Документ подписан простой электронной подписью

Информация о владельце:

Должность: Ректор

Дата подписания: 20.10.2025 11:05:46

Уникальный программный ключ:

ФИО: Вишневмий нистерство науки и высшего образования российской федерации (МИНОБРНАУКИ РОССИИ)

оз474917c4d012283e5ad996a48a5e7006da037 АЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

| Факультет | информационных технологии и                           |
|-----------|-------------------------------------------------------|
|           | автоматизации производственных процессов              |
| Кафедра   | интеллектуальных систем и информационной безопасности |



### РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

| Технология построения защищенных распределенных приложений |                                                   |  |  |  |  |  |  |  |
|------------------------------------------------------------|---------------------------------------------------|--|--|--|--|--|--|--|
|                                                            | (наименование дисциплины)                         |  |  |  |  |  |  |  |
| 10.05.03 Инфо                                              | рмационная безопасность автоматизированных систем |  |  |  |  |  |  |  |
|                                                            | (код, наименование специальности)                 |  |  |  |  |  |  |  |
| Безо                                                       | пасность открытых информационных систем           |  |  |  |  |  |  |  |
|                                                            | (специализация)                                   |  |  |  |  |  |  |  |
|                                                            |                                                   |  |  |  |  |  |  |  |
|                                                            |                                                   |  |  |  |  |  |  |  |
| Квалификация                                               | специалист по защите информации                   |  |  |  |  |  |  |  |
| (бакалавр/специалист/магистр)                              |                                                   |  |  |  |  |  |  |  |
| Форма обучения очная                                       |                                                   |  |  |  |  |  |  |  |
| (очная, очно-заочная, заочная)                             |                                                   |  |  |  |  |  |  |  |

#### 1 Цели и задачи изучения дисциплины

Цели дисциплины. Целью «Технология изучения дисциплины защищенных построения распределенных приложений» является приобретение студентами фундаментальных знаний о принципах построения объектно-ориентированных систем управления базами данных, о способах администрирования подсистем информационной безопасности автоматизированных систем, знать требования к архитектуре распределенных систем и их компонентам для обеспечения безопасности функционирования и риски информационной безопасности распределенных информационных систем.

Задачи изучения дисциплины. Приобретение студентами знаний, умений и практических навыков, необходимых для проектирования защищенных распределенных приложений с учетом политик безопасности сложных систем, подсистем информационной безопасности и средств их администрирования, снижения угроз в защищенных распределенных приложениях.

Дисциплина направлена на формирование общепрофессиональных (ОПК-14) компетенций выпускника.

#### 2 Место дисциплины в структуре образовательной программы

Логико-структурный анализ дисциплины — курс входит в часть БЛОКА 1, формируемую участниками образовательных отношений, подготовки студентов по специальности 10.05.03 Информационная безопасность автоматизированных систем (10.05.03-05 Безопасность открытых информационных систем).

Дисциплина реализуется кафедрой интеллектуальных систем и информационной безопасности. Основывается на базе дисциплин: «Сети и системы передачи информации», «Безопасность сетей ЭВМ», «Безопасность систем баз данных», «Технологии и методы программирования», «Разработка и эксплуатация автоматизированных систем в защищенном исполнении».

Является основой для изучения следующих дисциплин: «Преддипломная практика», выполнение выпускной квалификационной работы, подготовка к процедуре защиты и защита выпускной квалификационной работы.

Для изучения дисциплины необходимы компетенции, сформированные у студента для решения профессиональных задач деятельности, связанных с применением вычислительных систем.

Курс является фундаментом для ориентации студентов в сфере разработки информационных систем.

Общая трудоемкость освоения дисциплины составляет 8 зачетных единицы, 288 ак.ч. Программой дисциплины предусмотрены лекционные (36 ак.ч.), лабораторные (72 ак.ч.) занятия, самостоятельная работа студента (180 ак.ч.), в том числе курсовая работа.

Дисциплина изучается на 5 курсе в 9, 10 семестрах. Форма промежуточной аттестации: в 9 семестре — дифференцированный зачет; в 10 семестре — экзамен, курсовая работа в 9 семестре — дифференцированный зачет.

# 3 Перечень результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины «Технология построения защищенных распределенных приложений» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

| Содержание                                                                                                                                                                       | Код         | Код и наименование индикатора                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| компетенции                                                                                                                                                                      | компетенции | достижения компетенции                                                                                                                  |
| Способен осуществлять разработку, внедрение и эксплуатацию автоматизированных систем с учетом требований по защите информации, проводить подготовку исходных данных для технико- | опк-14      | достижения компетенции  ОПК-14.1 Осуществляет разработку и внедрение автоматизированных систем с учетом требований по защите информации |
| экономического<br>обоснования                                                                                                                                                    |             |                                                                                                                                         |
| проектных решений                                                                                                                                                                |             |                                                                                                                                         |

