическо-логическое устройство, блок регистров, оперативное запоминающее устройство;
- 3.2 Арифметическо-логическое устройство, блок регистров, устройство ввода-вывода;
- 3.3 Арифметическо-логическое устройство, блок регистров, устройство управления;
- 3.4 Арифметическо-логическое устройство, блок регистров, постоянное. запоминающее устройство.
- 4) Из чего состоит микропроцессорная система управления технологическим объектом?
 - 4.1 Микропроцессорная система и технологический объект;
- 4.2 Микропроцессор, запоминающее устройство, устройства связи с объектом;
- 4.3 Арифметическо-логическое устройство, блок регистров, устройство управления;
 - 4.4 Микропроцессор, устройство ввода-вывода.
- 5) В чем заключается сходство микропроцессорных и аналоговых регуляторов?
- 5.1 Имеют органы оперативного контроля и управления, стыкуются с технологическими датчиками;
 - 5.2 Имеют соизмеримое энергопотребление;
 - 5.3 Имеют одинаковые габариты;
 - 5.4 Имеют средства самодиагностики.
- 6) В чем заключается сходство микропроцессорных регуляторов и универсальных ЭВМ ?
 - 6.1 Использование для программирования языков низкого уровня;
 - 6.2 Программируемость реализуемых функций;
 - 6.3 Простота устройства и обслуживания;
- 6.4 Наличие органов оперативного управления и контроля для регулирования технологических процессов.
- 7) Что такое режим реального времени микропроцессорной системы управления?
 - 7.1 Система содержит таймер для задания реальных временных

интервалов;

- 7.2 Рабочий цикл системы синхронизируется с временем суток;
- 7.3 Рабочий цикл системы определяется текущими техникоэкономическими показателями обслуживаемого технологического агрегата;
- 7.4 Рабочий цикл системы укладывается в интервал времени между последовательными опросами контролируемых параметров, позволяющий эффективно воздействовать на регулируемые величины.
- 8) Какой сигнал может быть подан непосредственно по вход АЦП УСО МПК Ремиконт P-130?
 - 8.1 Постоянный ток с диапазоном 0-5 мА;
 - 8.2 Постоянный ток с диапазоном 4-20 мА;
 - 8.3 Постоянное напряжение с диапазоном 0-2В;
 - 8.4 Постоянное напряжение с диапазоном 0-10В.
- 9) Какое максимальное количество дискретных выходов может иметь МПК Ремиконт Р-130 ?
 - 9.1 4:
 - 9.2 8:
 - 9.3 16;
 - 9.4 32.
- 10) Из чего состоит комплект микропроцессорного регулятора Ремиконт Р-130 ?
- 10.1 Микропроцессорный регулятор с пультом настройки, блок питания, усилители сигналов технологических датчиков, усилитель мощности, клеммно-блочные соединители, нормирующие резисторы;
- 10.2 Микропроцессорный регулятор, тиристорный усилитель, станция ручного управления исполнительными механизмами, групповой источник питания;
- 10.3 Микропроцессорный регулятор, преобразователи входных сигналов, станция ручного управления;
- 10.4 Блок контроллера, преобразователи входных сигналов, усилитель для управления однофазными и трехфазными исполнительные механизмами.
- 11) Какие из перечисленных функциональных возможностей имеет микропроцессорный контроллер Ремиконт Р-130?
- 11.1 30 модификаций, 99 библиотечных алгоритмов, 76 алгоблоков программы пользователя, объединение до 15 контроллеров в локальную сеть;
- 11.2 20 модификаций, 100 библиотечных алгоритмов, 80 алгоблоков программы пользователя, объединение до 10 контроллеров в локальную сеть;
- 11.3 30 модификаций, 76 библиотечных алгоритмов, 99 алгоблоков программы пользователя, объединение до 15 контроллеров в локальную сеть;
 - 11.4 10 модификаций, 40 специальных функций для программирования,

78 переменных.