#### 4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 8 зачётных единицы, 288 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим занятиям, текущему контролю, выполнение индивидуального задания, самостоятельное изучение материала, выполнение курсовой работы и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

| Вид учебной работы                                     | Всего ак.ч. | Ак.ч. по семестрам | Ак.ч. по семестрам |
|--------------------------------------------------------|-------------|--------------------|--------------------|
| Аудиторная работа, в том числе:                        | 108         | 9<br>54            | 10<br>54           |
| Лекции (Л)                                             | 36          | 18                 | 18                 |
| Практические занятия (ПЗ)                              | -           | -                  | -                  |
| Лабораторные работы (ЛР)                               | 72          | 36                 | 36                 |
| Курсовая работа/курсовой проект                        | -           | -                  | -                  |
| Самостоятельная работа студентов (СРС), в том числе:   | 180         | 126                | 54                 |
| Подготовка к лекциям                                   | 8           | 4                  | 4                  |
| Подготовка к лабораторным работам                      | 36          | 22                 | 14                 |
| Подготовка к практическим занятиям / семинарам         | -           | -                  | _                  |
| Выполнение курсовой работы / проекта                   | 20          | 20                 | -                  |
| Расчетно-графическая работа (РГР)                      | -           | -                  | -                  |
| Реферат (индивидуальное задание)                       | 5           | 5                  | -                  |
| Домашнее задание                                       | -           | -                  | -                  |
| Подготовка к контрольным работам                       | -           | -                  | -                  |
| Подготовка к коллоквиуму                               | -           | -                  | -                  |
| Аналитический информационный поиск                     | 18          | 18                 | _                  |
| Работа в библиотеке                                    | 18          | 18                 | _                  |
| Подготовка к экзамену (диф.зачету)                     | 75          | 39                 | 36                 |
| Промежуточная аттестация – экзамен (Э), диф.зачет (ДЗ) | дз, э       | Д3, Д3             | Э                  |
| Общая трудоемкость дисциплины                          |             |                    |                    |
| ак.ч.                                                  | 288         | 180                | 108                |
| 3.e.                                                   | 8           | 5                  | 3                  |

#### 5 Содержание дисциплины

С целью освоения компетенций, приведенных в п.3 дисциплина разбита на 13 тем:

- тема 1 (Введение в распределенные системы);
- тема 2 (Программные компоненты распределенных приложений);
- тема 3 (Сетевые протоколы);
- тема 4 (Архитектура «модель-представление-контроллер» (MVC));
- тема 5 (Апплеты);
- тема 6 (Сервлеты);
- тема 7 (Обеспечение безопасности в приложениях Java);
- тема 8 (Платформа Java EE);
- тема 9 (Взаимодействие с базами данных);
- тема 10 (Технология JavaServer Faces);
- тема 11 (Представление структурированных данных);
- тема 12 (Веб-службы);
- тема 13 (Безопасность в приложениях).

Виды занятий по дисциплине и распределение аудиторных часов для очной формы приведены в таблице 3.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

| <b>№</b><br>п/п | Наименование темы (раздела) дисциплины           | Содержание лекционных занятий                                                                                                                                              | Трудоемкость<br>в ак.ч. | Темы практических<br>занятий | Трудоемкость<br>в ак.ч. | Тема<br>лабораторных<br>занятий                                    | Трудоемкость<br>в ак.ч. |
|-----------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------|-------------------------|--------------------------------------------------------------------|-------------------------|
| 1               | 2                                                | 3                                                                                                                                                                          | 4                       | 5                            | 6                       | 7                                                                  | 8                       |
| 1               | Введение в распределенные                        | Понятие распределенного приложения. Требования к распределенным приложениям. Архитектура распределенных приложений. Распределение бизнес-логики по уровням распределенного | 2                       | -                            | -                       | Проектирование защищенного распределенного приложения              | 4                       |
|                 | системы                                          | приложения. Уровни: представления данных, обработки данных, управления данными, хранения данных.                                                                           |                         |                              |                         | Создание распределенной базы данных                                | 4                       |
| 2               | Программные компоненты распределенных приложений | Программные компоненты распределенных приложений. Модели взаимодействия компонентов. Обмен сообщениями. Дальний вызов процедур. Использование удаленных объектов.          | 2                       | -                            | -                       | Разработка защищенного распределенного приложения                  | 4                       |
| 3               | Сетевые<br>протоколы                             | Сетевые протоколы, используемые для взаимодействия компонентов распределенного приложения Java EE: HTTP, HTTPS, FTP, SMTP, POP3, IMAP, RMI-IIOP.                           | 2                       | -                            | -                       | Разработка документации для защищенного распределенного приложения | 4                       |

# Продолжение таблицы 3

| 1 | 2                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                           | 4 | 5 | 6 | 7                                                                                                            | 8 |
|---|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|--------------------------------------------------------------------------------------------------------------|---|
| 4 | Архитектура «модель-<br>представление-<br>контроллер» (MVC) | Компоненты библиотеки Swing, используемые для построения графического интерфейса пользователя приложений Java. Архитектура «модельпредставление-контроллер» (MVC).                                                                                                                                                                                                                          | 2 | - | - | Протоколы<br>удаленной<br>аутентификации                                                                     | 4 |
| 5 | Апплеты                                                     | Апплеты. Архитектура апплета. Простые методы отображения апплетов. Пересылка параметров в апплет.                                                                                                                                                                                                                                                                                           | 2 | - | - | Протокол Нидхема- Шрёдера распределения ключей                                                               | 4 |
| 6 | Сервлеты                                                    | Основные принципы технологии сервлетов. Архитектура сервлетов. Контейнеры сервлетов. Обзор технологии JavaServer Pages.                                                                                                                                                                                                                                                                     | 2 | - | - | Протокол<br>Kerberos<br>распределения<br>ключей                                                              | 4 |
| 7 | Обеспечение<br>безопасности в<br>приложениях Java           | Обеспечение безопасности в приложениях Java. Верификация байт-кода. Защищенное окружение («песочница»). Интерфейс прикладного программирования Java Cryptography Extension. Генерация ключей и сертификатов X.509 средствами Java. Хранилище ключей Java. Использование сертификатов для создания и верификации электронных подписей кода Java. Средства аутентификации и авторизации Java. | 4 | - | - | Протокол Отвея-<br>Рииса<br>распределения<br>ключей<br>Протокол Диффи-<br>Хеллмана<br>согласования<br>ключей | 4 |

 $\infty$ 

# Продолжение таблицы 3

| 1  | 2                                            | 3                                                                                                                                                                                            | 4 | 5 | 6 | 7                                                                                      | 8 |
|----|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|----------------------------------------------------------------------------------------|---|
| 8  | Платформа Java<br>EE                         | Назначение и архитектура платформы Java EE. Основные типы компонентов в среде времени выполнения Java EE. Контейнеры компонентов и предоставляемые ими сервисы.                              | 4 | - | - | Протокол МТІ согласования ключей Протокол STS (Station-to-Station) согласования ключей | 4 |
| 9  | Взаимодействие с базами данных               | Взаимодействие с базами данных. Структура интерфейса JDBC. Выполнение команд SQL. Объектно-реляционное отображение. Технология Java Persistence API. Фреймворк Hibernate.                    | 2 | - | - | Аугентифицируемое шифрование по схеме Encrypt-then-MAC (EtM)                           | 4 |
| 10 | Технология<br>JavaServer Faces               | Основные принципы создания веб-приложений на платформе Java EE. Технология JavaServer Faces. Фреймворк Spring.                                                                               | 4 | - | - | Аугентифицируемое шифрование по схеме Encryptand-MAC (E&M)                             | 4 |
| 11 | Представление<br>структурированных<br>данных | Представление структурированных данных средствами языка XML. Средства Java для обработки XML-документов. Сериализация и передача данных с помощью формата JSON. Java API для обработки JSON. | 2 | - | - | Аугентифицируемое шифрование по схеме MAC-then-Encrypt (MtE)                           | 4 |

# Завершение таблицы 3

| 1    | 2                  | 3                                                                                                                  | 4 | 5 | 6 | 7                                                                                           | 8 |
|------|--------------------|--------------------------------------------------------------------------------------------------------------------|---|---|---|---------------------------------------------------------------------------------------------|---|
| 12   | Веб-службы         | Веб-службы SOAP, технологии и протоколы их реализации. Веб-службы с передачей состояния представления RESTful.     | 4 | - | - | Схемы гибридного шифрования Схемы гибридного шифрования для                                 | 4 |
|      |                    |                                                                                                                    |   |   |   | блочного шифра в режиме работы<br>СВС/ОГВ/СГВ                                               | 4 |
| 13   | Безопасность в     | Безопасность в приложениях Java EE. Безопасность на Web-<br>уровне. Управление доступом к Web-ресурсам.            | 4 |   |   | Схемы гибридного шифрования с использованием схем аутентифицируемого шифрования             | 4 |
| 13   | приложениях        | Аутентификация пользователей Web-ресурсов. Безопасность на ЕЈВ-уровне. Безопасность на уровне клиентов приложения. | 4 | - | - | Схемы гибридного шифрования с использованием специальных схем аутентифицируемого шифрования | 4 |
| Всег | о аудиторных часов | 36                                                                                                                 |   | - | 1 | 72                                                                                          |   |

# 6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации студентов по дисциплине

#### 6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (<a href="https://www.dstu.education/images/structure/license\_certificate/polog\_kred\_modul.pdf">https://www.dstu.education/images/structure/license\_certificate/polog\_kred\_modul.pdf</a>) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 4.

Таблица 4 – Перечень компетенций по дисциплине и способы оценивания знаний

| Код и наименование компетенции | Способ оценивания           | Оценочное средство                               |
|--------------------------------|-----------------------------|--------------------------------------------------|
| ОПК-14                         | Экзамен                     | Комплект контролирующих материалов для экзамена  |
| ОПК-14                         | Дифференцированный<br>зачет | Комплект контролирующих материалов для дифзачета |

Всего по текущей работе в девятом семестре студент может набрать 100 баллов, в том числе:

- реферат всего 10 баллов;
- лабораторные работы всего 90 баллов.

Всего по текущей работе в десятом семестре студент может набрать 100 баллов, в том числе:

– лабораторные работы – всего 100 баллов.

По курсовой работе в девятом семестре студент может набрать 100 баллов, в том числе:

- выполнение курсовой работы 40 баллов;
- оформление курсовой работы 10 баллов;
- защита курсовой работы 50 баллов.

Дифференцированный зачет в девятом семестре проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Дифференцированный зачет по дисциплине «Технология построения защищенных распределенных приложений» проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время зачетной недели студент имеет право повысить

итоговую оценку либо в форме устного собеседования по приведенным ниже вопросам (п.п. 6.5), либо в результате тестирования.