- 12) Какие из перечисленных элементов виртуальной структуры Ремиконт Р-130 реализуются программным путем?
 - 12.1 Ввод информации;
 - 12.2 Вывод информации;
 - 12.3 Оперативный контроль и управление;
 - 12.4 Алгоритмические блоки.
- 13) В какой последовательности производится технологическое программирование ПК Ремиконт Р-130?
- 13.1 Установка приборных параметров, системных параметров, алгоритмов, конфигурации, настройка параметров;
- 13.2 Установка системных параметров, приборных параметров, алгоритмов, конфигурации, настройка параметров;
- 13.3 Установка приборных параметров, алгоритмов, конфигурации, системных параметров, настройка параметров;
- 13.4 Установка приборных параметров, настройка параметров, установка алгоритмов, конфигурации, системных параметров.
- 14) С какой целью выполняется конфигурирование в ПК Ремиконт Р-130 ?
 - 14.1 Для заказа составных частей комплекта контроллера;
 - 14.2 Для размещения выбранных алгоритмов по алгоблокам;
- 14.3 Для соединения между собой составных частей комплекта контроллера;
 - 14.4 Для соединения между собой запрограммированных алгоблоков.
- 15) Какой из перечисленных комплектов полностью соответствует составу реквизитов алгоритмов?
 - 15.1 Библиотечный номер, модификатор, временный диапазон;
 - 15.2 Библиотечный номер, модификатор, масштаб времени;
 - 15.3 Наименование, модификатор, масштаб времени;
 - 15.4 Наименование, библиотечный номер, модификатор.
- 16) Какой из перечисленных алгоритмов не входит СК РЕГА ПК Ремиконт Р-130 ?
 - 16.1 Задание локальное ЗДЛ;
 - 16.2 Регулирование аналоговое РАН;
 - 16.3 Ручное управление РУЧ;
 - 16.4 Ввод аналоговой группы А ВАА.
 - 17) Какой из перечисленных алгоритмов входит в СК РЕГИ?
 - 17.1 Аналоговый вывод группы А;

- 17.2 Импульсный вывод группы Б;
- 17.3 Импульсный вывод группы А;
- 17.4 Аналоговый вывод группы Б.
- 18) Какой метод автоматизированной настройки параметров реализован в ПК Ремиконт Р-130?
 - 18.1 Отработки возмущения за одно включение;
 - 18.2 Экспертный;
 - 18.3 Циглера Никольса;
 - 18.4 Автоматизированный вариант метода Циглера Никольса.
- 19) В чем заключается основное достоинство метода Циглера Никольса по сравнению с экспертным ?
- 19.1 Возможность применения итерационной процедуры поиска оптимума;
 - 19.2 Учет реальных свойств настраиваемого регулятора;
 - 19.3 Большая помехозащищенность;
 - 19.4 Обеспечение апериодического переходного процесса в АСР.
- 20) Какие приборы использует оператор при выполнении автоматизированной настройки регулятора, реализованного на ПК Ремиконт Р-130?
 - 20.1 Блок контроллера и пульт настройки МПК Ремиконт Р-130;
 - 20.2 Пульт настройки МПК Ремиконт Р-130 и вторичный прибор АСР;
 - 20.3 Блок контроллера МПК Ремиконт Р-130 и вторичный прибор АСР;
 - 20.4 Блок ручного управления и вторичный прибор АСР

6.5 Вопросы для подготовки к экзамену

- 1) Структура трехуровневой АСУТП. Какие функции реализуются на уровнях?
- 2) Какую структуру имеет микропроцессорная система управления, дать характеристику ее составных частей?
- 3) Что включает блок контроллера БК-21 ПК Ремиконт Р-130, и каково назначение его составных частей?
- 4) Каковы функциональные возможности регулирующей модели ПК Ремиконт Р-130?
- 5) Каковы функциональные возможности логической модели ПК Ремиконт Р-130?
- 6) Для чего предназначена интерфейсная сеть «Транзит» ПК Ремиконт P-130 и каковы ее основные характеристики?
- 7) Что включает виртуальная структура ПК Ремиконт Р-130 и каково назначение ее составных частей?
 - 8) Для чего предназначено технологическое программирование ПК Р-

- 130, каковы его особенности и последовательность?
- 9) Что такое стандартные конфигурации ПК Ремиконт Р-130, их назначение и характеристика?
- 10) Какие алгоритмы входят в состав СК РЕГА ПК Ремиконт Р-130, их назначение и функции?
- 11) Какие алгоритмы входят в состав СК РЕГИ ПК Ремиконт Р-130, их назначение и функции?
- 12) Какие достоинства и недостатки имеет экспертный метод автонастройки регуляторов?
- 13) Какие достоинства и недостатки имеет автоматизированный вариант метода Циглера-Никольса автонастройки регуляторов?
- 14) Какие достоинства и недостатки имеет метод автонастройки регуляторов в ПК Ремиконт Р-130?
- 15) При каких условиях следует выполнять автонастройку регулятора в ПК Ремиконт Р-130?
- 16) В какой последовательности реализуется автоматическая настройка регулятора на ПК Ремиконт Р-130?
- 17) Как реализовать двухконтурный регулятор с дифференциатором на ПК Ремиконт Р-130?
- 18) Как реализовать каскадную ACP с корректирующим и стабилизирующим регуляторами на ПК Ремиконт P-130?
- 19) Какие функции реализует алгоритм автоматизированной настройки регуляторов в ПК Ремиконт Р-130?
- 20) Что включает комплект ПК Ремиконт Р-130 и назначение его составных частей?