Оценка по экзамену в десятом семестре проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Экзамен по дисциплине «Технология построения защищенных распределенных приложений» проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время сессии студент имеет право повысить итоговую оценку в форме устного собеседования по приведенным ниже вопросам (п.п. 6.5).

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 5.

Таблица 5 – Шкала оценивания знаний

| Сумма баллов за все виды учебной | Оценка по национальной шкале   |
|----------------------------------|--------------------------------|
| деятельности                     | зачёт/экзамен                  |
| 0-59                             | Не зачтено/неудовлетворительно |
| 60-73                            | Зачтено/удовлетворительно      |
| 74-89                            | Зачтено/хорошо                 |
| 90-100                           | Зачтено/отлично                |

#### 6.2 Домашнее задание

Домашнее задание не предусмотрено.

#### 6.3 Темы для рефератов (презентаций) – индивидуальное задание

- 1) Типовые архитектуры распределенных систем.
- 2) Программные компоненты распределенных приложений.
- 3) Модели взаимодействия компонент распределенных приложений.
- 4) Проблемы обеспечения функциональной безопасности.
- 5) Основные понятия и факторы, определяющие функциональную безопасность.
- 6) Характеристики среды, для которой должна обеспечиваться функциональная безопасность.
  - 7) Ресурсы для обеспечения функциональной безопасности.
  - 8) Критерии оценки безопасности информационных технологий.
  - 9) Методология оценки безопасности информационных технологий.
  - 10) Уровни целостности систем и программных средств.
- 11) Основы функционирования и технологии построения одноранговых сетей.
  - 12) Проблемы безопасности одноранговых сетей.
- 13) Введение в веб-службы. Реализация нестандартного расширения WSE. Менеджер пользовательских записей.

- 14) Архитектура среды .NET Remoting.
- 15) Взаимосвязь промежуточных сред.
- 16) Сравнение технологий создания распределенных приложений.
- 17) Обеспечение безопасности данных.
- 18) Безопасность доступа к методам.
- 19) Безопасность кода программы-оболочки.
- 20) Безопасность и поля-массивы с общим доступом только для чтения.
- 21) Безопасность обработки исключений.
- 22) Безопасность и ввод данных пользователем.
- 23) Вопросы безопасности при удаленном взаимодействии.
- 24) Безопасность и сериализация.
- 25) Безопасность и конфликты.
- 26) Генерация случайных чисел.
- 27) Разновидности алгоритмов хеширования.
- 28) Формирование цифровых подписей.
- 29) Проверка цифровых подписей.
- 30) Сертификаты ключей.

# 6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Тема 1 (Введение в распределенные системы)

- 1) Что такое распределенное приложение?
- 2) Какие требования предъявляются к распределенным приложениям?
- 3) Какова архитектура распределенных приложений?
- 4) Как распределяется бизнес-логика по уровням распределенного приложения?
- 5) Какие уровни: представления данных, обработки данных, управления данными, хранения данных Вы знаете?

Тема 2 (Программные компоненты распределенных приложений)

- 1) Что из себя представляют программные компоненты распределенных приложений?
  - 2) Какие модели взаимодействия компонентов Вы знаете?
  - 3) Что такое обмен сообщениями?
  - 4) Что такое дальний вызов процедур?
  - 5) Что из себя представляет использование удаленных объектов?

Тема 3 (Сетевые протоколы)

- 1) Что из себя представляет сетевой протокол IMAP, используемый для взаимодействия компонентов распределенного приложения Java EE?
- 2) Что из себя представляет сетевой протокол HTTP, используемый для взаимодействия компонентов распределенного приложения Java EE?
- 3) Что из себя представляет сетевой протокол HTTPS, используемый для взаимодействия компонентов распределенного приложения Java EE?

- 4) Что из себя представляет сетевой протокол FTP, используемый для взаимодействия компонентов распределенного приложения Java EE?
- 5) Что из себя представляет сетевой протокол SMTP, используемый для взаимодействия компонентов распределенного приложения Java EE?

Тема 4 (Архитектура «модель-представление-контроллер» (MVC))

- 1) Какие компоненты библиотеки Swing, используемые для построения графического интерфейса пользователя приложений Java Вы знаете?
  - 2) Что представляет из себя метка JLabel в библиотеке Swing?
  - 3) Что представляет из себя класс JComponent в библиотеке Swing?
  - 4) Что представляет из себя кнопка JButton в библиотеке Swing?
- 5) Что представляет из себя архитектура «модель-представление-контроллер» (MVC)?

#### Тема 5 (Апплеты)

- 1) Что такое апплеты?
- 2) Что из себя представляет архитектура апплета?
- 3) Какие простые методы отображения апплетов Вы знаете?
- 4) Как осуществляется пересылка параметров в апплет?
- 5) Какие методы присутствуют в классе Applet?

#### Тема 6 (Сервлеты)

- 1) Что такое сервлеты?
- 2) Какие основные принципы технологии сервлетов Вы знаете?
- 3) Что из себя представляет архитектура сервлетов?
- 4) Что такое контейнеры сервлетов?
- 5) Обзор технологии JavaServer Pages?