6.6 Примерная тематика курсовых работ

Курсовые работы не предусмотрены.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Шишов, О. В. Программируемые контроллеры в системах промышленной автоматизации: учебник / О.В. Шишов. Москва: ИНФРА-М, 2021. 365 с. + Доп. материалы [Электронный ресурс]. URL: https://znanium.com/catalog/product/1680302. (дата обращения: 7.07.2024) Режим доступа: по подписке.
- 2. Иванов, В. Н. Программирование логических контроллеров: учебное пособие Москва: СОЛОН Пресс, 2021 . 165 с. [Электронный ресурс]. URL: https://e.lanbook.com/book/180854. (дата обращения: 7.07.2024) Режим доступа: по подписке.
- 3 Ахмерова, А. Н. Программирование промышленных контроллеров: учебное пособие / А. Н. Ахмерова, А. Ю. Шарифуллина. Казань: Казанский национальный исследовательский технологический университет, 2019. 84 с. URL: http://www.iprbookshop.ru/109582.html. (дата обращения: 7.07.2024)—Режим доступа: по подписке.

Дополнительная литература

- 1. Гофман, П. М. Инструменты программирования промышленных контроллеров SFC: учебное пособие / П. М. Гофман, П. А. Кузнецов, В. В. Лосев. Красноярск: СибГУ им. академика М. Ф. Решетнёва, 2019. 145 с. [Электронный ресурс]. URL: https://e.lanbook.com/book/147514. (дата обращения: 7.07.2024) Режим доступа: по подписке.
- 2. Белов, А. В. Микроконтроллеры AVR: от азов программирования до создания практических устройств. 2-е изд.+ виртуальный диск с видеокурсами: самоучитель / А. В. Белов. 2-е изд. Санкт-Петербург: Наука и Техника, 2020. 544 с. Текст: электронный // Лань: электроннобиблиотечная система. URL: https://e.lanbook.com/book/175401. (дата обращения: 7.07.2024) Режим доступа: по подписке.

Учебно-методическое обеспечение

- 1. Методические указания к самостоятельной работе студентов при выполнении лабораторных работ по курсу «Промышленные контроллеры» (для студ. направл. подг. 15.03.04 «Автоматизация технологических процессов и производств» 3 курса всех форм обучения) / сост. Г.Д. Михайлюк; каф. Автоматизированного управления технологическими процессами. Алчевск : ГОУ ВПО ЛНР «ДонГТУ», 2018. 34 с. : library.dstu.education. Текст: электронный.
- 2. Методические указания к самостоятельной работе при подготовке и выполнении лабораторных работ по курсу «Интегрированные системы

проектирования и управления» (для студентов направления подготовки 15.03.04 "Автоматизация технологических процессов и производств" 4 - го курса очн. и заочн. форм обучен.) / Сост.: Г. Д. Михайлюк. — Алчевск: ГОУ ВПО ЛНР «ДонГТУ», 2020. — 54 с.: library.dstu.education. — Текст: электронный.

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт. Алчевск. URL: <u>library.dstu.education.</u> Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст: электронный.
- 3. Консультант студента: электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст: электронный.
- 4. Университетская библиотека онлайн: электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст: электронный.
- 5. IPR BOOKS: электронно-библиотечная система. Красногорск. URL: http://www.iprbookshop.ru/. —Текст: электронный.
- 6. Федеральная служба по экологическому, технологическому и атомному надзору (Ростехнадзор) : официальный сайт. Москва. https://www.gosnadzor.ru/. Текст: электронный.

.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО. Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

	Адрес
Наименование оборудованных учебных кабинетов	(местоположение)
паименование оборудованных учесных касинетов	учебных
	кабинетов
Специальные помещения:	
Лекционная аудитория. (50 посадочных мест)	ауд. <u>220</u> корп. <u>1</u>
Аудитории для проведения лабораторных занятий, для	
самостоятельной работы:	ауд. <u>207.206</u> корп. <u>1</u>
компьютерный класс (учебная аудитория) для проведения	
лабораторных занятий, групповых и индивидуальных	
консультаций, организации самостоятельной работы, в том	
числе, научно-исследовательской, оборудованная учебной	
мебелью, компьютерами с неограниченным доступом к сети	
<u>Интернет, включая доступ к ЭБС</u>	
Персональные компьютеры Sepron 3200, Int Celeron 420, принтер	
LBP2900, локальная сеть с выходом в Internet	

Лист согласования РПД

Разработал

ст. преп. кафедры автоматизированного и инновационных технологий (должность)		<u>Ц.Михайлюк</u> (Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
И.о. заведующего кафедрой автоматизированного управления и инновационных технологий	(подпись)	<u>Е.В. Мова</u> (Ф.И.О.)
Протокол №1 заседания кафедры автоматизированного управления и инновационных технологий		от 09.07.20 <u>24</u> г.
Согласовано		
Председатель методической комиссии по направлению подгот 15.03.04 Автоматизация технологическ процессов и производств		<u>Е.В. Мова</u> (Ф.И.О.)

Начальник учебно-методического центра

(подпись)

О.А. Коваленко (Ф.И.О.)

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения изменений					
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:				
, ,					
Ogyan	DOLLING:				
ОСНО	Основание:				
Подпись лица, ответственного за внесение изменений					