# Тема 7 (Обеспечение безопасности в приложениях Java)

- 1) Как осуществляется обеспечение безопасности в приложениях Java?
- 2) С какой целью проводится верификация байт-кода?
- 3) Что такое «песочница»?
- 4) Как осуществляется генерация ключей и сертификатов X.509 средствами Java?
  - 5) Что из себя представляет хранилище ключей Java?

## Тема 8 (Платформа Java EE)

- 1) Каково назначение платформы Java EE?
- 2) Какова архитектура платформы Java EE?
- 3) Какие основные типы компонентов в среде времени выполнения Java EE Вы знаете?
  - 4) Что из себя представляют контейнеры компонентов в среде Java EE?
- 5) Какие сервисы предоставляют контейнеры компонентов в среде Java EE?

#### Тема 9 (Взаимодействие с базами данных)

- 1) Каким образом осуществляется взаимодействие с базами данных?
- 2) Какую структуру имеет интерфейс JDBC?
- 3) Что из себя представляет объектно-реляционное отображение?
- 4) Что из себя представляет технология Java Persistence API?
- 5) Что из себя представляет фреймворк Hibernate?

#### Tema 10(Технология JavaServer Faces)

- 1) Какие основные принципы создания веб-приложений на платформе Java EE Вы знаете?
  - 2) Для проектирования каких приложений используется Java EE?
  - 3) Какие типы контейнеров используются в Java EE?
  - 4) Что из себя представляет технология JavaServer Faces?
  - 5) Что из себя представляет фреймворк Spring?

#### Тема 11 (Представление структурированных данных)

- 1) Какие средства для обработки XML-документов имеются в Java?
- 2) Как осуществляется сериализация и передача данных с помощью формата JSON?
  - 3) Что из себя представляет JSON?
  - 4) Что такое Jackson?
  - 5) Что такое модель дерева для JSON?

### Тема 12 (Веб-службы)

- 1) Какие способы реализации веб-сервисов Вам известны?
- 2) Что из себя представляет SOAP?
- 3) Как реализуется служба REST?
- 4) В чем отличия REST от SOAP?
- 5) Что такое глаголы?

## Тема 13 (Безопасность в приложениях)

- 1) Чем обеспечивается безопасность в приложениях Java EE?
- 2) Чем обеспечивается безопасность на Web-уровне?
- 3) Как происходит управление доступом к Web-ресурсам?
- 4) Как происходит аутентификация пользователей Web-ресурсов?
- 5) Чем обеспечивается безопасность на ЕЈВ-уровне?

# 6.5 Вопросы для подготовки к дифференцированному зачету

#### 9 семестр

Дифференцированный зачет сдается в виде тестов.

- 1) Какое утверждение неверно для каскадного способа разработки информационных систем (ИС): (d)
  - а) Его основной характеристикой является разбиение всей разработки на этапы.

- b) Переход с одного этапа на следующий происходит только после того, как будет полностью завершена работа на текущем.
- с) Каждый этап завершается выпуском полного комплекта документации, достаточной для того, чтобы разработка могла быть продолжена другой командой разработчиков.
- d) Последовательность шагов разработки следующая: Анализ Проектирование Сопряжение Реализация Внедрение.
- 2) Какое утверждение неверно для спиральной модели жизненного цикла ИС: (b)
  - а) Делает упор на начальные этапы жизненного цикла: анализ и проектирование.
  - b) Переход на следующий уровень не может быть осуществлен до полного завершения предыдущего.
  - с) Каждый виток спирали соответствует созданию фрагмента или версии программного обеспечения (ПО), на нем уточняются цели и характеристики проекта, определяется его качество и планируются работы следующего витка спирали. Таким образом, углубляются и последовательно конкретизируются детали проекта и в результате выбирается обоснованный вариант, который доводится до реализации.
  - d) Основная проблема спирального цикла определение момента перехода на следующий этап. Для ее решения необходимо ввести временные ограничения на каждый из этапов жизненного цикла.
  - 3) Объект в ООА представляет собой: (b)
    - а) Описывает реально не существующий элемент.
    - b) Один типичный, но неопределенный экземпляр в реальном мире.
    - с) Конкретный экземпляр в реальном мире.
    - d) Аналогичен понятию объекта в программировании (Object).
- 4) Абстракции цели или назначения человека, части оборудования или организации: (b)
  - а) реальные объекты;
  - b) роли;
  - с) прецедент;
  - d) взаимодействия.
- 5) Абстракции фактического существования некоторых предметов в физическом мире, это: (а)
  - а) реальные объекты;
  - b) роли;
  - с) прецедент;
  - d) взаимодействия.
  - 6) Объекты, получаемые из отношений между другими объектами: (d)
    - а) реальные объекты;
    - b) роли;
    - с) прецедент;
    - d) взаимодействия.
  - 7) Абстракция чего-то постоянно происходящего: (с)

- а) реальные объекты;
- b) роли;
- с) прецедент;
- d) взаимодействия.
- 8) Абстракция сигнала в реальном мире, который сообщает нам о перемещении чего-либо в новое состояние (b)
  - а) Сущность.
  - b) Событие.
  - с) Действие.
  - d) Состояние.
- 9) Положение объекта, в котором применяется определенный набор правил, линий поведения, предписаний и физических законов (d)
  - а) Сущность.
  - b) Событие.
  - с) Действие.
  - d) Состояние.
- 10) Деятельность или операция, которая должна быть выполнена экземпляром, когда он достигает состояния (с)
  - а) Сущность.
  - b) Событие.
  - с) Действие.
  - d) Состояние.
  - 11) Связь в ООА это: (с)
  - а) Абстракция фактического существования некоторых предметов в физическом мире.
  - b) Абстракция прецедента или сигнала в реальном мире, который сообщает нам о перемещении чего-либо в новое состояние.
  - с) Абстракция набора отношений, которые систематически возникают между различными видами предметов в реальном мире.
    - d) Абстракция чего-то произошедшего или случившегося.
  - 12) На диаграммах "Сущность-связь" связи изображаются: (b)
    - а) Не изображаются.
    - b) Линиями.
    - с) Прямоугольниками.
    - d) Овалами.
  - 13) Функциональные диаграммы могут изображаться в нотации: (b)
    - a) DFD.
    - b) IDEF0.
    - c) IDEF1X.
    - d) IDEF2.
  - 14) Диаграммы потоков данных могут изображаться в нотации: (а)
    - a) DFD.
    - b) IDEF0.
    - c) IDEF1X.
    - d) IDEF2.

- 15) Диаграммы сущность-связь могут изображаться в нотации: (с)
  - a) DFD.
  - b) IDEF0.
  - c) IDEF1X.
  - d) IDEF2.
- 16) Какое из следующих высказываний неверно для моделей состояний в OOA: (c)
  - а) Модель состояний связана с поведением объектов и связей во времени.
  - b) Модели состояний используются для формализации жизненных шиклов объектов и связей.
  - с) Модели состояний изображаются в виде диаграмм потоков данных.
  - d) Модели состояний выражаются в переходных диаграммах и таблицах.
- 17) По какому из приведенных типов атрибуты (в ООА) не могут классифицироваться: (b)
  - а) описательные;
  - b) связующие;
  - с) указывающие;
  - d) вспомогательные.
- 18) Отдельный реальный, гипотетический или абстрактный мир, населенный отчетливым набором объектов, которые ведут себя в соответствии с характерными для него правилами и линиями поведения, это (с)
  - а) Множество;
  - b) Сущность;
  - с) Домен;
  - d) Класс.
- 19) Домен, который обеспечивает общие механизмы и сервисные функции, необходимые для поддержки прикладного домена, это (b)
  - а) Домен механизмов.
  - b) Сервисный домен.
  - с) Архитектурный домен.
  - d) Домены реализации.
- 20) Предметная область системы с точки зрения конечного пользователя системы (в ООА), это: (а)
  - а) Прикладной домен.
  - b) Сервисный домен.
  - с) Архитектурный домен.
  - d) Домены реализации.
- 21) Домен, включающий в себя языки программирования, сети, операционные системы и общие библиотеки классов и обеспечивающий концептуальные сущности, в которых будет реализована вся система, это (d)
  - а) Домен механизмов.
  - b) Сервисный домен.

- с) Архитектурный домен.
- d) Домены реализации.
- 22) Домен, который обеспечивает общие механизмы и структуры для управления данными и управления системой как единым целым, это: (c)
  - а) Домен механизмов.
  - b) Сервисный домен.
  - с) Архитектурный домен.
  - d) Домены реализации.
  - 23) В ООА справедлива следующая цепочка декомпозиции задачи: (d)
    - а) Задача объект процесс действие.
    - b) Задача процесс объект действие.
    - с) Задача процесс действие объект.
    - d) Задача объект действие процесс.
- 24) В ООА при формализации связи один-к-одному вспомогательные атрибуты могут быть добавлены: (d)
  - а) к первому объекту;
  - b) ко второму объекту;
  - с) к обоим объектам вместе;
  - d) к любому объекту (но не к обоим).
- 25) В ООА при формализации связи один-ко-многим вспомогательные атрибуты должны быть: (b)
  - а) добавлены к объекту на стороне "один";
  - b) добавлены к объекту на стороне "много";
  - с) добавлены к обоим объектам;
  - d) не должны добавляться.
  - 26) В диаграмме переходов в состояние переход обозначается: (с)
    - а) прямоугольником;
    - b) овалом;
    - с) стрелкой;
    - d) надписью.
- 27) Что из ниже перечисленного не может включаться в диаграммы потоков данных: (а)
  - а) таймер;
  - b) внешняя сущность;
  - с) процессы;
  - d) накопители данных.
- 28) Определяет информацию, передаваемую через некоторое соединение от источника к приемнику (в ДПД): (d)
  - а) внешняя сущность;
  - b) процесс;
  - с) накопитель данных;
  - d) поток данных.
- 29) Преобразование входных потоков в выходные в соответствии с определенным алгоритмом (в ДПД): (b)
  - а) внешняя сущность;

- b) процесс;
- с) накопитель данных;
- d) поток данных.
- 30) Абстрактное устройство для хранения информации (в ДПД): (с)
  - а) внешняя сущность;
  - b) процесс;
  - с) накопитель данных;
  - d) поток данных.
- 31) Материальный предмет или физическое лицо, представляющие собой источник и приемник информации (в ДПД): (а)
  - а) внешняя сущность;
  - b) процесс;
  - с) накопитель данных;
  - d) поток данных.
  - 32) Чем характеризуется информационная переменная: (а)
    - а) наименованием, значением и обозначением;
    - b) множеством допустимых значений;
    - с) наименованием переменной;
    - d) перечнем ее основных характеристик.

#### 10 семестр

- 1) Что такое распределенные системы?
- 2) Какие типовые архитектуры распределенных систем Вы знаете?
- 3) Что такое распределенные приложения?
- 4) Какие требования предъявляются к распределенным приложениям?
- 5) Что из себя представляют программные компоненты распределенных приложений?
- 6) Что из себя представляет промежуточная среда распределенных приложений?
- 7) Какие проблемы обеспечения функциональной безопасности могут возникнуть при построении защищенных распределенных приложений?
- 8) Какие основные понятия и факторы, определяющие функциональную безопасность, Вы знаете?
- 9) Какие характеристики среды, для которой должна обеспечиваться функциональная безопасность должны учитываться?
- 10) Какие ресурсы должны привлекаются для обеспечения функциональной безопасности?
- 11) Какие критерии оценки безопасности информационных технологий Вы знаете?
- 12) По какой методологии можно оценить безопасность информационных технологий?
- 13) Какие уровни целостности систем и программных средств Вы знаете?
  - 14) Что из себя представляет WCF (Windows Communication Foundation?

- 15) Что из себя представляют контракты WCF?
- 16) Что из себя представляют привязки WCF?
- 17) Что из себя представляют адреса WCF?
- 18) Что из себя представляют контракты ошибок WCF?
- 19) Какие основные сценарии безопасности в WCF Вы знаете?
- 20) В чем заключаются особенности основных сценариев безопасности в WCF?
  - 21) Что из себя представляют шаблоны проектов WCF в Visual Studio?
  - 22) Что такое сериализация?
  - 23) Что такое десериализация?
  - 24) В чем суть конечных точек службы?
  - 25) Как создают конечные точки с помощью файла конфигурации?
  - 26) Что из себя представляют базовые адреса?
  - 27) Как создать конечную точку с помощью программного кода?
- 28) Как осуществляется публикация мета-данных посредством конечных точек?
  - 29) Что из себя представляет архитектура метаданных?
  - 30) Как настроить стандартные привязки?
  - 31) Как настроить нестандартные привязки?
  - 32) Как произвести конфигурирование конечной точки клиента?
  - 33) Как в среде Visual Studio генерируется прокси-класс?
- 34) В чем заключаются особенности определения прокси-класса вручную?
- 35) В чем заключаются особенности динамического создания проксикласса?
  - 36) Что из себя представляет базовая трассировка в WCF?
  - 37) Что из себя представляет сквозная трассировка в WCF?
- 38) Как осуществляется обеспечение безопасности на транспортном уровне?
- 39) Как осуществляется обеспечение безопасности на уровне сообщений?
- 40) Что из себя представляет технология доверенных платформенных модулей?

## 6.6 Тематика и содержание курсовой работы

Тематика курсовой работы определяется согласно соответствующего номера в списке группы и приведенной темы.

- 1) Язык описания WSDL.
- 2) Язык определения XML-схемы (XSD).
- 3) Протокол SOAP.
- 4) Классы в С#.
- 5) Коллекции в С#.
- 6) Наследование в С#.
- 7) Сериализация и десериализация.

- 8) Делегаты в С#.
- 9) Общие сведения об архитектуре метаданных.
- 10) Конфигурирование службы с помощью программного кода и использование различных привязок.
  - 11) Работа с Microsoft SQL Server 2005.
  - 12) Использование служб, отличных от WCF-ориентированных.
  - 13) Конфигурирование конечной точки клиента.
  - 14) Динамическое конфигурирование службы.
  - 15) Базовая трассировка в WCF.
  - 16) Сквозная трассировка.
  - 17) Учетные данные клиентов.
  - 18) Учетные данные в виде сертификата.
  - 19) Учетные данные в виде выдаваемых маркеров.
  - 20) Учетные данные Windows.
  - 21) Программирование транзакций.
  - 22) Обработка клиентских исключений.

#### 7 Учебно-методическое и информационное обеспечение дисциплины

#### 7.1 Рекомендуемая литература

#### Основная литература

- 1. Таненбаум Э. Распределенные системы. / Э. Таненбаум, М. ван Стин. СПб.: ДМК Пресс, 2021. 584 с. [Электронный ресурс]: Режим доступа: <a href="https://reallib.org/reader?file=486032&pg=1">https://reallib.org/reader?file=486032&pg=1</a>. (дата обращения: 26.08.2024).
- 2. Олифер В.Г. Компьютерные сети. Принципы, технологии, протоколы / В.Г. Олифер, Н.А. Олифер (6-е изд.) // СПб.: Питер, 2024, 1010 с. 8 с.: ил. (Серия «Учебник для вузов») [Электронный ресурс]: Режим доступа: <a href="https://vk.com/doc70304921\_678432931?hash=XzectOBmxlMUQtzQyzlN93r4nQ">https://vk.com/doc70304921\_678432931?hash=XzectOBmxlMUQtzQyzlN93r4nQ</a> WK9TpDtbKIbzqWy9o (дата обращения: 26.08.2024).
- 3. Зенков А.В. Информационная безопасность и защита информации: учебное пособие для вузов / А. В. Зенков. 2-е изд., перераб. и доп. Москва : Издательство Юрайт, 2024. 107 с. (Высшее образование). [Электронный ресурс]: Режим доступа: Текст: электронный // Образовательная платформа Юрайт [сайт]. <a href="https://urait.ru/bcode/544290">https://urait.ru/bcode/544290</a> (дата обращения: 26.08.2024).

#### Дополнительная литература

- 1. Столингс В. Компьютерные сети, протоколы и технологии Интернета / В. Столингс СПб.: БХВ-Петербург, 2005— 384 с. [Электронный ресурс]: Режим доступа: <a href="https://knigogid.ru/books/124893-kompyuternye-seti-protokoly-i-tehnologii-interneta">https://knigogid.ru/books/124893-kompyuternye-seti-protokoly-i-tehnologii-interneta</a> (дата обращения: 26.08.2024).
- 2. Сычев Ю.Н. Защита информации и информационная безопасность: учебное пособие для студентов высших учебных заведений, обучающихся по направлению подготовки 10.03.01 "Информационная безопасность" (квалификация (степень) "бакалавр") / Ю.Н. Сычев. Москва : ИНФРА-М, 2023. 199 с. : ил. + табл. (Высшее образование: Бакалавриат). 15 экз.

# 7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ : официальный сайт.— Алчевск. —URL: <a href="library.dstu.education">library.dstu.education</a>.— Текст : электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: <a href="http://ntb.bstu.ru/jirbis2/">http://ntb.bstu.ru/jirbis2/</a> .— Текст : электронный.
- 3. Консультант студента : электронно-библиотечная система. Mockba. URL: <a href="http://www.studentlibrary.ru/cgi-bin/mb4x">http://www.studentlibrary.ru/cgi-bin/mb4x</a> . Текст : электронный.

- 4. Университетская библиотека онлайн: электронно-библиотечная система. URL: <a href="http://biblioclub.ru/index.php?page=main\_ub\_red">http://biblioclub.ru/index.php?page=main\_ub\_red</a> .— Текст : электронный.
- 5. IPR BOOKS : электронно-библиотечная система.—Красногорск. URL: <a href="http://www.iprbookshop.ru/">http://www.iprbookshop.ru/</a> . —Текст : электронный.
  - 6. Сайт кафедры ИСИБ <a href="http://scs.dstu.education">http://scs.dstu.education</a> .

### 8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО. Материально-техническое обеспечение представлено в таблице 6.

Таблица 6 – Материально-техническое обеспечение

|                                                                                                                        | Адрес                          |
|------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|                                                                                                                        | (местоположение)               |
| Наименование оборудованных учебных кабинетов                                                                           | учебных                        |
|                                                                                                                        | кабинетов                      |
| Специальные помещения:                                                                                                 |                                |
| Аудитории для проведения лекций:                                                                                       | ауд. <u>207</u> корп. <u>4</u> |
| Мультимедийная аудитория. (60 посадочных мест),                                                                        |                                |
| оборудованная специализированной (учебной) мебелью (парта                                                              |                                |
| трехместная – 18 шт., парта двухместная – 6 шт, стол– 1 шт., доска аудиторная– 1 шт.), учебное ПК (монитор + системный |                                |
| блок), мультимедийная стойка с оборудованием – 1 шт.,                                                                  |                                |
| широкоформатный экран.                                                                                                 |                                |
|                                                                                                                        | ауд. <u>217</u> корп. <u>3</u> |
| Компьютерные классы (22 посадочных места), оборудованный                                                               | ауд. <u>211</u> корп. <u>4</u> |
| учебной мебелью, компьютерами с неограниченным доступом к                                                              |                                |
| сети Интернет, включая доступ к ЭБС:                                                                                   |                                |

#### Лист согласования РПД

ст. преподаватель кафедры интеллектуальных систем и информационной безопасности

(должность)

Р.Н. Погорелов

(Ф.И.О.)

И.о. заведующего кафедрой интеллектуальных систем и информационной безопасности

(наименование кафедры)

Е.Е. Бизянов

(Ф.И.О.)

Протокол № 1 заседания кафедры

от <u>27.08. 2024</u>г.

И.о. декана факультета информационных технологий и автоматизации производственных процессов:

(наименование факультета)

В.В. Дьячкова

(Ф.И.О.)

Согласовано

Председатель методической

комиссии по специальности

10.05.03

<u>Е.Е. Бизянов</u>

(Ф.И.О.)

Информационная безопасность автоматизированных систем

Начальник учебно-методического центра

О.А. Коваленк

# Лист изменений и дополнений

| Номер изменения, дата внесения изменения, номер страницы для |                           |
|--------------------------------------------------------------|---------------------------|
| внесения изменений                                           |                           |
| ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:                                       | ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ: |
|                                                              |                           |
|                                                              |                           |
|                                                              |                           |
|                                                              |                           |
|                                                              |                           |
|                                                              |                           |
|                                                              |                           |
|                                                              |                           |
|                                                              |                           |
| Основание:                                                   |                           |
|                                                              |                           |
|                                                              |                           |
|                                                              |                           |
|                                                              |                           |
|                                                              |                           |
|                                                              |                           |
|                                                              |                           |
|                                                              |                           |
| П                                                            |                           |
| Подпись лица, ответственного за внесение изменений           |                           |
|                                                              |                           |
|                                                              |                           |